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Abstract—Oracle modification of subtree pushdown automata
for ranked and unranked ordered trees is presented. Subtree
pushdown automata [1] represent a complete index of a tree
for subtrees. Subtree oracle pushdown automata, as inspired by
string factor oracle automaton [2], have the number of states
equal to n+ 1, where n is the length of a corresponding linear
notation of the tree. This makes the space complexity very low.
By analogy with the string factor oracle automaton the subtree
oracle automata can also accept some subtrees which are not
present in the given subject tree. However, the number of such
false positive matches is smaller than in the case of the string

factor oracle automaton. The presented pushdown automata are
input–driven and therefore they can be determinised.

I. INTRODUCTION

TREES are one of the fundamental data structures used

in Computer Science, e.g. they are used as intermediate

forms in compilers or in the form of XML documents. Trees

can also be seen as strings, for example in their prefix (also

called preorder) or postfix (also called postorder) notation.

One of basic approaches to pattern matching uses data struc-

tures which are constructed for a given subject and represent its

index. Examples of such data structures for a subject string can

be suffix or factor automata [3], [4], [5]. The main advantage

of this kind of deterministic finite automata are that they

perform the search phase in time linear inm and not depending

on n, where m and n are the length of the input pattern and of

the subject string, respectively. However, the implementation

of the string factor automaton requires a fairly large amount of

memory space. Factor oracle automaton [2] represents a space

reduced variant of the string factor automaton. The number of

states of factor oracle automaton is equal to n+1, where n is

the length of the subject string. In comparison with the string

factor automaton, it accepts also some additional subsequences

of the subject string. Despite this fact, it can be used for a fast

and memory efficient indexing of strings and for backward

oracle string matching, in which the factor oracle for a reversed
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input pattern is constructed and then it is used for matching

the input pattern in a sliding window from right to left [2].

In [1], we have introduced Subtree PDA, a new kind of

acyclic PDA for ordered trees, which represents an index of a

subject tree for subtrees and is analogous to the string factor

automaton and its properties. The construction of a subtree

PDA is based on the fact that each subtree in a specific

linear notation is a substring of the tree in the linear notation.

The underlying tree structure is processed by the use of the

pushdown store. In this paper, by analogy with the string

processing, we present an oracle modification of the subtree

PDA. The deterministic subtree oracle PDA has the number of

states equal to n+1, where n is the length of a corresponding

linear notation of the tree. It accepts all subtrees of the subject

tree and further it may accept also certain subtrees which are

not present in the subject tree. Despite this fact, it can be

used for a fast and memory efficient indexing of trees, mainly

for quick rejection of input patterns that are not subtrees of

the subject tree, and for backward oracle subtree matching,

which can be done by analogy with the string backward oracle

matching algorithm [2]. We present subtree oracle PDAs for

both ranked and unranked ordered trees. Although searching

thoroughly, we have not found any other existing indexing

structure for a tree with the abovementioned space complexity.

II. SOME BASIC NOTIONS AND NOTATIONS

Definition 1. The prefix notation pref(t) of a tree t is defined

in this way:

1) pref(t) = a if a is a leaf,

2) pref(t) = a pref(b1) . . . pref(bn), where a is the

root of the tree t and b1, . . . bn are direct descendants

of a.

For unranked trees, nodes have no arity so it is not possible

to determine the number of node descendants from label.

Instead, a bar notation defined bellow can be used.

Definition 2. Let ] be the prefix bar symbol, ] 6∈ A. Prefix bar

notation prefbar(t) of a tree t is defined as follows:

1) prefbar(t) = a ] for tree t with a single node a.
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2) prefbar(t) = r prefbar(a1), . . . prefbar(an) ] for tree

with root r and direct descendants a1 . . . an of node r.

Example 1. Consider a ranked alphabet A = {b2, a2, b0, a0}.
Consider a tree t1 in prefix notation pref(t1) =
b2 b0 a2 a0 a2 a0 a0. Tree t1 is illustrated in Fig. 1.

b21

b02 a23

a04 a25

a06 a07

Fig. 1. Tree t1 from Example 1

Assuming tree t1 being unranked (A = {a, b}), it can be

written in prefix bar notation as

prefbar(t1) = b b ] a a ] a a ] a ] ] ] ]

A. Factor oracle automata in stringology

Given a string x, the deterministic factor automaton is de-

fined as the minimal deterministic finite automaton accepting

all factors of x. A factor oracle automaton can be constructed

from the factor automaton. This construction is based on

merging so-called corresponding states in a factor automaton

together [5].

Definition 3. Let M be a factor automaton for string x and

q1, q2 be different states of M . Let there exist two sequences of

transitions in M : (q0, x1) ⊢∗ (q1, ε), and (q0, x2) ⊢∗ (q2, ε).
If x1 is a suffix of x2 and x2 is a prefix of x then q1 and

q2 are corresponding states.

The factor oracle automaton can be constructed by merging

the corresponding states.

Example 2. We construct factor oracle automaton for the pre-

fix notation pref(t1) = b2 b0 a2 a0 a2 a0 a0 of tree t1 from

Example 1. After merging all pairs of corresponding states, the

resulting automaton will be FMora(pref(t1)) and is transition
diagram is depicted in Fig. 2. For more information on its

construction, see [5].

The constructed string factor oracle automaton now accepts

string x = b2 b0 a2 a0 a0, which is not a factor of pref(t1) =
b2 b0 a2 a0 a2 a0 a0. String x was created from pref(t1) by
omitting one repeat of string a2 a0.

III. PROPERTIES OF SUBTREES IN PREFIX AND PREFIX BAR

NOTATION

In this section we present some general properties of the

prefix and the prefix bar notation of a tree.

Theorem 1. Given a tree t and its notation pref(t) and

prefbar(t), all subtrees of t in prefix and prefix bar notation

are substrings of pref(t) and prefbar(t), respectively.
Proof: See [1], [6], [7].

[0] [1] [2] [3] [4] [5] [6] [7]

b2 b0 a2 a0 a2 a0 a0

b0

a2

a0 a0

Fig. 2. Transition diagram of the deterministic string factor oracle automaton
FMora(pref(t1)) for prefix notation pref(t1) = b2 b0 a2 a0 a2 a0 a0
of tree t1 from Example 2

However, not every substring of pref(t) or prefbar(t) is

a prefix notation of a subtree. This property is formalised by

the following definitions and theorems.

Definition 4. Let w = a1a2 . . . am, m ≥ 1, be a

string over a ranked alphabet A. Then, the arity checksum

ac(w) = arity(a1)+ arity(a2)+ . . .+ arity(am)−m+1 =
∑m

i=1 arity(ai)−m+ 1.

Theorem 2. Let pref(t) and w be a tree t in prefix notation

and a substring of pref(t), respectively. Then, w is the prefix

notation of a subtree of t, if and only if ac(w) = 0, and
ac(w1) ≥ 1 for each w1, where w = w1x, x 6= ε.

Proof: See [1], [6], [7].

Similar properties can be seen for unranked trees and their

prefix bar notation.

Definition 5. Let w = a1a2 . . . am, m ≥ 1, be a string over

A ∪ {]}. Then, the bar checksum is defined as follows:

1) bc(a) = 1 and bc(]) = −1.
2) bc(wa) = bc(w) + 1 and bc(w]) = bc(w) − 1.

Lemma 1. Let w, w = b1b2 . . . bm, m ≥ 2 be a string over

alphabet A ∪ {]} such that bc(w) = 0, and bc(w1) ≥ 1 for

each w1, where w = w1x, x 6= ε. Then b1 ∈ A and bm = ].
Proof: See [7].

Theorem 3. Let prefbar(t) and w be a tree t in bar notation

and a substring of prefbar(t), respectively. Then, w is the

bar notation of a subtree of t, if and only if bc(w) = 0, and
bc(w1) ≥ 1 for each w1, where w = w1x, x 6= ε.

Proof: See [7].

Theorem 4. Let M = ({Q,A, {S}, δ, 0, S, ∅) be an input–

driven PDA of which each transition from δ is of the form

δ(q1, a, S) = (q2, S
i), where i = arity(a).

Then, if (q3, w, S) ⊢
+
M (q4, ε, S

j), then j = ac(w).
Proof: See [7].

IV. SUBTREE PUSHDOWN AUTOMATA

A. Subtree PDA for trees in prefix notation

A subtree pushdown automaton for ranked ordered trees

has been introduced in [1]. Nondeterministic subtree PDA for

trees in prefix notation is an input–driven PDA constructed by

Alg. 1.

Algorithm 1. Construction of a nondeterministic subtree

PDA for a tree t in prefix notation pref(t).
Input: A tree t; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
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Output: Nondeterministic subtree PDA Mnps(t) =
({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1) For each state i, where 1 ≤ i ≤ n, create a new transition

δ(i− 1, ai, S) = (i, SArity(ai)), where S0 = ε.

2) For each state i, where 2 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, SArity(ai)), where S0 = ε.

Each nondeterministic input–driven PDA can be trans-

formed to an equivalent deterministic input–driven PDA.

Algorithm 2. Transformation of an input–driven

nondeterministic PDA to an equivalent deterministic PDA.

Input: Acyclic input–driven nondeterministic PDA

Mnx(t) = ({0, 1, 2, . . . , n},A, {S},
δ, 0, S, ∅), where the ordering of its states is such that if

δ(p, a, α) = (q, β), then p < q.

Output: Equivalent deterministic PDA Mdx(t) =
(Q′,A, {S}, δ′, qI , S, ∅).
Method:

1) Initially, Q′ = {[0]}, qI = [0], cpds([0]) = {S} and [0]
is an unmarked state.

2) a) Select an unmarked state q′ from Q′ such that q′

contains the smallest possible state q ∈ Q, where

0 ≤ q ≤ n.

b) If there is Sr ∈ cpds(q′), r ≥ 1, then for each

input symbol a ∈ A:

i) Add transition δ′(q′, a, α) = (q′′, β), where

q′′ = {q : δ(p, a, α) = (q, β) for all

p ∈ q′}. If q′′ is not in Q′ then add q′′ to

Q′ and create cpds(q′′) = ∅. Add ω, where

δ(q′, a, γ) ⊢Mdx(t) (q
′′, ε, ω) and γ ∈ cpds(q′),

to cpds(q′′).

c) Set the state q′ as marked.

3) Repeat step 2 until all states in Q′ are marked.

The deterministic subtree PDA for a tree in prefix notation

is demonstrated by the following example.

Example 3. The deterministic subtree PDA for tree t1 in pre-

fix notation from Example 1, which has been constructed by

Alg. 2 and then determinised is PDA Mdps(t1). Its transition
diagram is illustrated in Fig. 3.

[0] [1] [2] [3] [4] [5] [6] [7]

[3, 5] [4, 6]

[4, 6
7]

b2|S 7→ SS

b0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a0|S 7→ ε

b0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a0|S 7→ ε
a0|S 7→ ε

a2|S 7→ SS

Fig. 3. Transition diagram of deterministic subtree PDA Mdps(t1) for tree
in prefix notation pref(t1) = b2 b0 a2 a0 a2 a0 a0 from Example 3

During the processing of an input subtree st in prefix

notation pref(st) = a2a0a0, the automaton changes states

in sequence [0],[3, 5],[4, 6] and accepts the input in state [5]
by an empty pushdown store.

Theorem 5. Given a tree t and its prefix notation pref(t),
the PDA Mnps(t) constructed by Alg. 1 is a subtree PDA for

pref(t).
Proof: See [1].

Theorem 6. Given an acyclic input–driven nondeterministic

PDAMnx(t) = (Q,A, {S}, δ, q0, S, ∅), the deterministic PDA
Mdx(t) = (Q′,A, {S}, δ′, {q0}, S, ∅) constructed by Alg. 2 is

equivalent to PDA Mnx(t).
Proof: See [7].

B. Subtree PDA for Prefix Bar Notation

Similarly, we can also construct subtree PDAs for unranked

trees in the prefix bar notation.

Algorithm 3. Construction of a nondeterministic subtree PDA

for a tree t in prefix bar notation prefbar(t).
Input: A tree t; prefix bar notation prefbar(t) = a1a2 . . . an,

n ≥ 2.
Output: Nondeterministic subtree PDA Mnpbs(t) =
({0, 1, 2, . . . , n},A∪ {]}, {S}, δ, 0, S, ∅).
Method:

1) For each state i, where 2 ≤ i ≤ n, create a new transition

δ(i− 1, ai, S) =

{

(i, ε) for ai = ]

(i, SS) for ai ∈ A.

2) For each state i, where 1 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, S).

Again, the nondeterministic input–driven PDA can be trans-

formed to an equivalent deterministic PDA by Algorithm 2.

Theorem 7. Given a tree t and its prefix bar notation

prefbar(t), the PDA Mnpbs(t) constructed by Alg. 3 is a

subtree PDA for prefbar(t).

V. SUBTREE ORACLE PDA

This section deals with subtree oracle pushdown automata.

Properties of these pushdown automata will be shown on an

example. Similarly to stringology, we construct subtree oracle

automaton with the use of the definition of corresponding

states (see Definition 3). For this purpose, we use a string

representing the tree in prefix notation as a part of the

definition of corresponding states.

Definition 6. Let M be a subtree automaton for tree t. Let q1,

q2 be different states of M . Let there exist two sequences of

transitions in M : (q0, w1) ⊢∗ (q1, ε), and (q0, w2) ⊢∗ (q2, ε).
If w1 is a suffix of w2 and w2 is a prefix of pref(t), then

q1 and q2 are corresponding states.

Definition 7. Let Mdps(t) be deterministic subtree pushdown

automaton (PDA) accepting all subtrees of tree t. Subtree

oracle PDA Mops(t) is a pushdown automaton created from

Mdps(t) by merging all corresponding states.

Using our style of node numbering from 0 to n, it holds that

labels of every two mutually corresponding states dq1 , dq2 have
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[0] [1] [2] [3] [4] [5] [6] [7]

b2|S 7→ SS

b0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a0|S 7→ ε

b0|S 7→ ε

a2|S 7→ SS
a0|S 7→ ε

a0|S 7→ ε

Fig. 4. Transition diagram of deterministic subtree oracle PDA Mops(t1)
for tree t1 from Example 4

the same minimal value of their d-subsets, ie. min(dq1) =
min(dq2).

Example 4. We construct the subtree oracle automaton for tree

t1 from Example 1 defined in prefix notation as pref(t1) =
b2 b0 a2 a0 a2 a0 a0.
The transition diagram of the deterministic subtree PDA

for tree t1 is illustrated on Fig. 3. We can see three pairs of

corresponding states: ([3], [3, 5]), ([4], [4, 6]), ([4], [4, 6, 7])
To construct subtree oracle PDA, we will merge all pairs of

corresponding states. The resulting automaton is deterministic

PDA Mops(t1), depicted in Fig. 4.

We see that PDA now accepts Pref(t2) = b2b0a2a0a0,

which is a subsequence of pref(t1). This property refers to the
property of string factor oracle automata (see Example 2).

VI. PROPERTIES OF ORACLE PUSHDOWN AUTOMATA

Using PDAs instead of finite automata may lead to the

elimination of some negative properties which are present in

string factor oracle automata:

First, during the process of determinisation, the cancellation

condition cpds(q) = {ε} in Algorithm 2 indicates all states

from which all outgoing transitions can be omitted because

of invalid pushdown operations. This means that some states

become inaccessible and can be removed. Omitted transitions

would have been responsible for accepting more inputs.

Second, we can define conditions for so-called safe merging

of corresponding states. This safe merge does not affect the

accepted language.

Definition 8. We define the minimal input arity checksum

of state q ∈ Q as AC−
min(q) = min{i : (q0, xy, S) ⊢∗

(q, y, Si), x, y ∈ A∗, i ≥ 0}.

Definition 9. We define the minimal input arity checksum of

state q ∈ Q for input symbol a ∈ A as ac−min(q, a) = min{i :
(q0, xay, S) ⊢∗ (q, y, Si), x, y ∈ A∗, i ≥ 0}.

AC−
min specifies the minimal number of pushdown symbols

that can appear in the pushdown store in the state q after

reading any input x. ac−min specifies the last read symbol

before reaching the state q (ie the label of the last transition is

used). By replacing min function with max, we could define

AC−
max and ac−max.

Definition 10. We define maximal output arity checksum

of state q ∈ Q as AC+
max(q) = max{i : (q, x, Si) ⊢∗

(r, ε, ε), x ∈ A∗, r ∈ Q, i ≥ 0}.

Definition 11. We define maximal output arity checksum of

state q ∈ Q for input symbol a ∈ A as ac+max(q, a) = max{i :
(q, ax, Si) ⊢∗ (r, ε, ε), x ∈ A∗, r ∈ Q, i ≥ 0}.

AC+
max specifies the maximal number of pushdown symbols

that can be removed starting from the state q by reading

arbitrary input. ac+max specifies first symbol of that input. By

replacing max function with min, we could define AC+
min and

ac+min.

Lemma 2. Two distinct corresponding states q and r of de-

terministic subtree pushdown automata can be safely merged

if at least one of following conditions is fulfilled:

1) For every input symbol a ∈ A such that δ(q, a, S) 6=
δ(r, a, S), it holds that ac+max(r, a) < AC−

min(q) and

ac+max(q, a) < AC−
min(r)

2) Either AC−
max(q) = AC+

max(q) = 0 or AC−
max(r) =

AC+
max(r) = 0.

VII. CONCLUSION

We have described oracle modification of subtree pushdown

automata for ordered ranked and unranked trees in prefix and

prefix bar notation, respectively. These pushdown automata are

analogous in their properties to string factor oracle automata,

which are widely used in stringology. The presented pushdown

automata allow quick rejection of input patterns that are

not subtrees of the subject tree or can be used for efficient

backward oracle subtree matching. There are open questions

for future research. First, the tree language accepted by the

subtree oracle pushdown automaton should be investigated in

details. Second, an algorithm for minimising the deterministic

subtree PDA using only the safe merging of states, which is

introduced in this paper, should also be researched.

For more information on tree algorithms using PDAs,

see [8].
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