
Extension of Iterator Traits in the

C++ Standard Template Library

Norbert Pataki, Zoltán Porkoláb

Department of Programming Languages and Compilers,

Eötvös Loránd University

Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

Email: {patakino, gsd}@elte.hu

Abstract—The C++ Standard Template Library is the flag-
ship example for libraries based on the generic programming
paradigm. The usage of this library is intended to minimize
classical C/C++ error, but does not warrant bug-free programs.
Furthermore, many new kinds of errors may arise from the
inaccurate use of the generic programming paradigm, like
dereferencing invalid iterators or misunderstanding remove-like
algorithms.

In this paper we present typical scenarios, that can cause
runtime problems. We emit warnings while these constructs
are used without any modification in the compiler. We argue
for an extension of the STL’s iterator traits in order to emit
these warnings. We also present a general approach to emit
“customized” warnings. We support the so-called believe-me
marks to disable warnings.

I. INTRODUCTION

THE C++ Standard Template Library (STL) was devel-

oped by generic programming approach [2]. In this way

containers are defined as class templates and many algorithms

can be implemented as function templates. Furthermore, al-

gorithms are implemented in a container-independent way, so

one can use them with different containers [15]. C++ STL is

widely-used because it is a very handy, standard library that

contains beneficial containers (like list, vector, map, etc.), a lot

of algorithms (like sort, find, count, etc.) among other utilities.

The STL was designed to be extensible. We can add new

containers that can work together with the existing algorithms.

On the other hand, we can extend the set of algorithms with a

new one that can work together with the existing containers.

Iterators bridge the gap between containers and algorithms [3].

The expression problem [16] is solved with this approach. STL

also includes adaptor types which transform standard elements

of the library for a different functionality [1].

However, the usage of C++ STL does not guarantee bugfree

or error-free code [5]. Contrarily, incorrect application of the

library may introduce new types of problems [14].

One of the problems is that the error diagnostics are usually

complex, and very hard to figure out the root cause of a

program error [17], [18]. Violating requirement of special

preconditions (e.g. sorted ranges) is not checked, but results

in runtime bugs [6]. A different kind of stickler is that if we

have an iterator object that pointed to an element in a container,

but the element is erased or the container’s memory allocation

has been changed, then the iterator becomes invalid. Further

reference of invalid iterators causes undefined behaviour [13].

Another common mistake is related to removing algorithms.

The algorithms are container-independent, hence they do not

know how to erase elements from a container, just relocate

them to a specific part of the container, and we need to invoke

a specific erase member function to remove the elements

phisically. Therefore, for example the remove algorithm does

not actually remove any element from a container [10].

Some of the properties are checked at compilation time.

For example, the code does not compile if one uses the

sort algorithm on a standard list container, because the

list’s iterators do not offer random accessibility [8]. Other

properties are checked at runtime. For example, the standard

vector container offers an at method which tests if the index

is valid and it raises an exception otherwise [12].

Unfortunately, there are still a large number of properties are

tested neither at compilation-time nor at run-time. Observance

of these properties is in the charge of the programmers. On the

other hand, type systems can provide a high degree of safety

at low operational costs. As part of the compiler, they discover

many semantic errors very efficiently.

Certain containers have member functions with the same

names as STL algorithms. This phenomenon has many dif-

ferent reasons, for instance, efficiency, safety, or avoidance of

compilation errors. For example, as mentioned, list’s iterators

cannot be passed to sort algorithm, hence code cannot

be compiled. To overcome this problem list has a member

function called sort. List also provides unique method. In

these cases, although the code compiles, the calls of member

functions are preferred to the usage of generic algorithms.

In this paper we argue for an approach that generates

warning when the STL is used in an improper way or a better

approach is available in certain cases. For example we want to

warn the programmer if the copy or transform algorithm

is used without inserter iterators. We argue for an extension of

STL’s trait type of iterators insted of compiler modification.

Algorithms can be overloaded based on this extension and

warnings can be trigerred in the overloaded versions.

This paper is organized as follows. In section II we present

some motivating examples, that can be compiled, but at

runtime they can cause problems. Then, in section III we

present new properties that should be added to the STL’s

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 911–914

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 911

iterator traits. In section IV we present an approach to generate

“customized” warnings at compilation time. In section V we

argue for overloading algorithms on the new traits. In section

VI the so-called believe-me marks are introduced to disable our

specific warnings. Finally, this paper concludes in section VII.

II. MOTIVATION

STL’s copy and transform algorithm can be used to

copy an input range of objects into a target range. These

algorithms neither allocate memory space nor call any specific

inserter method while coping elements. They assume that the

target has enough, properly allocated elements where they can

copy elements with operator=. Inserter iterators can en-

force to use push_back, push_front or insert method

of containers. But these algorithms cannot copy elements into

an empty list, for instance. They do not know how to insert

elements into the empty container. The following code snippet

can be compiled, but it results in an undefined behaviour:

std::list<int> li;

std::vector<int> vi;

v.push_back(3);

std::copy(vi.begin(),

vi.end(),

li.begin());

In our opinion in this case a warning message should

be emitted to the programmer, that this construct can be

problematic.

III. NEW TRAITS

Iterators are fundemental elements of the STL. They make

connection between containers and algorithms. Iterators iter-

ates through the containers or streams. They are the general-

ization of pointers, thus pointers also can be used in place of

iterators.

Iterators have associated types. An iterator type, for in-

stance, has an associated value type: the type of object that

the iterator points to. It also has an associated type to describe

the type of difference-based values. Generic algorithms often

need to have access to these associated types; an algorithm that

takes a pair of iterators, for example, might need to declare

a temporary variable whose type is the iterators’ value type.

The class iterator_traits is a mechanism that allows

such declarations. For every iterator type, a corresponding

specialization of iterator_traits class template shall

exist or default implementation works (see below). Another

reason also can be mentioned for the usage of traits. It can

be used for implementing generic functions as efficient as

possible. For example, distance or advance can fully take

advantage of the iterator capabilities, and can run at constant

time when random access iterators the taken and run at linear

time otherwise.

At this point we extend iterator_traits in order to

overload STL algorithms on new traits and generate warning

in some of them. First, we write two new types according to

copying strategy.

class __inserting_iterator_tag {};

class __non_inserting_iterator_tag {};

The default iterator_traits is extended in the fol-

lowing way:

template <class T>

struct iterator_traits

{

typedef typename T::iterator_category

iterator_category;

typedef typename T::value_type

value_type;

typedef typename T::difference_type

difference_type;

typedef typename T::pointer

pointer;

typedef typename T::reference

reference;

typedef

__non_inserting_iterator_tag

inserter;

};

We added one more attribute to default

iterator_traits which is the copying strategy

attribute called inserter. The inserter is a type

alias to either __inserting_iterator_tag or

__non_inserting_iterator_tag.

More traits can be mentioned, too. For instance, find

and count algorithms are suboptimal if it is called on

an associative container, because the algorithms cannot take

advantage of sortedness. Hence, an attribute can be described

if a container supports find or count method. Another

attribute can define if a container supports a unique member

function, such as list.

In this paper we do not deal with safe iterators [13].

However, safety can be an orthogonal attribute of iterator types

which should be defined as a trait. Thus, STL algorithms can

be overloaded on safe iterators, too.

In the specializations one have to set the new

trait, too. In the different inserter iterator types and

ostream_iterator types the inserter tag has to be

set to inserting_iterator_tag. This can be easily

done if the iterator base type is extended with the new

trait.

IV. GENERATION OF WARNINGS

Compilers cannot emit warnings based on the semantical

erroneous usage of the library. STLlint is the flagship example

for external software that is able to emit warning when the STL

is used in an incorrect way [7]. We do not want to modify the

compilers, so we have to enforce the compiler to indicate these

kind of potential problems [11]. However, static_assert

as a new keyword is introduced in C++0x to emit compilation

912 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

errors based on conditions, no similar construct is designed

for warnings.

template <class T>

inline void warning(T t)

{

}

struct

COPY_ALGORITHM_WITHOUT_INSERTER_ITERATOR

{

};

// ...

warning(

COPY_ALGORITHM_WITHOUT_\

INSERTER_ITERATOR()

);

When the warning function is called, a dummy object

is passed. This dummy object is not used inside the func-

tion template, hence this is an unused parameter. Compilers

emit warning to indicate unused parameters. Compilation of

warning function template results in warning messages,

when it is referred and instantiated. No warning message

is shown, if it is not referred. In the warning message the

template argument is printed. New dummy types have to be

written for every new kind of warning.

Different compilers emit this warning in different ways. For

instance, Visual Studio emits the following message:

warning C4100: ’t’ : unreferenced formal

parameter

...

see reference to function template

instantiation ’void

warning<

COPY_ALGORITHM_WITHOUT_INSERTER_ITERATOR

>(T)’

being compiled

with

[

T=

COPY_ALGORITHM_WITHOUT_INSERTER_ITERATOR

]

And g++ emits the following message:

In instantiation of ’void warning(T)

[with T =

COPY_ALGORITHM_WITHOUT_INSERTER_ITERATOR

]’:

... instantiated from here

... warning: unused parameter ’t’

Unfortunately, implementation details of warnings may

differ, thus no universal solution is available to generate

custom warnings. However, everyone can find a handy, custom

solution for own compiler.

This approach of warning generation has no runtime over-

head because the compiler optimizes the empty function

body. On the other hand – as the previous examples show

– the message refers to the warning of unused parameter,

incidentally the identifier of the template argument type is

appeared in the message.

V. MODIFICATION OF ALGORITHMS

As an example, now we can overload copy algorithm.

However, transform algorithm can be written likewise.

template <class InputIt,

class OutputIt>

inline OutputIt copy(

InputIt first,

InputIt last,

OutputIt result)

{

return copy(

first,

last,

result,

typename

iterator_traits<OutputIt>::

inserter());

}

Now, we write the “usual” version of the algorithm. In this

case, no warning is emitted:

template <class InputIterator,

class OutputIterator>

OutputIterator copy(

InputIterator first,

InputIterator last,

OutputIterator result,

__inserting_iterator_tag)

{

while(first != last)

{

*result++ = *first++;

}

return result;

}

Finally, we create the new version of the algorithm to

indicate warnings:

template <class InputIterator,

class OutputIterator>

OutputIterator copy(

InputIterator first,

InputIterator last,

OutputIterator result,

__non_inserting_iterator_tag)

{

warning(

NORBERT PATAKI, ZOLTÁN PORKOLÁB: EXTENSION OF ITERATOR TRAITS IN THE C++ STANDARD TEMPLATE LIBRARY 913

COPY_ALGORITHM_WITHOUT_\

INSERTER_ITERATOR()

);

return copy(first,

last,

result,

__inserting_iterator_tag());

}

VI. BELIEVE-ME MARKS

Generally, warnings should be eliminated. On the other

hand, the call of copy or transform without inserter

iterators does not mean problem necessarily.

If the proposed extensions are in use, the following code

snippet results in a warning message, but it works perfectly:

std::vector<int> vi;

// ...

std::list<int> li(vi.size());

std::copy(vi.begin(),

vi.end(),

li.begin());

Many similar patterns can be shown. We use copy or

transform algorithm to a target, where enough allocated

space is available. Moreover, we cannot disable these specific

generated warnings by a compiler flag or a preprocessor

pragma.

Believe-me marks [9] are used to identify the points in the

programtext where the type system cannot obtain if the used

construct is risky. For instance, in the hereinafter example,

the user of the library asks the type system to “believe” that

the target is already allocated in the proper way. This way

we enforce the user to reason about the parameters of these

algorithms.

std::vector<int> v;

// ...

std::list<int> li(v.size());

std::copy(v.begin(),

v.end(),

li.begin(),

transmogrify,

ALREADY_ALLOCATED);

This can be created by a preprocessor macro:

#define ALREADY_ALLOCATED \

__inserting_iterator_tag()

VII. CONCLUSION

STL is the most widely-used library based on the generic

programming paradigm. It is efficient and convenient, but the

incorrect usage of the library results in weird or undefined

behaviour.

In this paper we present some examples that can be com-

piled, but at runtime their usage is defective. We argue for an

extension of the iterator traits in the library, and based on this

extension we generate warning messages during compilation.

The effect of our approach is similar to the STLlint software.

STLlint analyzes the programtext and emits warning messages

when the STL is used in an erronous way. STLlint is based on

a modified compiler and this way it can emit better messages.

On the other hand, it is not extensible. Our approach can be

used for non-standard containers, iterators, algorithms, too.

Compilers cannot know all the generic libraries.

We present an effective approach to generate custom warn-

ings. Believe-me marks are also written to disable warning

messages. We overload some algorithms of the STL based on

the new traits in order to make the usage of the library safer.

ACKNOWLEDGMENT

The Project is supported by the European Union and co-

financed by the European Social Fund (grant agreement no.

TÁMOP 4.2.1./B-09/1/KMR-2010-0003).

REFERENCES

[1] A. Alexandrescu, Modern C++ Design, Addison-Wesley, 2001.
[2] M. H. Austern, Generic Programming and the STL: Using and Extending

the C++ Standard Template Library, Addison-Wesley, 1998.
[3] T. Becker, STL & generic programming: writing your own iterators,

C/C++ Users Journal 2001 19(8), pp. 51–57.
[4] G. Dévai, N. Pataki, Towards verified usage of the C++ Standard

Template Library, In Proc. of the 10th Symposium on Programming
Languages and Software Tools (SPLST) 2007, pp. 360–371.

[5] G. Dévai, N. Pataki, A tool for formally specifying the C++ Standard

Template Library, In Annales Universitatis Scientiarum Budapestinensis
de Rolando Eötvös Nominatae, Sectio Computatorica 31, pp. 147–166.

[6] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, A. Lumsdaine,
Concepts: linguistic support for generic programming in C++, in Proc.
of the 21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications (OOPSLA 2006), pp.
291–310.

[7] D. Gregor, S. Schupp, Stllint: lifting static checking from languages to

libraries, Software - Practice & Experience, 2006 36(3), pp. 225-254.
[8] J. Järvi, D. Gregor, J. Willcock, A. Lumsdaine, J. Siek, Algorithm

specialization in generic programming: challenges of constrained gener-

ics in C++, in Proc. of the 2006 ACM SIGPLAN conference on
Programming language design and implementation (PLDI 2006), pp.
272–282.

[9] T. Kozsik, T., Tutorial on Subtype Marks, in Proc. of the Central
European Functional Programming School (CEFP 2006), LNCS 4164,
pp. 191–222.

[10] S. Meyers, Effective STL - 50 Specific Ways to Improve Your Use of the

Standard Template Library, Addison-Wesley, 2001.
[11] N. Pataki, Advanced Functor Framework for C++ Standard Template

Library Studia Universitatis Babeş-Bolyai, Informatica, Vol. LVI(1), pp.
99–113.

[12] N. Pataki, Z. Porkoláb, Z. Istenes, Towards Soundness Examination of

the C++ Standard Template Library, In Proc. of Electronic Computers
and Informatics, ECI 2006, pp. 186–191.

[13] N. Pataki, Z. Szűgyi, G. Dévai, Measuring the Overhead of C++ Stan-

dard Template Library Safe Variants, In Electronic Notes in Theoretical
Computer Science (ENTCS) 264(5), pp. 71–83.

[14] Z. Porkoláb, Á. Sipos, N. Pataki, Inconsistencies of Metrics in C++

Standard Template Library, In Proc. of 11th ECOOP Workshop
on Quantitative Approaches in Object-Oriented Software Engineering
QAOOSE Workshop, ECOOP 2007, Berlin, pp. 2–6.

[15] B. Stroustrup, The C++ Programming Language (Special Edition),
Addison-Wesley, 2000.

[16] M. Torgersen, The Expression Problem Revisited – Four New Solutions

Using Generics, in Proc. of European Conference on Object-Oriented
Programming (ECOOP) 2004, LNCS 3086, pp. 123–143.

[17] L. Zolman, An STL message decryptor for visual C++, In C/C++ Users
Journal, 2001 19(7), pp. 24–30.

[18] I. Zólyomi, Z. Porkoláb, Towards a General Template Introspection Li-

brary, in Proc. of Generative Programming and Component Engineering:
Third International Conference (GPCE 2004), LNCS 3286, pp. 266–282.

914 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

