
GPGPU calculations of
gas thermodynamic quantities

Igor Mračka, Peter Somora and Tibor Žáčik
Department of Applied Mathematics

Mathematical Institute

Slovak Academy of Sciences

Štefánikova 49, 814 73 Bratislava, Slovakia

mracka@mat.savba.sk, somora@mat.savba.sk, zacik@mat.savba.sk

Abstract—Computational processors NVIDIA Tesla GPU
based on the new Fermi generation of CUDA architecture are
intended to perform massively parallel calculations applicable to
various parts of the scientific and technical research, including the
area of fluid dynamics modeling, in particular the simulation of
real gas flow. In this paper we show that a significant acceleration
of simulation calculations can be achieved even without the
parallelization of the solution of involved differential equations
by parallel pre-calculation of thermodynamic quantities using
GPGPU.

Index Terms—gas state equation, AGA8, gas thermodynamic
quantities, CFD, GPGPU, CUDA, FERMI, NVIDIA Tesla.

I. INTRODUCTION

IT IS well-known that the computing power of processors

keeps increasing by the (slightly modified) Moore’s law [1],

even though the focus of processor development has shifted

from boosting the frequency to increasing the number of cores

in processors. Main stream desktop processors contain four

to eight cores. This new line of multi-core processors has

changed the course of programming from serial towards par-

allel algorithms. Hand in hand with the increase of computer

performance the demand arises for the increase of computation

precision especially in scientific or technical applications [2].

However, in a large part of scientific problems the dependency

between computational difficulty and calculation precision is

“stronger” than linear and the computation time increases

quadratically (or even faster) with increasing precision. In

such cases the computer performance of common desktop

multi-core CPUs is not sufficient. Fortunately, devices with a

new architecture of General Purpose computation on Graphics

Processing Units (GPGPU), usually termed as GPGPU proces-

sors, focused on massive parallel computations and capable of

performing fast calculation in double precision is becoming

available right now.

The new class of GPGPU massively parallel processors

containing hundreds of cores is able to simultaneously process

thousands of computational threads (a survey of general-

purpose computations on graphics hardware is presented in

[3]). Although this brings obvious advantages to scientific and

technical computations, the developers must also deal with

limitations of the new architecture (e.g., new memory classifi-

cation, thread distribution between streaming multiprocessors,

etc.). An important aspect of the utilization of the GPGPU

processors is the existence of development tools for the

optimization and debugging of massively parallel algorithms.

Nowadays, two probably biggest producers of GPGPU proces-

sors are AMD and NVIDIA. The new Radeon GPU processor

series of AMD is based on the FireStream architecture [4] and

contains more cores than the NVIDIA Tesla GPU processor

based on the CUDA architecture codenamed FERMI ([5],

[6]). Since the raw computational power and capabilities in

double precision calculations of both class of processors are

comparable, the main decision parameter for utilization could

be the support of programming languages and development

tools.

The NVIDIA CUDA architecture supports C, C++ and

FORTRAN programming languages and several development

environments (APIs) – CUDA C/C++, OpenCL, Direct Com-

pute (and recently announced Microsoft C++ AMP) – thus

ensuring a rising popularity among the scientific and technical

community (see [7] and [8]). The spread of NVIDIA CUDA

popularity is documented by a long series of papers and

reports of scientific teams and institutions [2], [9], and has also

reached the area of fluid dynamics modeling [10], [11], [12],

[13], as proven by the increase of interest of scientific research

centers in applying the NVIDIA Research Center program.

This paper is focused on the acceleration of (both steady-

state and transient) simulation calculations of gas flow us-

ing approximations of values of thermodynamic quantities

involved in the calculations. Several methods exist for the

evaluation of values of thermodynamic quantities, each with

its own range of application, accuracy and degree of compu-

tational difficulty. We show that, by pre-calculating the values

of approximation matrices, it is possible to maintain a constant

access time of the values of thermodynamic quantities during

simulation independently of the method used. The short access

time implies significant acceleration of simulation. Applying

a more complex state equation of gas results in the increase of

the time of calculation of each element of the approximation

matrix. Increasing the approximation precision results in the

increase of the matrix dimension and hence in a quadratic

increase of the number of matrix elements to be evaluated.

With this in mind, the utilization of massively parallel compu-

tations on GPGPU processors appears to be the ideal solution

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 451–458

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 451

for the evaluation of approximation matrices. Moreover, the

parallelization itself is rather straightforward (regardless of the

limitations caused by the transfer to GPU) without the need

for any major changes in the implementation of the original

algorithms. For the comparison of approximation matrices

evaluation times the ratio between the time of GPGPU parallel

evaluation and the time of one CPU core serial evaluation

was taken. When considering parallel evaluation on multicore

CPUs instead of serial evaluation, the resulting acceleration

ratio will be correspondingly smaller, but not quite objective,

since apart from the number of CPU cores the result also

depends on the individual hardware configuration (activa-

tion/deactivation of hyper-threading technology, etc.) and the

actual CPU usage of background running processes.

II. THERMODYNAMIC QUANTITIES IN SIMULATION

CALCULATIONS

The following system of partial differential equations (repre-

senting the conservation laws of mass, momentum and energy,

respectively, [14]) describes the one-dimensional model of the

turbulent flow of a mixture of gas with constant composition

through a pipeline of constant inner diameter.

∂ρ

∂t
+

∂ρv

∂x
= 0,

∂ρv

∂t
+

∂

∂x

(

ρv2 + P
)

+
λ

2D
ρv |v|+ ρg

∂z

∂x
= 0,

∂

∂t

[

ρ

(

v2

2
+ h−

P

ρ
+ gz

)]

+
∂

∂x

[

ρv

(

v2

2
+ h+ gz

)]

+ α(T − Tw)
πD

S
= 0,

where

x – space coordinate,

t – time coordinate,

P – gas pressure,

T – gas temperature,

ρ – gas density,

v – gas velocity,

h – specific enthalpy,

λ – resistance coefficient,

D – pipeline diameter,

S – pipeline cross-section area,

z – pipeline altitude at given point,

g – standard gravity acceleration,

Tw – pipeline wall temperature.

Since in practical situations only the measurements of

pressure P , temperature T and mass flow G are usually

available, the gas velocity v is calculated using the following

formula

v =
G

ρS
.

The density is expressed using the state equation for the real

gas

ρ =
P

ZRT
,

where

R – gas constant for given gas composition,

Z – compressibility factor.

The change of enthalpy h occurring in the energy conser-

vation law is given by the thermodynamic equation

dh = cp dT − cp µdP,

where

cp – specific heat capacity at constant pressure,

µ – Joule-Thomson coefficient.

In general, the state equation expresses the relation between

the quantities P , T and ρ, and is usually represented by a

semi-empirical equation with the coefficients to be determined

experimentally for some gas mixture, pressure and temperature

ranges. Such approximated formulas are usually given the

name of its authors, for example: Van der Waals, Redlich-

Kwong, Peng-Robinson, Lee-Kesler, BWR (Benedict-Webb-

Rubin) state equations. There are also various modifications

of the original equations: Soave modification of the Redlich-

Kwong equation or Eliott-Suresh-Donohue modification of

the Peng-Robinson equation, etc. (see [15]). In some cases

the equations get names after its institutions of origin, such

as AGA (American Gas Association), see [16], or GERG

(European Gas Research Group), see [17].

Specific heat capacity cp, enthalpy h, and the Joule-

Thomson coefficient µ are thermodynamic quantities depend-

ing on the gas state at a given point in space and time

and are functions of pressure and temperature (for given gas

composition): cp = cp(P, T), h = h(P, T), µ = µ(P, T), and

Z = Z(P, T). All thermodynamic quantities mentioned above

(as functions of pressure and temperature) can be derived from

the actual state equation.

By solving the above equations for a steady state – assuming

the time-derivations equal zero – after some simplifications

we obtain the following formula representing steady-state

hydrodynamic conditions in one pipeline:

P 2
1 − aP 2

0 = bG|G|,

where P0 and P1 denote the pressures at the beginning and

the end of pipeline, respectively, and the constants a a b are

determined by

a = exp

(

2g

ZavRTav

)

,

and

b =
λL

DS2
· ZavRTav ·

a− 1

ln a
,

where Zav and Tav are average values of compressibility and

temperature along the pipeline, respectively. For steady state

simulations, both the average temperature calculation and the

distribution of temperature along the pipeline network involve

452 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

the use of specific heat capacity at constant pressure and the

Joule-Thomson coefficient.

For both transient and steady state simulations, if the

pipeline network contains compressor stations, the model of

compressor involves the use of compressibility and the Poisson

coefficient.

It follows that regardless of the type of simulation (tran-

sient or steady-state) the evaluation of thermodynamic quanti-

ties (compressibility, specific heat capacities, enthalpy, Joule-

Thomson coefficient, Poisson coefficient) occurs quite fre-

quently. For example, in the case of steady-state optimiza-

tion simulations the time needed to acquire compressibility

and other thermodynamic quantities from state equations of

Redlich-Kwong or Peng-Robinson occupies approximately

half the time of the overall calculation. If, in particular,

simulating the flow of natural gas, then instead of general state

equations one can use the AGA8 version of state equation the

coefficients of which have been derived directly for gasses

with components and concentrations typical for natural gas

[16], [18]. By using AGA8 the resulting gas properties, e.g.,

compressibility, can be determined much more accurately,

but the compressibility calculation algorithm is much more

calculation-demanding than in the case of Redlich-Kwong

or Peng-Robinson. In fact, the evaluation of thermodynamic

quantities in steady-state simulations has been consuming

more than 98 % of the overall calculation time.

Moreover, the overall calculation time has increased to such

an extent, that it has started to pose a problem in practical use.

III. APROXIMATION MATRICES

The solution of the problem could be the pre-calculation of

thermodynamic quantities for selected values of pressure and

temperature. The values for other pressures and temperatures

can be obtained by interpolating the pre-calculated values.

Let (Pmin, Pmax) and (Tmin, Tmax) be intervals of pressures

and temperatures respectively covering the values of pressure

and temperature occurring in the calculations. For any concrete

class of problems such intervals can be found.

Divide the intervals (Pmin, Pmax) and (Tmin, Tmax) into a

given number of subintervals

Pmin = P1 < P2 < ... < PM = Pmax, M ≫ 1,

Tmin = T1 < T2 < ... < TN = Tmax, N ≫ 1.

Denote

∆P = P2 − P1, ∆T = T2 − T1.

By calculating the values of an arbitrary thermodynamic

quantity in the points (Pi, Tj) one can obtain a matrix of

numbers, which shall be called the approximation matrix of

the selected quantity. The i-th row of the approximation matrix

contains the values for the fixed pressure Pi and similarly,

the j-th column contains the values for fixed temperature Tj .

The approximation matrix for compressibility

AZ =

Z(P1, T1) Z(P1, T2) . . . Z(P1, TN)
Z(P2, T1) Z(P2, T2)

...
. . .

...

Z(PM , T1) Z(PM , T2) . . . Z(PM , TN)

shall be called the compressibility matrix (and similarly for

matrices of other thermodynamic quantities).

The request for a not pre-calculated value of compressibility

is realized by means of bilinear interpolation (using the four

closest grid points of the matrix) which is continuous and not

computationally demanding.

That means, for the value of compressibility at (P, T) one

has to find integers i, j and real numbers x, y, (0 ≤ x < 1,

0 ≤ y < 1) such that

P = i ·∆P + x and T = j ·∆T + y.

Then for the (2× 2) submatrix

Aij =

(

Z(Pi, Tj) Z(Pi, Tj+1)
Z(Pi+1, Tj) Z(Pi+1, Tj+1)

)

,

the bilinear interpolation reads

Z(P, T)
.
=

(

1− x x
)

·Aij ·

(

1− y
y

)

(see Fig. 1).

Z(Pi,Tj) Z(Pi,Tj+1)

Z(Pi+1,Tj) Z(P i+1,Tj+1)

T

P
Z(P,T)

x

1-x

y 1-y

Fig. 1. Bilinear interpolation of Z(P, T) from the four closest points of
compressibility matrix.

It is obvious, that the increase of the number of grid points,

M ×N , results in the increase of accuracy of the interpolated

compressibility values. In the case of optimization calculations

it is usually sufficient for the neighboring pressure grid points

to be ca. 5 kPa apart and the neighboring temperature points

to be ca. 0.1 ◦C apart. Thus, when covering the pressure

interval from 0 to 10 MPa and temperature interval from −20
to 80 ◦C, the resulting matrix is of dimension 2,000× 1,000
hence requiring 2,000,000 calculations of compressibility (see

Fig. 2). A serial calculation of the compressibility matrix

according to AGA8 can take tens of seconds on a common

CPU. When solving an assignment with fixed gas composition

IGOR MRACKA, PETER SOMORA, TIBOR ZACIK: GPGPU CALCULATIONS OF GAS THERMODYNAMIC QUANTITIES 453

the matrix can be pre-calculated and the calculation obtains the

required compressibility values by interpolation.

Fig. 2. Visualization of compressibility calculated from AGA8 state equation
as function of pressure and temperature.

By using the approximation matrices we have achieved

(even if slightly compromising the accuracy) a constant access

time to the values of thermodynamic quantities. The time

needed to calculate compressibility by bilinear interpolation

is smaller than the time needed to directly evaluate compress-

ibility from the more simple equations of Redlich-Kwong and

Peng-Robinson. Hence the approximation matrix approach is

suitable for any algorithm of thermodynamic values acquisi-

tion. From the time-consumption point of view, the use of

approximation matrices is the same regardless of the state

equation used in the simulation calculations.

However, the use of approximation matrices is relevant up

to the point of gas composition change. Every change of

gas composition requires the values of the matrices to be re-

calculated. For example, when solving a number of optimiza-

tion tasks with each task having its own gas composition, the

continuous re-calculation of approximation matrices is from

the time-consumption point of view unacceptable.

IV. GPU-BASED CALCULATIONS

The evaluation of matrices of thermodynamic quantities

consists of a large number (of order 106) of mutually in-

dependent calculations. Among the inputs for the algorithm

of evaluation are the following: a vector of pressures and

temperatures and a matrix of constants derived from the

properties of each component of the overall mixture of gas (the

matrix of thermodynamic quantities is evaluated for a given

or constant gas composition). The output of the algorithm

is a matrix of values of a selected thermodynamic quantity

(compressibility, enthalpy, thermal capacity, etc.). Even though

the algorithm itself is relatively small (less than 8 KB after

compilation of AGA8 algorithm), it contains a large number of

standard operations–multiplications, divisions and evaluations

of analytic functions (powers, square roots, logarithms) –

that have to be performed in double precision. For example

one evaluation of compressibility of a mixture of natural gas

with twelve components based on the AGA8 state equation

requires approximately five hundred calculations of analytic

functions (200 powers, 300 square roots) and approximately

ten thousand standard operations (+, −, ∗, /).
One can clearly see that the problem of evaluation of state

matrices is a typical case for massive parallelization within

processors supporting the parallel processing of a large num-

ber (more than a thousand) of computation threads. Current

processors in desktop PCs now usually contain four cores and

allow the simultaneous processing of four to eight threads (for

example, Intel Core i7 950, see [19]).
This was our main stimulus for deciding to use the massive

parallel processors Tesla GPU based on the Fermi architecture

(see [5]) that are supporting the CUDA C/C++ interface envi-

ronment (see [7]) stemming from C++ and hence allowing a

smooth transition of C++ algorithms onto the GPGPU platform

while at the same time satisfying the necessary condition of

performing mathematical operations (and analytic functions

evaluation) in double precision. Compared to ordinary CPUs

this hardware allows the parallel processing of a far larger

number of computation threads simultaneously. More pre-

cisely, the Fermi architecture Tesla GPU processors consist

of fourteen to sixteen streaming multiprocessors (SM) each

containing thirty two cores, hence capable of processing at

least 448 computation threads parallelly. Each SM unit has

its own exclusive L1 cache and a shared memory (see [20],

[6]) enabling it to optimize parallel processing by reorganizing

the calculations into blocks such that the computation threads

running on the same SM unit are sharing partial results.

Another important part of the Tesla GPU processors is the

Giga Thread planner distributing the blocks of threads to

subordinate SM planners thus ensuring a uniform utilization

of all SM units in the GPU processor. For full utilization

of SM units in thread processing it is possible to define

blocks containing up to 1024 computation threads. The overall

number of blocks that can be processed in one request of

parallel evaluation on a GPGPU processor (i.e., CUDA kernel)

is “limited” by the size of the so called three-dimensional grid

of blocks that is, 655353, allowing the evaluation of the whole

state matrix in a single request.
Main advantages of Tesla GPU processors [5] (compared to

standard Intel Core i7 950 3.07 GHz PC CPU [19]):

• 14–16 SM units with 32 cores each = 448–512 total cores

(PC CPU: 4–8 cores)

• massive raw power in floating point calculations – up to

1 TFLOPS (PC CPU: 70 GFLOP)

• large ECC internal memory of 3–6 GB unconstrained by

operating system requests

• large throughput between SM units and global memory

– up to 150 GB/s (PC CPU: 20 GB/s)

454 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

• large number of parallel computation threads possible to

process – in so called data parallel algorithms (PC CPU:

4–8 threads)

• several parallel programming languages / environments

support – CUDA C/C++, OpenCL, FORTRAN, Direct-

Compute

• development tools for debugging and optimization of

parallel algorithms – NVIDIA Nsight, NVIDIA Compute

Visual Profiler

A notable disadvantage of the GPGPU processors compared

to standard PC processors is a limited amount of resources

such as constant memory, relatively small cache and a shared

memory in SM units. The primary bottleneck in GPU calcu-

lations appears to be the throughput of the PCI-Express bus.

For example, with SM unit frequency 1.147 GHz and fourteen

SM units per processor the system is able to process up to 512

x 109 standard operations in double precision per second. If

every evaluation of a state quantity would require the transfer

of the complete task assignment (i.e., pressure, temperature

and gas composition determined constants) occupying about

two hundred bytes of memory, then such transfer through the

PCI-Express bus (with speed ca. 4 GB/s) would take approx-

imately 1/20 of a microsecond, nevertheless within that time

the GPGPU processor could perform up to 25,000 standard

operations in double precision! It follows that it is extremely

important to minimize the amount of data transferred between

the host PC and the GPGPU device.

Main disadvantages of Tesla GPU processors:

• limited memory resources of SM units – 64 KB for L1

cache and shared memory,

• low throughput of the PCI-Express bus (4–6 GB/s) –

unsuitable for simple calculations where the ratio of the

number of operations or against the number of bytes of

task assignment and task output for one calculation is less

than 100 : 1.

The problem of thermodynamic quantities matrix evaluation

consists of a sufficient amount of independent calculations and

is suitable for massive parallelization. Computational algo-

rithm (AGA8) of state quantities is not particularly demanding

with respect to the operational and constant memory so the

resources of GPGPU processor are sufficient and no special

algorithm tuning for GPGPU is needed. For example, the result

matrix containing 2,000 × 1,000 values occupies 16 MB of

memory which takes only ca 2 milliseconds to transfer from

GPU to host PC. So the problem is an ideal candidate for

maximal potential utilization of the massively parallel Tesla

GPU processor, with the possible task runtime acceleration

factor reaching 60 compared to serial evaluation of the matrix

on a standard reference PC (Intel Core i7 950 3.07 GHz CPU).

Compared to the serial evaluation, the parallelization of

the calculations on standard four core CPUs accelerates the

task runtime approximately three to five times – the exact

number being heavily dependent on the CPU configuration

(activation/deactivation of hyper-threading technology, etc.)

and the actual CPU usage of background running processes.

Such parallel CPU-based acceleration of the approximation

matrices calculations is in no way sufficient for our objectives.

The transformation of approximation matrices calculation

from CPU to GPU only requires the replacement of the

matrix grid point evaluation cycle with the CUDA api function

(CUDA kernel [21]) providing the distribution of individual

evaluations to the GPU cores.

V. RESULTS

The simulation calculations were performed using a model

of the Slovak transit gas pipeline network consisting of approx-

imately two thousand three hundred kilometers of pipelines,

four compressor stations each containing more than twenty

compressors of various types, fourteen pressure regulator

valves and circa four hundred block valves. As the state

equation AGA8 was used, with the pressure range 8 to 10

MPa and temperature range −10 to +60 ◦C.

Without the use of approximation matrices the steady-state

simulation runtime was 22.50 s. With the use of approximation

matrices the same simulation runtime was 0.45 s (not including

the time for the pre-calculation of approximation matrices)

which represents a 50-fold acceleration. The simulation run-

time is not affected by the change of state matrix dimensions.

For each new gas composition the pre-calculation of six

approximation matrices dimensioned 2,000 × 1,000 was re-

quired (each for one quantity: compressibility, enthalpy, Joule-

Thomson coefficient, viscosity, Poisson coefficient, specific

heat capacities at constant pressure). This takes 21.45 s when

calculating on CPU. Most of the time, 17.50 s, is consumed

by the compressibility matrix calculation.

The overall calculation time combining the steady-state sim-

ulation time with the approximation matrices pre-calculation

time was 0.45 + 21.45 = 21.90 s representing a 1.03-fold

acceleration compared to the case not using the approxima-

tion matrices. Hence the approximation matrices evaluation

consumes the majority of calculation time where the com-

pressibility matrix evaluation takes about 80 % of the overall

calculation time. It follows that for the sake of acceleration

of calculations with varying gas composition the acceleration

of approximation matrices evaluation is critical (especially for

compressibility matrix).

The transient simulation calculation (four hours of transient

gas transport) without the approximation matrices has taken

248.50 s, while with the use of approximation matrices the

time taken was 38.90 s. The number of compressibility eval-

uations was approximately 20 · 106.

Fig. 3 depicts the area of the compressibility matrix used

in the steady-state simulation optimization calculations with

the assignment being the maximization of mass flow through

the gas pipeline network. The color indicates the number of

evaluations of gas properties for an area with dimensions

∆P = 5kPa Pa and ∆T = 0.1 ◦C uniformly covering the

used cartesian product [0 MPa, 8 MPa] × [−10 ◦C, 60 ◦C].
The overall task time was 387 s with more than 2.27 · 109

evaluations of compressibility for given P and T .

IGOR MRACKA, PETER SOMORA, TIBOR ZACIK: GPGPU CALCULATIONS OF GAS THERMODYNAMIC QUANTITIES 455

Fig. 3. Example of using of compressibility matrix in maximal gas pipeline
network mass flow calculation. (Color scale indicates the exponent in the
power of 10.)

It follows from Fig. 3 that the area used in the simulation

occupies a significant part of the area covered by the approx-

imation matrices.

The GPGPU acceleration of the approximation matrix eval-

uation was demonstrated using the calculation of the com-

pressibility matrix based on the AGA8 algorithm, since the

compressibility matrix evaluation consumes most of the overall

calculation time.

The state matrix evaluation time depends on the matrix

dimensions. Table 1 shows the comparison of compressibility

matrix calculation times for CPU (serial calculation on Intel

Corei7 950) and GPGPU processor (parallel calculation on

NVIDIA Tesla C2050 GPU) and Table 2 shows the compari-

son of their acceleration factors. For additional comparison the

results achieved on NVIDIA GTX 570 (with more cores than

Tesla C2050, but with limited FERMI architecture) [22] are

also stated. The results achieved on CPU are not satisfactory

in the case of varying gas composition. Evaluation of the

approximation matrix consists of a large number of indepen-

dent calculations parameterized by pressures and temperatures.

Such task is typically suitable for massive parallelization and

hence ideal for GPGPU processing. By using massively paral-

lel calculations on GPGPU processor we were able to cut down

the evaluation time of state matrices (of size 2,000 × 1,000)

from tens of seconds (18 s) to under one second (0.3 s),

providing a satisfactory level of simulation precision.

In matrices with the number of compressibility evaluations

under 2500 the calculation times on CPU are comparable to

the selected GPGPU device. We have focused on cases where

the compressibility evaluation count exceeded 104 (matrices

with dimension 100 × 100 and more), as illustrated by the

calculation times (Fig. 4) and calculation acceleration factors

(Fig. 5) for the compressibility matrix evaluation. As one can

see from Fig. 5, in the range of evaluations from 105 to 106

the acceleration factor of the GPGPU processor over CPU

increases sharply. This corresponds to the area of evaluation

TABLE I
COMPARISON OF COMPRESSIBILITY MATRIX CALCULATION TIMES USING

AGA8 ALGORITHM.

M ×N
Corei7 950

(serial)
Tesla C2050

(parallel)
GTX 570
(parallel)

[s] [s] [s]

500× 250 1.14 0.05 0.08

1,000× 500 4.39 0.1 0.18

2,000× 1,000 17.88 0.32 0.55

4,000× 2,000 70.26 1.16 1.84

TABLE II
COMPARISON OF ACCELERATION FACTORS OF COMPRESSIBILITY MATRIX

CALCULATION USING AGA8 ALGORITHM.

M ×N TTesla/TCPU TGTX/TCPU

500× 250 22× 14×

1,000× 500 42× 25×

2,000× 1,000 56× 33×

4,000× 2,000 60× 38×

counts where the parallel calculation is too small to utilize

the full potential of the GPGPU processors. Beyond the value

of 5 · 106 evaluation counts one can see the slowing down

(stabilization) of the acceleration factor increase corresponding

to the area of evaluation counts where the potential of the

GPGPU device is assumed to be fully utilized.

Concluding, the GPGPU parallelization is optimal beyond

some value of evaluation counts. The upper bound for the eval-

uation counts is provided by the maximal allowed calculation

time or by memory limits allocated for results. In the case of

the evaluation of compressibility matrix with 2 · 106 elements

(regarded as sufficiently large to provide satisfyingly precise

results) the potential of the GPGPU device is still not fully

used.

An increase of the matrix dimension to 4,000 × 2,000
(acceleration factor increases) would cause a slight increase of

the overall calculation time (to 1.16 s), but would quadratically

increase the amount of memory for pre-calculated matrices

(to 64 MB for each) which is not desirable in our case.

If one would assume a two-time increase in precision and

four-time increase in memory consumption compared to the

current “optimal” case, then the achieved full utilization of

the potential of the GPGPU device is represented by an

acceleration factor of 60 (for NVIDIA Tesla C2050 GPU).

VI. CONCLUSION

The focus of the paper rests on the problem of performance

optimization in gas transit simulations, i.e., the calculation of

thermodynamic quantities based on a given state equation of

real gas. We solved this problem by pre-calculating the ther-

modynamic quantities matrices which provides independence

from computational difficulty of the used gas state equation.

The evaluation of a thermodynamic quantity in simulation

calculations for given gas composition is performed as the

bilinear interpolation from nearest grid points of the respective

456 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of evaluations of AGA8 state equation algorithm

C
o

m
p

re
s
s
ib

ili
ty

 m
a

tr
ix

 c
a

lc
u

la
ti
o

n
 t

im
e

 [
s
]

Corei7 950 (serial)

Tesla C2050 (parallel)

GTX 570 (parallel)

500 x 250 1000 x 500 4000 x 20002000 x 1000

Fig. 4. Compressibility matrix calculation times on CPU and GPU in
correspondence with compressibility evaluation counts through direct AGA8
algorithm calculation. (lover value is better)

10
4

10
5

10
6

10
7

0

10

20

30

40

50

60

70

Number of evaluations of AGA8 state equation algorithm

G
P

−
G

P
U

 a
c
c
e

le
ra

ti
o

n
 f

a
c
to

r
[1

]

Tesla C2050 vs. Corei7 950 (serial)

GTX 570 vs. Corei7 950 (serial)

2000 x 1000 4000 x 2000500 x 250 1000 x 500

Fig. 5. Acceleration factor of GPU over CPU for compressibility matrix
calculation in correspondence with compressibility evaluation counts through
direct AGA8 algorithm calculation. (higher value is better)

pre-calculated matrices in much faster time than in the case

of precise calculation of the given quantity, but with some

degree of inaccuracy caused by small dimensions of the

thermodynamic quantity matrix. In many cases the inaccuracy

of the used real gas state equation is larger than the inaccuracy

caused by bilinear interpolation even for small thermodynamic

quantity matrices (e.g., 200×200). However, when considering

more precise (and more computationally demanding) state

equations, e.g., AGA8, GERG, the inaccuracy caused by

the small dimensions of the approximation matrices becomes

the limiting factor. Hence, choosing a more accurate state

equation is not sufficient in order to achieve more precise

simulations, but one also has to increase the dimensions of

the approximation matrices. Since the computational difficulty

increases quadratically with the size of the matrix, one has

to find a way to shorten the time required for the pre-

calculation of the approximation matrices. A very suitable way

appears to be the use of the new massively parallel GPGPU

processors (NVIDIA Tesla C2050 GPU). We were able to

shorten the time of pre-calculation of the compressibility

matrix (4,000 × 2,000) from 70 s in serial evaluation to

1.16 s in parallel evaluation (i.e., accelerated more than 60

times). Besides the evaluation of the thermodynamic quantities

matrices there are other interesting problems in fluid dynamics

(e.g., gas transport optimization, leak detection, etc.) that can

benefit from the enormous potential of GPGPU. Additional

promising predictions of the GPGPU hardware manufacturers

state that the GPGPU potential shall increase several times

compared to its current status (NVIDIA CEO on its GPU

Technology Conference in 2010 presented a roadmap with the

new CUDA architecture codenamed Maxwell, to be introduced

in 2013, with performance about 10 times better than the

current FERMI architecture [23]). From our point of view,

all these facts forecast a bright future for the utilization of

GPGPU technology in scientific and technical applications.

ACKNOWLEDGMENT

This work was supported by VEGA grant 2/0124/10.

REFERENCES

[1] Moore’s Law Made real by Intel Innovations http://www.intel.com/
technology/mooreslaw/

[2] High Performance Computing – Supercomputing with Tesla GPUs,
www.nvidia.com/tesla

[3] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E.
Lefohn, T. J. Purcell, “A Survey of General-Purpose Computation on
Graphics Hardware,” Computer Graphics Forum, Vol. 26, No. 1, 2007,
pp. 80–113.

[4] GPU Computing: Past, Present and Future with ATI Stream Technology,
http://developer.amd.com/gpu assets/GPU Computing - Past Present
And Future with ATI Stream Technology.pdf

[5] Tesla C2050/C2070 GPU computing processor, http://www.nvidia.com/
docs/IO/43395/NV DS Tesla C2050 C2070 jul10 lores.pdf

[6] Next-Generation GPU Architecture –’Fermi’, http://www.lunarc.lu.se/
Documents/nvidia-workshop/files/presentation/45 Fermi.pdf

[7] NVIDIA CUDA Compute Unified Device Architecture 2.0 Programming
Guide, 2008.

[8] Khronos Group, The OpenCL Specification, Version 1.0, 2009.
[9] W. W. Hwu, “GPU Computing Gems,” Morgan Kaufmann Publishers

(is an imprint of Elsevier), Burlington, MA, USA, 2010.
[10] N. Goodnight, CUDA/OpenGL Fluid Simulation, NVIDIA Corporation,

2007.
[11] J. M. Cohen, M. J. Molemaker, “A Fast Double Precision CFD Code

Using CUDA,” Preceedings of Parallel CFD, 2009.
[12] E. Phillips, Y. Zhang, R. Davis, J. Owens, “CUDA Implementation of a

Navier-Stokes Solver on Multi-GPU Desktop Platforms for Incompress-
ible Flows,” 47th AIAA Aerospace Sciences Meeting Including The
New Horizons Forum and Aerospace Exposition, No. AIAA 2009-565,
Orlando, FL, USA, January 2009.

[13] J. C. Thibault, I. Senocak, “CUDA Implementation of a Navier-Stokes
Solver on Multi-GPU Desktop Platforms for Incompressible Flows,”
47th AIAA Aerospace Sciences Meeting Including The New Horizons
Forum and Aerospace Exposition, No. AIAA 2009-758, Orlando, FL,
USA, January 2009.

[14] L. D. Landau, E. M. Lifshitz, “Fluid Mechanics (Volume 6 of Course of
Theoretical Physics Second English Edition), Pergamon Press, Maxwell
House, Fairview Prak, Elmsford, NY, USA, 1987.

IGOR MRACKA, PETER SOMORA, TIBOR ZACIK: GPGPU CALCULATIONS OF GAS THERMODYNAMIC QUANTITIES 457

[15] Y. S. Wei and R. J. Sadus, “Equation of State for the Calculation of
Fluid-Phase Equilibria,” AIChE Journal Review, vol. 46, No. 1, January
2000, p. 169–196.

[16] M. Farzaneh-Gord, A. Khamforoush, S. Hashemi, H. P. Namin, “Com-
puting Thermal Properties of Natural Gas by Utilizing AGA8 Equation
of State,” International Journal of Chemical Enginiring and Applica-

tions, vol. 1, No. 1, June 2010.
[17] O. Kunz, R. Klimeck, W. Wagner, M. Jaeschke, “The GERG-2004

Wide–Range Equation of State for Natural Gases and Other Mixtures,”
GERG technical monograph, Publishing House of the Association of
German Engineers, Germany, 2007.

[18] K. E. Starling, J. L. Savidge, “Compressibility Factor of Natural Gas and
Other Related Hydrocarbon Gases,” Report No. 8 Software of American

Gas Association(AGA), 3rd printing, November 2003.

[19] Intel Core i7-900 Desktop Processor Extreme Edition Series
and Intel Core i7-900 Desktop Processor Seriesm, http:// down-
load.intel.com/design/processor/datashts/320834.pdf

[20] D. B. Kirk, W. W. Hwu, “Programming Masively Parallel Processors,”
Morgan Kaufmann Publishers (is an imprint of Elsevier), Burlington,
MA, USA, 2010, pp. 8.

[21] CUDA Programming Model Overview, 2008. http://www.sdsc.edu/
us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf

[22] NVIDIA Geforce GTX 570 GPU Datasheet, http://www.nvidia.com/
docs/IO/102043/GTX-570-Web-Datasheet-Final.pdf

[23] NVIDIA GPU Technology Conference 2010 Jen-Hsun Huang Keynote
http://blogs.nvidia.com/2010/09/gpu-technology-conference-liveblog-
jen-hsun-huang-keynote/

458 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

