
Multi-Agent Architecture for Solving Nonlinear
Equations Systems in Semantic Services

Environment

Victor Ion Munteanu, Cristina Mindruta, Viorel Negru, Calin Sandru
Computer Science Department

West University of Timisoara

{vmunteanu, cmindruta, vnegru, csandru}@info.uvt.ro

Abstract—A semantic enabled multi-agent architecture for
solving nonlinear equations systems by using a service oriented
approach is proposed. The service oriented approach allows us to
access already implemented methods for solving complex math-
ematical problems. The semantic descriptions of these services
provide support for intelligent agents.

I. INTRODUCTION

THE MAIN goal of this paper is to propose a multi-

agent architecture for solving nonlinear equations sys-

tems. This architecture is designed around a semantic-based

solving paradigm supported by a service oriented ontology.

That allows us to define expert agents in a semantic services

environment.

Similar work has been done in the MONET project [3]

which had the aim to provide a set of web services to-

gether with a brokering platform in order to facilitate means

of solving a particular mathematical problem. The semantic

representation for the mathematical objects was done using

OpenMath (MathML was cited also).

GENSS (Grid-Enabled Numerical and Symbolic Services)

project [2] , like MONET, tries to combine grid computing and

mathematical web services using a common open agent-based

framework.

In [8] is discussed the matchmaking of semantic mathemat-

ical services described using OpenMath.

The architecture we propose is being built based on past

experience in designing NESS, a non-linear equations systems

solver, and EpODE, an expert system dedicated to ordinary

differential equations. NESS [10] is an intelligent front-end

for solving non-linear equation systems, developed in CLIPS.

Starting from the features of the system to be solved and of

the numeric methods, human expert uses domain knowledge

(numeric analysis) and heuristics to choose the most suitable

method, to interpret the results (intermediary and final), and

to restart the solving process in the case of failure. NESS

uses task-oriented reasoning. A MAS architecture based on

UPML has been proposed and instantiated for NESS [12].

EpODE was initially realized as a monolitic expert system [11]

and has been re-engineered as a semantic services oriented

framework [9]; the solving methodology is workflow-oriented,

being realised by integrating semantic services with process

modelling.

While having similar main functional objective with NESS,

the architecture proposed in this paper is more flexible due

to the semantic services component and to the new society of

agents designed accordingly.

We have been designed a multi-agent architecture that

will implement a task-oriented solving model, with a core

semantic-based solving paradigm. Typically, multi-agent ar-

chitecture offers flexibility, scalability and mobility, important

quality attributes when dealing with a large number of soft-

ware services. The agents in the architecture have capabilities

ranging from semantically searching for services to providing

an execution plan for the given problem. The problem that

is to be solved is passed to the multi-agent system as input

data. The expert agents in the system analyze the problem and

propose an execution plan in order to find the solution. The

execution plan is ran and adjusted if need be, and the result

of the execution is returned to the user.

The execution plan contains numeric methods which can be

offered by software services.

We have also designed a semantic services ontology in

order to support the semantic-based solving paradigm. For

semantic descriptions we have decided to use WSMO (Web

Services Modelling Ontology)[1]. Our approach considers a

semantic services context, which is able to offer semantic

information useful to the system of agents. In this context,

the proposed multi-agent system uses a specific ontology

containing concepts, relations and axioms defined for the

nonlinear equations systems domain, and has an extensible

database of semantic descriptions for services implementing

numeric methods.

The system implements a core paradigm for solving prob-

lems, based on semantic matching between problem proper-

ties and numeric method capabilities. Numeric methods are

identified based on their semantic descriptions that reflect the

properties of the problem for which the method is appropriate.

The method selection can be realized by the user based on his

own expertise, by the user based on system recommendation

and estimations, or automatically by the multi-agent system.

This core paradigm is included in a more flexible approach

to solve the problems, that implies coordinated activity in the

society of agents and with the user. This can result for example

in starting to solve a problem with a numeric method and, form

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 981–984

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 981

Fig. 1. Task structure

a given step, to continue with another numeric method based

on intermediary results and performance of the system.

Such a flexibility is provided by the proposed multi-agent

architecture and covers a large area of user skills, from users

with simple mathematical skills, for which the system could

provide a solution based on its own expertise, to users with

very high mathematical skills, which want to experiment

solving new types of problems and using new numeric meth-

ods. The experience gained by the later category of users is

also captured by the multi-agent system in new methods and

new characteristics of the existing ones, thus improving its

capabilities.

The paper is structured as follows. Section II presents the

proposed multi-agent architecture, based on the task-oriented

model and integrated with the semantic infrastructure. Section

III is dedicated to the semantic descriptions of the ontology,

services and goals used to support the core solving paradigm.

Section IV presents conclusions and future work.

II. MULTI-AGENT ARCHITECTURE

When developing the multi-agent architecture, we had sev-

eral architectural concerns in mind. The architecture must:

• Allow service operations: publishing, semantic facilita-

tion, invoking (running) etc.

• Provide automatic semantic service selection and compo-

sition.

• Detect and recover from a failing service.

• Monitor services.

• Create solving scenarios based on previous solving expe-

rience.

A. Task oriented reasoning

Although sometimes associated with an activity to execute,

the concept of task is mostly intended to abstract a specific

goal to be achieved [6], [1], [5]. In this regard, tasks definitions

do not explicit the particular method to use in order to achieve

the goal, but rather give a description of the state of the world

to be achieved.

The operational aspect can be abstracted in the concept of

a problem solving method (PSM). A PSM describes how to

achieve a result based on a set of input data. The goal of a PSM

can be regarded as a procedural one in order to obtain a result

according to the method specification. The meta-properties of

the methods to be mentioned in this context include input,

output, precondition, postcondition, sub-task.

The task oriented model is the abstract methodological

basis for the proposed nonlinear equations system solver, task

oriented reasoning being a natural approach for our multi-

agent system. Starting from a particular task, one can build

a hierarchy of tasks and PSMs that can be considered as the

plan for solving the root task. In our architecture, the PSMs

can be implemented as semantic services or as agents (fig.1).

B. Agents

The multi-agent system is composed of the following

agents: client, reasoner, executor, monitoring, archiver, histo-

rian, service discoverer, service wrapper, and solver. These

agents can be seen in fig.2.

The client agent handles the communication with the user.

It exposes a graphical user interface which allows the user

to interact with the system. The client agent communicates

with the reasoner, executor and monitoring agents in order to

manage the planning and execution.

The reasoner agent receives the problem from the client

agent and creates the work plan to solve the current problem.

It uses the domain ontology to create the semantic definitions

of the tasks in terms of WSMO goals and will interact with the

WSMX platform in order to find solving methods for a specific

task. The historian agent provides the reasoner with plans that

were applied in similar problems. The reasoner agent interacts

with the executor agent when it needs to update the plan or

when an alternative path is needed.

The executor agent handles the execution of the work plan.

It communicates with the reasoner agent in order to receive

and detail the work plan. The executor accesses the WSMX

platform endpoint and queries it in order to find semantically

compatible services for the current step in the work plan. It

will communicate with the monitoring agent in order to report

task progress.

The monitoring agent has the role to monitor the current

task execution. It will send task information to the client agent,

which in turn will notify the user about the current state of the

execution. The monitoring agent will also create an execution

profile and will send it to the archiver for storage.

The historian agent receives the current problem profile

from the reasoner agent and it will look in the archive for

similar profiles. These profiles are sent back to the reasoner

so that it can make a decision based on past executions.

The service discoverer agent looks for new services that can

be integrated in the system. It will look in WSIL/UDDI service

directories in order to identify compatible services based on

the ontology, and will search the JADE’s directory facilitator

for compatible solver agents.

The service wrapper handles services with no semantic

description. It generates it’s own WSML file for the service it

is wrapping around and publishes it in the WSMX platform.

C. WSMX Platform

The web services that the system uses expose their capa-

bilities, ways to interact with them, and ontologies through

WSMO-compliant (WSML) descriptions. These web services

982 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Fig. 2. Multi-agent system architecture

will be deployed on the WSMX platform. The WSMX plat-

form can match the semantic descriptions of web services with

semantic descriptions of goals provided by the agents, and

can invoke the execution of those services. On the WSMX

platform will be deployed semantic services, semantic agents

that can wrap around non semantic services, and semantic

agents that act alone. These services will execute the tasks

given by the executor agent.

III. SEMANTIC MODEL

WSMO is appropriate for modelling the proposed semantic-

core solving paradigm, because it offers a clear separation be-

tween goals and services. Services will offer numeric methods

or compositions of methods from our paradigm, and goals are

dynamically built for each problem to be solved.

1) Ontologies: NESOnto (fig.3) contains concepts, rela-

tions and axioms that define problem and solution spaces of

the nonlinear equations systems.

NESOnto defines the concept of problem (NES_Problem)

in relation to the concepts representing the input data of

the problem (NES_IN_P) and the properties of the cor-

responding nonlinear equations system (NES_PProps). It

also defines the concept of numeric method (NES_Method)

in relation to the concepts representing the input data of

the method (NES_IN_M) and the properties of the method

(NES_MProps). The restrictions imposed on the solving

session are modelled with the concept NES_Session, and

the solution of the nonlinear equations system is modelled with

the concept NES_Solution.

The associated matrix is modelled with two concepts:

Jacobian represents the symbolic Jacobian of the system,

and JacobianVal represents the Jacobian matrix of the

system computed in a given point.

The properties of the problem are of types defined in

specific concepts (e.g. SystemForm), and for each of these

concepts the particular instances (e.g. General, Sparse,

DiagonalExplicit) have been defined.

The properties of the numeric method have been defined

in the same manner. They will be used by the reasoner agent,

that will refine the service selection and composition matching

them to the execution constraints represented as an instance

of the NES_Session concept.

2) Services implementing numeric methods: The capabil-

ities of each service are described using NESOnto and an

ontology specific to the service. One of the axioms in this

specific ontology defines the relation isSolvable expressing the

properties of the nonlinear equations systems for which the

method is appropriate.

In fig.4 (a) is represented the semantic description of

Broyden_NES service that implements the numeric method

Broyden for solving nonlinear equations systems. The pre-

condition in the semantic description states that the method

can be used if the relation isSolvable exists for the properties

of the problem to be solved. The semantics of this relation

for the service Broyden_NES are defined in the axiom

isSolvableDef of the ontology particular to the capabilities of

this service, and expresses the fact that Broyden method is

recommended for nonlinear equations systems of general form,

with nonsingular Jacobian, and of medium or big size. This

represents a part of the expert knowledge and is implemented

in the semantic description of the service.

3) Goals: Goals are dynamically built for each problem.

Each goal has its a particular ontology that contains instances

of concepts from NESOnto. In order to identify the services

which are able to solve the corresponding problem, the partic-

ular ontology (GoalNESSolution) contains an instance of

the NES_PProps concept which holds the concrete properties

of the given problem. In fig.4 (b), an example goal of solving

a nonlinear equations system is described in WSML.

IV. CONCLUSIONS AND FUTURE WORK

The task-oriented model makes a clear separation between

tasks to be accomplished and methods for solving them. This

model is implemented using a multi-agent architecture and is

applied to design a solver for nonlinear equations systems.

The multi-agent system is integrated with services im-

plementing numeric methods. The services are semantically

described in terms of a domain ontology we propose for

nonlinear equations systems.

VICTOR ION MUNTEANU ET AL.: MULTI-AGENT ARCHITECTURE 983

Fig. 3. Elements of NESOnto represented with WSMT

Fig. 4. (a) WSML descriptions for BroydenNES service and (b) ExampleGoal goal

Semantic descriptions are realized in WSML, allowing us to

benefit from the clear separation between goals and services.

This maps over our task-oriented model, specifically over

tasks and solving methods respectively. Specialized agents

dynamically build semantic descriptions of the goals based

on the properties of problems to be solved, and appropriate

services are discovered by semantic matching.

Other agents are implied in user interaction, in building

work plans, in managing the system in order to offer solutions

to different problems or support for the human expert to

experiment methods to solve nonlinear equations systems.

The multi-agent system is implemented in JADE [4]. The

reasoner agent uses JESS [7] as a rule engine together with

the domain ontology in order to devise the execution plan. The

system will be validated in the context of NESS.

In our future work we will extend the definitions of the

knowledge in the domain of nonlinear equation systems and

will try to combine WSML with OpenMath and MathML in

expressing them.

V. ACKNOWLEDGMENT

This work was partially supported by the Romanian

Government PNII grant nr. 12118/2008 (SCIPA), by POS-

DRU/88/1.5/S/49516 structural funds grant, ID 49516 (2009),

and by the grant POSDRU 21/1.5/G/13798.

REFERENCES

[1] WSMO. http://www.wsmo.org.
[2] GENSS project. http://genss.cs.bath.ac.uk, 2004.
[3] M.L. Aird, W.B. Medina, and J. Padget. MONET: service discovery and

composition for mathematical problems. In Cluster Computing and the

Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International

Symposium on, pages 678 – 685, may 2003.
[4] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood.

Developing Multi-Agent Systems with JADE (Wiley Series in Agent

Technology). John Wiley & Sons, 2007.
[5] B. Chandrasekaran. Design problem solving: a task analysis. AI Mag.,

11:59–71, October 1990.
[6] Dieter Fensel, Enrico Motta, Frank van Harmelen, V. Richard Ben-

jamins, Monica Crubezy, Stefan Decker, Mauro Gaspari, Rix Groen-
boom, William Grosso, Mark Musen, Enric Plaza, Guus Schreiber,
Rudi Studer, and Bob Wielinga. The unified problem-solving method
development language UPML. Knowl. Inf. Syst., 5:83–131, March 2003.

[7] Ernest Friedman Hill. Jess in Action: Java Rule-Based Systems. Manning
Publications Co., Greenwich, CT, USA, 2003.

[8] Simone Ludwig, Omer Rana, Julian Padget, and William Naylor. Match-
making framework for mathematical web services. Journal of Grid

Computing, 4:33–48, 2006. 10.1007/s10723-005-9019-z.
[9] Cristina Mindruta and Dana Petcu. A semantic services architecture for

solving ODE systems. Symbolic and Numeric Algorithms for Scientific

Computing, International Symposium on, 0:301–307, 2010.
[10] Viorel Negru, Stefan Maruster, and Calin Sandru. Intelligent system for

non-linear simultaneous equation solving. In Technical Report Report

Series. No, 98-19. RISC-Linz, december 2003.
[11] Dana Petcu. EpODE. http://www.info.uvt.ro/∼petcu/epode/main.htm.
[12] Calin Sandru and Viorel Negru. Validating UPML concepts in a multi-

agent architecture. In Schedae Informaticae, volume 15, pages 109–126,
2006.

984 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

