
Geospatial presentation of
purchase transactions data

Maciej Grzenda, Krzysztof Kaczmarski, Mateusz Kobos, and Marcin Luckner
Faculty of Mathematics and Information Science

Warsaw University of Technology

Warsaw, Poland

Email: {m.grzenda, k.kaczmarski, m.kobos, m.luckner}@mini.pw.edu.pl

Abstract—This paper presents a simple automatic system for
small and middle Internet companies selling goods. The system
combines temporal sales data with its geographical location and
presents the resulting information on a map. Such an approach
to data presentation should facilitate understanding of sales
structure. This insight might be helpful in generating ideas on
improving sales strategy; consequently improving revenues of
the company. The system is flexible and generic – it can be
adjusted to process and present the data within different levels
of administrative division areas, using different hierarchies of
sold goods. While describing the system, we also present its
prototype that visualizes the data in an interactive way on a
three-dimensional map.

I. INTRODUCTION

C
OMPANIES selling goods have many possible ways to

devise strategies of improving their business model and

adjusting it to changing business conditions. One of them is to

use business intelligence tools to automatically gather, process,

analyze and visualize data that is important for the company in

hope of obtaining useful insights that can be used to improve

company’s functioning. One of the most promising and simple

approaches to this problem is to combine company’s private

data with publicly available data in order to obtain a useful

synthesis of these two. An independent problem is how to han-

dle and integrate different dimensions of company’s data. One

of the dimensions is the temporal one: the business conditions

change over time and the company’s decision-makers have

to be able to follow changing trends in order to e.g. predict

future behavior of the market. Another important dimension is

the spatial one: different administrative regions have different

business environments, and different business strategies might

be more or less suitable for different sales areas (e.g. some

regions might need more billboard advertisements while others

might need more on-line advertisements).

In this paper, we describe an idea for an automatic system

that combines private and publicly-available data of spatial and

temporal type and visualizes it on a map. The main goal of

the system is to present sales data of a company in an useful

and interactive way. The system is simple but generic – it can

be adjusted to process and present data within different levels

of administrative division areas, using different hierarchies of

goods sold by the company. Apart from describing the general

idea, we also present a prototype of such a system that uses

data from one of the Polish companies. The company is one

of the largest Internet sellers of tires in Poland.

An overall process of data acquisition and transformation

in the system is presented in Fig. 1. Our system automatically

combines purchase transaction records data with information

about spatial placement of administrative division areas of

region of interest to locate an approximate place where each

purchase was delivered. To be more precise, we use the

information about delivery town and zip code of a purchase

to determine which administrative division area the buyer is

situated in. Each area has GPS coordinates assigned to, so the

data related to this area can be easily placed on a map. The data

is saved in a form of a relational database. Next, a geographic

data visualization application is used to present the data in an

interactive and user-friendly way. Since there are many mature

applications which can be used as a visualization engine, we

decided not to implement our own in the prototype. Public and

free tools, although not perfect, are mature enough to be used

in a professional solution. Their displaying capabilities are not

limited to any particular area and can usually show different

geographical regions all over the Earth. One of the most

popular tools of this type, i.e. spatial data viewer equipped with

ability to load user data, is Google Earth [1]. It proved to meet

our requirements and we used it in our prototype (the prototype

allows also sharing the visualization on-line via Google Maps).

A. Related Research

Problem of storing and presenting spatiotemporal data is

generally addressed by dedicated systems: SOLAP (Spatial

On-Line Analytical Processing) being a visual platform built

especially to support rapid and easy spatiotemporal anal-

ysis and exploration of data following a multidimensional

approach comprised of aggregation levels available in car-

tographic displays as well as in tabular and diagram displays

[2]. As all OLAP-based solutions, they require wide knowl-

edge of data processing and data mining, in this case often

combined with expertise in cartography. Another drawbacks

of these systems are high licence fee and maintenance costs

and therefore low return on investment values which are not

acceptable for small companies.

Our lightweight data processing components try to answer

spatiotemporal data analysis demands in much simple and

cheaper way.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 291–296

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 291

Geo-Time Database

Import Module

Company Database 1 Company Database 2

CSV file

Data Cleaning Module

OLAP Cube

Presentation Module

Data Exported
for Spatial
Presentation
(e.g. KML file)

Data exporting module

Public data
(e.g. administrative

division areas)

Discarded records
database

Fig. 1. Data processing phases

An important research was done to allow for fast and precise

spatiotemporal aggregation calculation. This task is not easy

due to imprecise querying and spatial selection criteria. Espe-

cially R-Tree structure [3] with many improvements is used to

store spatial information [4]. Adding the time dimension was

analyzed in many works i.e.: [5], [6], [7], [8]. Another path in

research is devoted to streaming data systems and calculation

of incremental spatial aggregates [9].

In our research, we focus mostly on Internet transaction

data cleaning and coupling it with spatial information leaving

an effective data storage and querying methods as open

topics. Usage of R-Trees is still possible and could improve

performance for large datasets. However, currently we do

not consider this to be an important problem since our data

comes from small companies and does not exceed volumes that

can be effectively processed by a simple relational database

management system. We tend towards simplicity for users

processing Internet transactions.

Available tools for modeling and visualization of spatial

data can be categorized as a stand-alone and web-based [10].

Typical stand-alone commercial products are ArcGIS and

MapInfo. Both are expensive and dedicated for advanced users.

As an alternative, PyNGL and PyNio applications, developed

using Python programming language, are available. These

applications generate 2D visualizations in several formats.

Among web-based visualization applications there are also

solutions, which are based on commercial products (Bentley

Map, ESRI) but many of these systems work only with their

own datasets [11]. The prototype proposed in this paper is

based on free software and allows presentation of user’s data

against a background of a third-source data.

II. DATA EXTRACTION, TRANSFORMATION, AND

LOADING

In this section we describe an algorithm which is used

to process input data and prepare presentation layer in our

system.

To create the final presentation, we gather data from differ-

ent sources:

1) company’s private database of transactions,

2) administrative areas with zip codes,

3) statistical data for administrative regions.

The most important data comes from a transactional

database of a company. Obviously, this information contains

quantities, products, categories, clients, prices, values, etc.

An initial data transformation module processes the data and

prepares it to be imported into our tool. Possibly, the most

simple way to import this data is to use a *.csv file where

each row of the file describes a single purchase transaction.

Each transaction in such a file is described by: time of

the purchase, delivery zip code, delivery town, price of the

purchase, quantity of the ordered product, and localization of

a product in a hierarchy of types of products (see Fig. 2,

Purchase table). In case of the data used by our prototype,

we have two levels of type of the product. The product is the

tire in this case. The top-level type is a brand of the tire while

second-level type is the is a name of the tire, unique within

the bounds of a single brand.

Each purchase can be approximately located on a map,

and as such it is presented with respect to different levels

of administrative division. Our system allows defining custom

hierarchy of levels suitable for given application domain (see

Fig. 2, Administrative division hierarchy group of tables). For

example, in case of a company selling products in the USA, the

hierarchy might look as follows: “state” → “county” → “city,

town, or village”. In case of our prototype, the data comes

from a company selling products exclusively on the territory of

Poland. Thus, while visualizing the spatial information, we use

the information about Polish administrative territorial division.

Polish territory consists of 16 voivodeships or provinces. Each

voivodeship, called “wojewodztwo” in Polish, consists of a

number of second level of local government administration

areas, each one called “powiat”. There is a total number of 379

powiats in Poland. For each considered administrative area, we

292 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

have obtained map coordinates of its center. A center for an

administration region is calculated automatically as a centroid

of administration area border taken from public government

database [12]. For each powiat, we have also gathered a list of

zip codes belonging to the powiat and town names connected

with each zip code (see Fig. 2, ZipCodeTown table).

Because some town names can be written in a num-

ber of different but equivalent ways, we also use a sim-

ple text file in a *.csv format to store information about

alternative spelling of names of some of the towns. In

case of our prototype, two sample entries in this text file

are: 12-220, Ruciane Nida, Ruciane-Nida and

80-299, Gdansk-Osowa, Gdansk where the first el-

ement is the zip code, the second one is the alternative

spelling, and the last one is the canonical name (see Fig. 2,

TownNameAlias table).

Our main goal in processing the above-mentioned data is to

assign suitable administrative division areas of each level to

each purchase transaction (i.e. delivery destination). To achieve

this goal, we clean the data (described in Section II-A), then

we transform and combine it (described in Section II-B), and

finally we load into a final database used by an application

that visualizes the data (see Fig. 3). In the description of

the data processing, we concentrate mainly on the spatial

dimension, but the temporal information is still present in the

data, although its processing is limited mainly to generating

the final summary statistics from selected time interval.

The last source of data is the statistical data of adminis-

trative division regions important for particular business. This

could include for example population, climate, or number of

high schools. If we posses an information connected to given

administration area, it can be imported and presented together

with statistical transaction information. It can also be used to

normalize presented data, like for example displaying number

of sold bottles of water per person.

A. Data Cleaning

Due to characteristics of the input data i.e.: large influence

of the human factor, possible mistakes, uncertainties, and

ambiguity, the imported data has to be cleaned. The general

approach is to accept correct records, repair the records that

we know how to repair, and discard all others. The discarded

data is saved in an auxiliary database along with information

why each record was discarded. By inspecting this auxiliary

database, we can check if the cleaning process improperly

throws out useful records, and if it is the case, we can try to

improve the cleaning algorithm.

Among all of the fields in the input records, the zip code and

the town name have to be given a special care since normally

they are entered by hand by each buyer using a web order

form, and as a result there might be many possible versions

of the same information entered. In case of our prototype, we

deal with Polish zip code. It has a format of XX-XXX, where

X is a single digit. While cleaning the zip code value, we:

1) remove all the spaces; 2) replace *, _, =, / symbols with

hyphen; 3) remove textual zip code suffix (if any) consisting

of e.g. town name; 4) replace letters “o” and “O” with zero;

5) add hyphen in appropriate place; 6) add leading zero and

a hyphen in a four-digit zip code without hyphen.
Next, while cleaning the town name value, we: 1) remove

excessive spaces; 2) convert the name to a title format (a

capital letter at the beginning of each word); 3) convert the

name to the canonical name if it is in the table of the names

with alternative spelling. In case of our prototype, the name

of the analyzed town is sometimes “test” which is not a real

name, but just a marker of a record created for test purposes.

In such situations, the analyzed record is discarded.
Additionally, if type hierarchy of a purchased product is not

fully specified in the record, the record is discarded. In case

of our prototype, we discard the record if either brand or type

name of a tire is absent.

B. Combining Geospatial and Time Information

After doing the basic cleaning of the data, we try to

assign administrative division area of the lowest level to

each purchase record. It is worth noting that the higher-level

administrative areas do not have to be assigned explicitly since

each lower-level area is assigned to a single higher-level area.

In case of our prototype, this task is done in two steps. In

the first step, we look for a powiat identified uniquely by the

given zip code only. If it fails, we proceed to the second step

and look for the powiat identified uniquely by the purchase’s

(zip code, town name) pair. A more precise description of this

process is presented as a pseudocode below:

p← {get powiat names associated with given zip code}

if |p| = 1 then

{assign powiat to the given record}

else if |p| = 0 then {Given zip code was not found in the

database}

{discard record}

else {There was more than one powiat found for given zip

code}

{We were unable to uniquely identify the powiat using

zip code only, so we will try to do it using also the town

name}

p ← {get powiat names associated with given zip code

and town name}

if |p| = 1 then

{assign powiat to the given record}

else if |p| = 0 then {powiat for given (zip code, town

name) pair was not found}

{discard record}

else {There was more than one powiat found for given

(zip code, town name) pair}

{discard record}

end if

end if

As can be seen, the data is discarded in various points

of the cleaning and transformation process. Since we are

storing discarded data in an auxiliary database, we can easily

generate some high-level statistics showing how much data

was discarded and what was the reason of the rejection.

MACIEJ GRZENDA ET AL.: GEOSPATIAL PRESENTATION OF PURCHASE TRANSACTIONS DATA 293

AdministrativeDivisionLevel

ID: INTEGER (PK)

Name: VARCHAR(45)

Purchase

Time: DATETIME

Price: DECIMAL

ZipCode: VARCHAR(45)

Town: VARCHAR(45)

Quantity: INTEGER

TypeLevel1: VARCHAR(45)

TypeLevel2: VARCHAR(45)

TypeLevel3: VARCHAR(45)

...

ZipCodeTown

ID: INTEGER (PK)

AdministrativeDivisionID: INTEGER (FK)

ZipCode: CHAR(6)

Town: VARCHAR(45)

AdministrativeDivision

ID: INTEGER (PK)

Name: VARCHAR(45)

AdministrativeDivisionLevelID: INTEGER (FK)

ParentID: INTEGER (FK)

Latitude: VARCHAR(45)

Longitude: VARCHAR(45)

ActualStateDate: DATE

TownNameAlias

ZipCode: CHAR(6)

Alias: VARCHAR(45)

CanonicalName: VARCHAR(45)

Administrative division hierarchy

Flat *.csv text files

Pointer to a parent

administrative division

record

Date of addition of

the division to the

database

Categories of consecutive

levels describing the

purchase type

Fig. 2. A schema of the input data that we use to create the final database. Each box represents a logical database table. The following structures are
presented: Purchase – a table of purchase transactions, TownNameAliast – a table of alternative spelling of names of selected towns, Administrative division

– group of tables describing the administrative division of the area.

AdministrativeDivisionLevel

ID: INTEGER (PK)

Name: VARCHAR(45)

ProductType

ID: INTEGER (PK)

ProductTypeLevelID: INTEGER (FK)

ParentID: INTEGER (FK)

Purchase

ID: INTEGER (PK)

ProductTypeID: INTEGER (FK)

AdministrativeDivisionID: INTEGER (FK)

Time: DATETIME

ZipCode: CHAR(6)

Town: VARCHAR(45)

Quantity: INTEGER

Price: DECIMAL

AdministrativeDivision

ID: INTEGER (PK)

Name: VARCHAR(45)

AdministrativeDivisionLevelID: INTEGER (FK)

ParentID: INTEGER (FK)

Latitude: VARCHAR(45)

Longitude: VARCHAR(45)

ActualStateDate: DATE

ProductTypeLevel

ID: INTEGER (PK)

Name: VARCHAR(45)

Pointer to a parent

administrative division

record

Date of addition of

the division to the

database

Pointer to a parent

product type record

example entries in this table:

(ID=1, Name="Brand"),

(ID=2, Name="WithinBrandType")

example entries in this table

for a USA division:

(ID=1, Name="State"),

(ID=2, Name="County")

Product type hierarchy Administrative division hierarchy

Pointer to an administrative

division of the lowest level

the buyer is located in

Pointer to the lowest

(the most specific) level

of the product's type

Fig. 3. A schema of the final database used by the application.

Overall, just a small percentage of the data is discarded in

the cleaning process.

C. Statistical Processing and Data Output

After the transactions data is cleaned and stored in a

database, we can start extracting statistical information. In

many cases, for most of the small companies, this step will just

calculate simple aggregates like sum of transactions or average

purchase value. A set of simple queries may be used to process

this information and send it to the presentation layer. However,

in various situations a more complicated statistics like growth

of value per product category may be needed. In these cases

an additional OLAP system may be used to store temporal

aggregates.

A map feeder module uses all available information to

create the presentation layer. It combines area, transactions,

294 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

and statistics to automatically produce results. Due to possibly

large volume of data to be processed it should work offline and

in a batch mode. Output data, depending on a time window

involved and length of analysed period, may have from tens

to hundreds of megabytes.
The output data is prepared in a format acceptable by the

presentation module (see the next section for details).

III. PRESENTATION LAYER OF WORKING PROTOTYPE

The final database (see Fig. 3) comprising of integrated

data from different sources is used as a basis for producing

input data for the visualization module. Although any tool

can be used to display the data, it should have at least basic

capabilities required for user-friendly operations:

• zooming in and out with administration areas appearing

automatically,

• panning around the map,

• displaying of user data values,

• time axis and ability to move in time and display data

for given time window,

• ability to divide user data into layers or provide data

grouping.

The Google Earth (GE) application has all the above-

mentioned characteristics, that is why we use it as a visu-

alization engine in our prototype. The data accepted by the

GE is described in an XML file in a format called OpenGIS

KML Encoding Standard (abbreviated simply as “KML”). This

format is specifically designed to describe a way of visualizing

geographic data. We use its basic capabilities to visualize

sales data bars as three-dimensional polygons on a three-

dimensional map of Poland.
After loading the *.kml file generated from our database

into the GE, the user sees sales performance bars placed

on each administrative area. There are four bars per area,

each one corresponds to sales performance in one of four

consecutive months (see Fig. 4). The user can utilize many

options implemented in GE to navigate and manipulate data:

• change viewed time frame,

• run month-by-month animation showing changes in sales

performance (see Fig. 5),

• change point of view,

• select subset of the data to visualize,

• get detailed information about a selected sale (number of

transactions, total value, etc.).

One of the most important limitations of GE as a visu-

alization tool in our system is that data subsets may only be

defined as disjoint groups in XML format. Therefore data must

be repeated in many so-called folder structures in order to

achieve visualization of the same property in different layers

or areas. This could result in a huge KML files if one would

like to see different products divided into different areas. Also,

adding time dimension multiplies the file size by the number

of time steps. We observed in our prototype a file size growth

of two orders of magnitude when using 24 time steps (each

corresponding to a single month) instead of using a single

aggregated step.

However, the system should also work with larger datasets.

KML-based models can manage datasets with millions of

records [13]. This is especially true when a network links

technique is used [14].

IV. CONCLUSIONS AND FUTURE WORKS

We presented a lightweight automatic system for combining,

processing and presenting sales-related data. The presented

prototype of the system relies on batch processing for data

analysis and on Google Earth application as a viewing module.

Our solution, although very simple, could be used by most of

Internet sellers providing them a simple and convenient way to

observe spatial and temporal relationships in sales data. Future

work on the system involves a more thorough incorporation

of the statistical data of the administrative regions into the

system. Another idea is to provide visualization of results of

some basic data mining processing of the analyzed data (e.g.

showing clusters of regions that are similar in some specified

way).

ACKNOWLEDGMENT

The authors would like to thank one of the largest Internet

sellers of tires in Poland: ORZEŁ S.A., Ćmiłów ul. Willowa

2-4, 20-388 Lublin, Poland. The company made available

approximately two years of Internet purchase transactions data

to us.

REFERENCES

[1] G. Corporation, “Google earth,” www.google.com/earth.
[2] Y. Bédard, S. Rivest, and M. josée Proulx, “Spatial on-line analyti-

cal processing (solap): Concepts, architectures, and solutions from a
geomatics engineering perspective,” in Data Warehouses and OLAP:

Concepts, Architecture, and. Press, 2006, p. 298319.
[3] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”

in International Conference on Management of Data. ACM, 1984, pp.
47–57.

[4] Y. Theodoridis and T. Sellis, “A model for the prediction of r-tree
performance,” 1996, pp. 161–171.

[5] Y. Tao, J. Sun, and D. Papadias, “Analysis of predictive spatio-temporal
queries,” TODS, vol. 28, pp. 295–336, 2003.

[6] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos,
“Efficient indexing of spatiotemporal objects,” 2002, pp. 251–268.

[7] Y. Theodoridis, M. V. . T. Sellis, M. Vazirgiannis, and T. Sellis, “Spatio-
temporal indexing for large multimedia applications,” 1996, pp. 441–
448.

[8] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias, “Spatio-temporal
aggregation using sketches,” in In ICDE, 2004, pp. 214–226.

[9] J. Zhang, “Spatio-temporal aggregation over streaming geospatial data,”
in In Proceedings of the 10th International Conference on Extending

Database Technology Ph.D. Workshop, 2006.
[10] D. Kannangara, N. Fernando, and D. Dias, “A web based methodology

for visualizing time-varying spatial information,” in Industrial and

Information Systems (ICIIS), 2009 International Conference on, dec.
2009, pp. 233 –238.

[11] J. K.P. and W. N.T.S, “Product development for presentation of temporal
gis results for non gis specialists, engineer,” Journal of the Institution

of Engineers, vol. 51, no. 5, pp. 44 –50, 2008.
[12] Surveyor General of Poland, “geoportal.gov.pl,” geoportal.gov.pl.
[13] J. Wood, J. Dykes, A. Slingsby, and K. Clarke, “Interactive visual

exploration of a large spatio-temporal dataset: Reflections on a geo-
visualization mashup.” Visualization and Computer Graphics, IEEE

Transactions on, vol. 13, no. 6, pp. 1176 –1183, nov.-dec. 2007.
[14] U. Dadi, C. Liu, and R. Vatsavai, “Query and visualization of extremely

large network datasets over the web using quadtree based kml regional
network links,” in Geoinformatics, 2009 17th International Conference

on, aug. 2009, pp. 1 –4.

MACIEJ GRZENDA ET AL.: GEOSPATIAL PRESENTATION OF PURCHASE TRANSACTIONS DATA 295

Fig. 4. A sample screenshot of the presentation layer. We can see a Google Earth’s satellite image of a part of Poland with borders of powiats marked.
Three-dimensional bars on the territory of each powiat correspond to sales performance in four consecutive months with the brightest bar on the right side
corresponding to the most recent month.

Fig. 5. Subsequent frames of animation showing how the sales performance is changing during four consecutive months. The brightest bar on the right side
corresponds to the most recent month.

296 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

