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Abstract—We consider the SUMT (Sequential Unconstrained
Minimization Technique) method using extrapolations to link
successive unconstrained sub-problems. The case when the ex-
trapolation is obtained by a first order Taylor estimate and
Newton’s method is used as a correction in this predictor-
corrector scheme was analyzed in [1]. It yields a two–steps super-
linear asymptotic convergence with limiting order of 4

3
for the

logarithmic barrier and order two for the quadratic loss penalty.

We explore both lower order variants (approximate extrapo-
lations correction computations) as well as higher order variants
(second order and further) Taylor estimate.

First, we address inexact solutions of the linear systems arising
within the extrapolation and the Newton’s correction steps.
Depending on the inexactness allowed, asymptotic convergence
order reduces, more severely so for interior variants.

Second, we investigate the use of higher order path following
strategies in those methods. We consider the approach based on
a high order expansion of the so-called central path, somewhat
reminiscent of Chebyshev’s third order method and its general-
izations. The use of higher order representation of the path yields
spectacular improvement in the convergence property, even more
so for the interior variants.

I. INTRODUCTION

WE CONSIDER non linear programs (NLP) of the form

min
x∈Rn

f(x)

subject to g(x) ≤ 0
(1)

or

min
x∈Rn

f(x)

subject to g(x) = 0
(2)

with g : Rn → R
m.

We will address both formulations using SUMT, Eq.(1)

using the classical log barrier method and Eq.(2) will be

developed using the quadratic loss penalty function. A slight

emphasis is put on the logarithmic barrier variant.

Fiacco and McCormick [5] pioneered the study of SUMT,

and obtained the important result that close to a solution, the

unconstrained sub-problems induce differential trajectories,

and proposed the use of extrapolation to follow the trajectories.

In linear programming, Mehrotra [6] popularized the use of

so called predictor-corrector algorithms, intimately related to

the extrapolations of the SUMT trajectory.

This research was partially supported by NSERC grant OGP0005491

We present asymptotic results related to inexact versions of

both variants, looking for super-linear convergence of order

lower than 2, as well as high order extrapolations to aim for

faster asymptotic convergence.

Results from [1] state that interior variants achieve a limiting

convergence order of two–steps 4
3 while exterior variants

reach a limiting 2–steps quadratic order. We call two–steps

convergence since the convergence order requires the solution

of two linear systems, one to compute the extrapolation and

another one to compute the Newton step.

Asymptotic order is not all, and interior variants are known

to yield polynomial complexity in a wide variety of contexts

while exterior variants could be plagued by combinatorial

aspects related to active set identification when applied to

inequality constrained problems.

We will first analyze inexact versions of SUMT, and con-

clude that the deterioration with respect to the asymptotic

order is more severe for interior variants, exterior variants’

degradation being benign.

On the other hand, high order versions bring both variants

comparable with respect to their asymptotic behavior. For

example, the second order extrapolation allows to bypass any

Newton correction asymptotically. The second order correction

involves solving two linear systems, but both systems share

the same matrix. Therefore, only one factorization is require.

For unstructured dense problems, factorisation of a matrix

in a linear system entails O(n3) arithmetic operations while

solving the system needs a further O(n2) operations. The

second order extrapolation requires only one factorization,

much better than two independant linear systems.

Finally, we propose an approximate high order version

based on the Shamanskii approach which is simple to im-

plement and shares the good asymptotic improvements of the

exact high order versions.

II. SUMT BASIC EXTRAPOLATIONS

We now recall two path following approaches, allowing to

settle our notation and present some basic properties. Path

following methods are related to the so-called central path,

and involves steps named as predictor, corrector, centrality

corrector, higher order predictor. We will detail below the

terms we will use.

We stress that the results for the exterior quadratic loss

penalty function and the interior log-barrier function are very
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similar. The only difference is the limiting convergence order,
4
3 for the interior approach and 2 for the exterior penalty.

A. Log–Barrier

The log barrier approach to solve Eq.(1) consists in solving

a sequence of sub-problems of the form

min
g(x)<0

φ(x, ρk) = f(x)− ρk
∑

log(−gi(x)) (3)

in the interior of the feasible set E = {x : g(x) ≤ 0}. Writing

out the optimality conditions

∇xφ(x, ρk) = ∇f(x)− ρk
∑ 1

gi(x)
∇gi(x) = 0 (4)

and by making the substitution yi =
ρk

gi(x)
and introducing the

residual Φk, one arrives at the primal-dual equations

Θ(x, y,Φk, ρk) =

{

∇f(x)− y∇g(x) = Φk

yG(x) = ρke
(5)

where e = (1, 1 . . . 1)t and G(x) = diag(gi(x)).
Under suitable assumptions, this last system of equa-

tions implicitly defines differentiable trajectories x(ρ,Φ) and

y(ρ,Φ) close to ρ = 0.

B. Quadratic loss

The quadratic loss approach to solve Eq.(2) consists in

solving a sequence of sub-problems of the form

minφ(x, ρk) = f(x) +
1

ρk
‖g(x)‖2. (6)

Writing out the optimality conditions

∇xφ(x, ρk) = ∇f(x) +
g(x)t

ρk
∇g(x) = 0 (7)

and by making the substitution y = g(x)t

ρk
and introducing the

residual Φk, one arrives at the primal-dual equations

Θ(x, y,Φk, ρk) =

{

∇f(x) + y∇g(x) = Φk

g(x) = ρky
(8)

Under suitable assumptions, this last system of equations im-

plicitly defines differentiable trajectories x(ρ,Φ) and y(ρ,Φ)
close to ρ = 0.

C. Common properties

Penalty and barriers trajectories share much properties.

Those may be expressed conveniently using the Θ function in

a unified way. In the following result, gI∗ refers to the active

constraints in the log barrier case, and the whole g vector in

the quadratic penalty case.

Theorem 2.1: [1]Let x∗ be a regular point of the constraints

gI∗(x) = 0 which satisfies to the second order sufficient

optimality conditions for (1) as well as to the strict comple-

mentarity condition yI∗ > 0 for the log barrier case. If the

functions f and g are Cp(Rn), then there exists differentiable

trajectories x(ρ,Φ) and y(ρ,Φ) of class Cp−1(Rn) such that

1) x(0, 0) = x∗ and y(0, 0) = y∗;

2) if ρ and ‖Φ‖ are small enough, x(ρ, 0) satisfies to the

second order sufficient optimality conditions for the pe-

nalized sub-problems min f(x) − ρ
∑m

i=1 log(−gi(x)),
where x(r,Φ), y(r,Φ) are solutions of the following

equations:

Θ(x, y,Φ, 0) = 0 (9)

Moreover, the following bounds hold asymptotically:

a) ‖x(ρ,Φ)− x∗‖ ∼ O(max(ρ, ‖Φ‖));
b) ‖y(ρ,Φ)− y∗‖ ∼ O(max(ρ, ‖Φ‖));
c) ‖gI∗(x(ρ,Φ))‖ ∼ O(ρ).

Remark 2.1: Although we use primal-dual equations, in

this SUMT variant, the dual variables y are dependent on

the primal x, so that global convergence in infered from the

fact that the penalty or barrier is minimized (using globally

convergent algorithms), allowing to prove that cluster points

of the generated sequence are indeed stationary.

We will denote G(x) = diag(gi(x)) and for the log barrier,

Φ(x, ρ) = ∇xφ(x, ρ) (10)

= ∇f(x)−
∑ ρ

gi(x)
∇gi(x) (11)

= ∇f(x)− ρ∇gt(x)G(x)−1e. (12)

φ is closely related to the Lagrangian l(x, λ) = f(x) +
g(x)λ, and by defining λ = −ρG(x)−1e, i.e. λi = − ρ

gi(x)
,

∇xl(x, λ) = L(x, λ) = ∇f(x) + λ∇g(x) = Φ(x, ρ).

Similarly, for the quadratic penalty, λ = g(x)t

ρ
and

Φ(x, ρ) = ∇f(x) + g(x)t

ρ
∇g(x).

We are concerned with approximate solutions x(ρ, r) which
satisfy Φ(x(ρ, r), ρ) = r. In the sequel the residual r is

assumed to satisfy ‖r‖ ∼ ρ.

The basic predictor-corrector path following approach

consists then in having an estimate x(ρ, r) which satisfy

Φ(x(ρ, r), ρ) = r and then iterate the following two steps:

pred extrapolate x̂1 = x+ ∂x
∂ρ

(ρ+ − ρ) + ∂x
∂r

(−r)

corr perform Newton corrections from x̂1 on the problem

Eq.(6) or Eq.(3) for ρ+ until ‖Φ(x, ρ+)‖ ≤ ρ+.

For this basic scheme and the log barrier case, a sin-

gle Newton correction asymptotically yields x(ρ+, r+) with

‖r+‖ ≤ ρ+ provided that ρ+

ρ
4
3
→ 0 yielding a two–steps super-

linear convergence of limiting order 4
3 . If one is prepared to

perform two Newton corrections, then the limiting order is

improved to ρ+

ρ
8
5

→ 0 [4] yielding a three-steps super-linear

convergence of limiting order 8
5 . Using a measure similar to

Ostrovski efficiency, the optimal strategy for this family of

algorithms is to aim for two Newton corrections following an

extrapolation [4].

For the quadratic loss case, a single Newton correction

asymptotically yields x(ρ+, r+) with ‖r+‖ ≤ ρ+ provided

that ρ+

ρ2 → 0 yielding a two–steps super-linear convergence of

limiting quadratic order.
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D. Terminology

First order extrapolations are usually named “predictor”

steps. Higher order terms are sometimes named “corrections”

to the predictor, but we will stick to the terminology “higher

order”. Once a predictor (of arbitrary order) is computed,

sometimes it is necessary to perform Newton iterations, refered

to as a “corrector” steps. This is sometimes named “centrality

correction” steps.

Predictor steps aim at changing the trajectory parameter ρ

to a smaller value while corrector steps aim at improving the

parametric solution for a given ρ-value.

III. INEXACT VERSIONS

Since extrapolations (predictor steps) and Newton correc-

tions are related to Newton steps, one may devise strategies to

approximately compute the steps. We address in this section

the asymptotic convergence order of such variants where both

(predictors and correctors) steps are computed approximately.

A. Inexact SUMT

We now address inexact extrapolations and corrections. By

solving approximately the equations defining the first order

extrapolation x̂1, we get an extrapolate, denoted x̂ with ‖x̂−
x(ρ+, 0)‖ ∼ ρa+1. If a = 1, we get as good a prediction as

x̂1 while if x̂ is computed cheaply, we insist to at least obtain

an order a+ 1 for some a > 0.
Assume that the Newton’s direction is computed approx-

imately such that ∇xΦ(x̂, ρ
+)dN + Φ(x̂, ρ+) = R with

‖R‖ ≤ ρ1+c = γ.

Lemma 3.1: Let x̂ such that ‖x̂−x(ρ+, 0)‖ ∼ ρa+1. Then,

dN ∼ O(γ + ρa+1).
1) Details for the log barrier: We first provide a proof of

lemma 3.1

Proof: The primal-dual Newton’s direction is written

(

∇xL(x̂, λ̂) ∇ĝ

Λ̂∇ĝt Ĝ

)(

dx
dy

)

=

(

−L(x̂, λ̂) +R

0 = Ĝλ̂− ρ+e

)

, (13)

where λ̂i = ρ+

ĝi
. Define also λi = ρ+

gi
, where gi =

gi(x(ρ
+, 0)). By defining d̄y = dy − λ + λ̂, we may rewrite

Eq.(13) as
(

∇xL(x̂, λ̂) ∇ĝ

Λ̂∇ĝt Ĝ

)(

dx
d̄y

)

=

(

−L(x̂, λ) +R

Ĝ(λ − λ̂)

)

, (14)

We now observe that L(x̂, λ) = O(ρa+1) and Ĝ(λ − λ̂) =
ρ+G−1(ĝ− g) = O(ρa+1) and ‖R‖ ≤ γ which concludes the

proof.

Now consider the effect of an inexact Newton correction.

Lemma 3.2: Let x̂ such that ‖x̂−x(ρ+, 0)‖ ∼ ρa+1. Then,

Φ(x̂+ dN , ρ+) ∼ O

(

(γ+ρ(a+1))
2

ρ+2

)

.

Proof: We write

Φ(x̂+dN , ρ+) = Φ(x̂, ρ+)+∇xΦ(x̂, ρ
+)dN +O

(

‖dN‖2

(ρ+)2

)

,

(15)

noting the last denominator (ρ+)2 which comes from derivat-

ing twice ρ+

gi(x̂)
. The first two terms are bounded by γ and using

the bound on dN from the lemma 3.1 we get
(γ+ρ(a+1))

2

ρ+2 .

Consider ρ+ = ρb. If we want to be as cheap as possible

while ensuring super-linear convergence (b > 1), we deduce

that b <
2(1+c)

3 while c ≤ a. Therefore, to get super-linear

convergence, one has to pick 0.5 < c ≤ a.

2) Details for quadratic loss: The proof of lemma 3.1 is

very similar to the proof of the Lemma 3 in [2].

Now consider the effect of an inexact Newton correction.

Lemma 3.3: Let x̂ such that ‖x̂−x(ρ+, 0)‖ ∼ ρa+1. Then,

Φ(x̂+ dN , ρ+) ∼ O

(

(γ+ρ(a+1))2

ρ+

)

.

Proof: We write

Φ(x̂+dN , ρ+) = Φ(x̂, ρ+)+∇xΦ(x̂, ρ
+)dN +O

(

‖dN‖2

ρ+

)

,

(16)

The first two terms are bounded by γ and using the bound on

dN from the lemma 3.1 we get
(γ+ρ(a+1))2

ρ+ .

Consider ρ+ = ρb. If we want to be as cheap as possible

while ensuring super-linear convergence (b > 1), we deduce

that b < (1 + c) while c ≤ a. Therefore, to get super-linear

convergence, one has to pick 0 < c ≤ a.

IV. HIGH ORDER VARIANTS

Instead of solving approximately the predictor and-or cor-

rector steps, we investigate here the effect of using higher

order Taylor expressions of the central path. We reformulate

slightly the equations to parametrize the path with the scalars

ρ and τ . At the current point,

Φ(x, ρ) = τ r̄ (17)

for some residual vector r = τ r̄ with r̄ = r
‖r‖ . Equa-

tion Eq.(17) induces a bi-parameter equation x(ρ, τ) and the

solution searched for is x∗ = x(0, 0).

x̂1 = x+
∂x

∂ρ
(ρ+ − ρ) +

∂x

∂r
(−r)

x̂2 =
1

2

(

∂2x

∂ρ2
(ρ+ − ρ)2 +

∂2x

∂ρ∂τ
(ρ+ − ρ)(−τ) +

∂2x

∂τ2
(−τ)2

)

x̂p =

p
∑

j=0

(

p

j

)

∂px

∂ρp−j∂τ j
(ρ̄+ − ρ̄)p−j(−τ̄ )j

We are now concerned with higher order extrapolations
∑a

i=1 x̂
i for a > 1. Postponing the actual computations of

such a x̂a for a 6= 1, we already may obtain the following.

Lemma 4.1: Let x̂ such that ‖x̂ − x(ρ+, 0)‖ ∼ ρa+1 with
ρa+1

ρ+ < ∞. Then, ∇φ(x̂, ρ+) ∼ O(ρ
a+1

ρ+ ).
This result allows to claim that by using (a > 1)–order

extrapolations, we get a
(a+1)

2 order of convergence without

even recourse to Newton corrections, and this both for the

log barrier and the quadratic loss variants. Using a first order

extrapolation is not enough, and requires a further Newton cor-

rection. Indeed, to reach the required approximation criterion,
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∇φ(x̂, ρ+) has to be lower than ‖r+‖ = ρ+, which implies

that ρa+1 < ρ+
2
.

Observe in particular that a second order extrapolation (x̂1+
x̂2) yields a predictor only algorithm achieving the limiting

order 3
2 . This improves the exterior variant and even more

so the interior variant since in this context, both interior and

exterior variants share the same improved asymptotic behavior.

A. Proof of Lemma 4.1 for the log–barrier

Proof: Denote x = x(ρ+, 0); then Φ(x, ρ+) = 0 and

write:

Φ(x̂, ρ+) = Φ(x̂, ρ+)− Φ(x, ρ+)

= ∇f̂ −∇f +
∑ ρ+

ĝi
∇ĝi −

∑ ρ+

gi
∇gi

= O(ρa+1) +
∑ ρ+(gi − ĝi)

ĝigi
∇ĝi

+
∑ ρ+

gi
(∇ĝi −∇gi)

= O(ρa+1) +
∑ O(ρa+1)ρ+

ĝigi
∇ĝi

+
∑

λiO(ρa+1).

We have gi ∼ Θ(ρ+) and ĝi = gi + O(ρa+1), so that ĝi ∼

Θ(ρ+) since ρa+1

ρ+ is bounded.

B. Proof of Lemma 4.1 for the quadratic loss

Proof: Denote x = x(ρ+, 0); then Φ(x, ρ+) = 0 and

write:

Φ(x̂, ρ+) = Φ(x̂, ρ+)− Φ(x, ρ+)

= ∇f̂ −∇f +
∑ ĝi

ρ+
∇ĝi −

∑ gi

ρ+
∇gi

= O(ρa+1) +
(gi − ĝi)

ρ+
∇ĝi

+
∑ gi

ρ+
(∇ĝi −∇gi)

= O(ρa+1) +
O(ρa+1)

ρ+
∇ĝi

+
∑

λiO(ρa+1).

We have gi ∼ Θ(ρ+) and ĝi = gi + O(ρa+1), so that ĝi ∼

Θ(ρ+) since ρa+1

ρ+ is bounded.

V. COMPUTING EXTRAPOLATIONS

The actual extrapolation computations for the quadratic loss

function is presented in details in [3]. To avoid derivatives

of the 1
ρ
factor involved in the penalty term, we resorted to

primal-dual equations in [3]. We develop in this section the

details for the high order derivatives for the log barrier.

We rewrite equation Eq.(10) in a simplified notation:

Φ(x, ρ) = c− ρAtG−1e. (18)

For linear programs, c and A are constant while otherwise,

c = ∇f(x) and A = ∇g(x). G = diag(gi(x)), and for linear

programs, g(x) = Ax − b. We note for the sequel

∇xΦ(x, ρ) = ρAtG−2A+∇2
xxl(x, ρG(x)−1e) (19)

∇ρΦ(x, ρ) = −AtG−1e (20)

and remark that the Lagrangian term vanishes for linear

programs.

The implicit function theorem yields

∇xΦ(x, ρ)ẋρ +∇ρΦ(x, ρ) = 0

∇xΦ(x, ρ)ẋτ − r̄ = 0.
(21)

Thus, the combined extrapolation step reduces to

∇xΦ(x, ρ)(ẋρ(ρ
+ − ρ)) + ẋτ (−τ)

+∇ρΦ(x, ρ)(ρ
+ − ρ) + τ r̄ = 0, (22)

which, for this first order candidate, simplifies to

∇xΦ(x, ρ)x̂
1 +Φ(x, ρ+) = 0.

In order to go further to the expressions of higher order

extrapolates, we first note the following for the log barrier

case:

∇2
xρΦ(x, ρ) = ∇2

ρxΦ(x, ρ) = AtG−2A+∇2
xxl(x,G(x)−1e)

∇2
ρρΦ ≡ 0

∇2
τ ·Φ = ∇2

·τΦ ≡ 0

In a nutshell, any derivative of Φ with respect to τ vanishes

since Φ does not involve τ , and any high order derivative of

Φ with respect to ρ more than once also vanishes since Φ is

linear in ρ.

Now, still using the implicit function theorem, this time to

equations Eq.(21), we get the following, in which we use Φ
without arguments as a shorthand notation for Φ(x, ρ):

∇2
xxΦẋρẋρ +

(

∇2
xρΦ+∇2

ρxΦ
)

ẋρ +∇xΦẍρρ = 0

∇2
xxΦẋτ ẋρ +∇2

ρxΦẋτ +∇xΦẍτρ = 0

∇2
xxΦẋρẋτ +∇2

xρΦẋτ +∇xΦẍρτ = 0

∇2
xxΦẋτ ẋτ +∇xΦẍττ = 0

(23)

Observe that the four relations above all imply a linear system

defined by the same matrix ∇xΦ(x, ρ) and the following

four right hand sides, conveniently expressed using x̄τ which

denotes a constant vector of value ẋτ , and similarly x̄ρ is a

constant vector of value ẋρ:

∇ρ (∇xΦx̄ρ +∇ρΦ) = ∇2
xxΦẋρx̄ρ +∇2

xρΦx̄ρ +∇2
ρxΦẋρ(24)

∇τ (∇xΦx̄ρ +∇ρΦ) = ∇2
xxΦẋτ x̄ρ +∇2

ρxΦẋτ (25)

∇ρ (∇xΦx̄τ − r̄) = ∇2
xxΦẋρx̄τ +∇2

xρΦx̄τ (26)

∇τ (∇xΦx̄τ − r̄) = ∇2
xxΦẋτ x̄τ (27)

Hereafter, we use the “bar” ρ̄ and τ̄ to represent actual extrap-

olation steps values, as opposed to variables within the equa-

tions. Now, x̂2 = ẍρρ(ρ̄
+− ρ̄)2+2ẍτρ(ρ̄

+− ρ̄)(−τ̄ )+ ẍττ(τ̄ )
2

so that the right hand sides involving the second derivatives

may be combined into (ρ̄+− ρ̄)((ρ̄+− ρ̄)Eq.(24)− τ̄Eq.(26))
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and −τ̄((ρ̄+ − ρ̄)Eq.(25) − τ̄Eq.(27)) and, also using the

notation that ˆ̄x1 is a constant vector of value x̂1, is expressed:

∇ρ

(

∇xΦ(x, ρ)ˆ̄x
1 +∇ρΦ(x, ρ)(ρ̄

+ − ρ̄)− r̄τ̄
)

(ρ̄+ − ρ̄)

+∇τ

(

∇xΦ(x, ρ)ˆ̄x
1 +∇ρΦ(x, ρ)(ρ̄

+ − ρ̄)− rτ̄
)

(−τ)
(28)

To establish a recurrence relation to compute the x̂p, it is

convenient to define a family of functions

Φ0(x, ρ, τ) = Φ(x, ρ)− τ r̄ (29)

Φp(x, ρ, τ) = (ρ̄+ − ρ̄)∇ρΦ
p−1(x, ρ, τ) − τ̄∇τΦ

p−1(x, ρ, τ)
(30)

Theorem 5.1:

x̂p =

p
∑

j=0

(

p

j

)

∂px

∂ρp−j∂τ j
(ρ̄+ − ρ̄)p−j(−τ̄ )j

satisfies ∇xΦ(x, ρ)x̂
p +Φp(x, ρ, τ) = 0.

Proof: The inductive proof has its base verified by the

relation Eq.(28). The induction step will use the relation:

x̂p+1 =
∂x̂p

∂ρ
(ρ̄+ − ρ̄) +

∂x̂p

∂τ
(−τ̄)

The equations Φp includes a term ∇xΦ(x, ρ)x̂
p defining the

linear system, the remaining of Φp corresponding to the right

hand side of the linear equation.

The recurrence Φp may be explicitly written as

∇xΦ(x, ρ)x̂
p + Φ̂p

where Φ̂p involves terms of the form

∇j

xjxρjρ
Φ(x, ρ)vi11 vi22 . . . vill with

∑l
k=1 ik = jx, jx + jρ = j

and 1 < j ≤ p. Moreover, each vk is composed of partial

derivatives of x with respect to ρ and/or τ up to order

jx − 1. As it happens, the recurrence may be written using

only the x̂p without explicit reference to the (mixed) partials

derivatives of x wrt ρ or τ :

Φ0(x, ρ, τ) =Φ(x, ρ) + τ r̄ (31)

Φ1(x, ρ, τ) =∇xΦ(x, ρ)x̂
1 + (ρ̄+ − ρ̄)∇ρΦ(x, ρ) + τ̄ r̄ (32)

Φ2(x, ρ, τ) =∇xΦ(x, ρ)x̂
2 + 2(ρ̄+ − ρ̄)∇2

xρΦ(x, ρ)x̂
1

+∇2
xxΦ(x, ρ)x̂

1x̂1 (33)

Φ3(x, ρ, τ) =∇xΦ(x, ρ)x̂
3 + 3(ρ̄+ − ρ̄)∇2

xρΦ(x, ρ)x̂
2

+ 3∇2
xxΦ(x, ρ)x̂

1x̂2

+ 3(ρ̄+ − ρ̄)∇3
xxρΦ(x, ρ)x̂

1x̂1

+∇3
xxxΦ(x, ρ)x̂

1x̂1x̂1

(34)

Φ4(x, ρ, τ) =∇xΦ(x, ρ)x̂
4 + 4(ρ̄+ − ρ̄)∇2

xρΦ(x, ρ)x̂
3

+ 3∇2
xxΦ(x, ρ)x̂

2x̂2

+ 4∇2
xxΦ(x, ρ)x̂

1x̂3

+ 12(ρ̄+ − ρ̄)∇3
xxρΦ(x, ρ)x̂

1x̂2

+ 6∇3
xxxΦ(x, ρ)x̂

2x̂1x̂1

+ 4(ρ̄+ − ρ̄)∇4
xxxρΦ(x, ρ)x̂

1x̂1x̂1

+∇4
xxxxΦ(x, ρ)(x̂

1)4

(35)

1) Implementation for linear programming: By introducing

the notation v1 = Ax̂1, and V = diag(v), we may express the

high order terms using the following lemma.

Lemma 5.2:

∇x(v
tVpG

−pu) = −pAtV VpG
−(p+1)u (36)

This allows to write equation Eq.(33) as

ρAtG−2Ax̂2 − 2ρAtV 1G−3v1 + 2(ρ̄+ − ρ̄)AtG−2v1 = 0
(37)

Similarly, equation Eq.(34) leads to the following expression:

− 6ρAtV 1G−3v2 − 6(ρ̄+ − ρ̄)AtV 1G−3v1

+ 3(ρ̄+ − ρ̄)AtG−2v2 + 6ρAt(V 1)2G−4v1 (38)

As we may observe, each term involves a single matrix–vector

computation in addition to several O(n) diagonal matrices and

vector operations, overall yielding cheap right hand sides to

compute higher order derivatives. This was to be expected.

2) General implementation using automatic differentiation

(AD): Using AD tools, we may evaluate higher order deriva-

tive cheaply too. Assuming full dense Hessian’s—constraint

jacobians, the linear system requires O(n3) arithmetic oper-

ations to factorizes, and further on, back–front substitutions

together with right hand side computations reduce to O(n2)
arithmetic operations. As it happens, we may get the high order

right hand sides required for the Taylor coefficients in O(n2)
complexity, leaving the main burden to obtain and factorize

the Jacobian Matrix.

VI. SHAMANSKII INSPIRED EXTRAPOLATIONS

In the context of unconstrained optimization using New-

ton’s method, reusing the Hessian matrix is closely related

to Shamanskii’s method, sometimes refered to as composite

Newton method. Shamanskii’s consists in reusing the Hessian

two or more times; this is interesting since factorizing the

Hessian has a much superior computational cost than using

the factorization to solve a linear system. From an asymptotic

point of view, then, high order extrapolations (reminiscent of

Chebychev method) or Shamanskii method share the same

improvement with respect to the convergence order. The

simplicity of Shamanskii’s approach is appealing.

We will provide a Shamanskii approximation to the second

order extrapolation. This yields an approximate second order

predictor algorithm reaching the limiting convergence order 3
2 .

We analyze the following scheme.

∇xΦ(x, ρ)x̌
1 +Φ(x, ρ+) = 0

∇xΦ(x, ρ)x̌
2 +Φ(x+ x̌1, ρ+) = 0
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Thus, we reuse ∇xΦ(x, ρ) and only change the right hand

sides. We recognize that x̌1 = x̂1 previously defined.

Proposition 6.1: The second order x̌2 is an O(ρ3) approx-
imation to the second order extrapolation x̂1 + x̂2.

Proof: We express the right hand side using a Taylor

expansion. All the terms in the right hand side are functions

evaluated at x and ρ, and thus the various Φ(x, ρ) will be

shorthanded to Φ.

Φ(x+ x̌1, ρ+) = Φ

+ ∇xΦx̌
1 +∇ρΦ(ρ

+ − ρ) (39)

+ ∇2
xxΦx̌

1x̌1 (40)

+ 2∇2
xρΦx̌

1(ρ+ − ρ) (41)

+ ∇2
ρρΦ(ρ

+ − ρ)2 (42)

+ O(max(τ, ρ)3)

Now, we already have seen that ∇2
ρρΦ = 0, and by the

definition of x̌1, Eq.(39) vanishes, which yields that x̂2 Eq.(33)

and x̌2 Eq.(40) and Eq.(41) differ by O(ρ3).
The second order Shamanskii direction is thus a suitable ap-

proximation of the second order extrapolation. The conclusion

of the lemma 4.1 then still holds.

Corollary 6.2: ∇φ(x̌2, ρ+) ∼ O( ρ3

ρ+ )
The process may be continued,

∇xΦ(x, ρ)x̌
3 +Φ(x+ x̌1 + x̌2, ρ+) = 0,

and in general,

∇xΦ(x, ρ)x̌
p+1 +Φ(x+

p
∑

i=1

x̌i, ρ+) = 0.

We conjecture that the x̌p may be used and preserve the good

properties of the
∑p

i=1 x̂
i.

VII. NUMERICAL ILLUSTRATION

We now provide a simple numerical example to exhibit the

benefits of using a Shamanskii like extrapolation.

We consider the simple example

min
x∈R6

f(x) =
6

∑

i=1

ixi

s.t. g1(x) = (x1 + x3 + x5)
2 − 1 = 0

g2(x) = (x2 + x3 + x4)
2 − 1 = 0

g3(x) = x1x6 − 1 = 0

We use the quadratic penalty function. Therefore, we hope

two-steps superlinear convergence almost quadratic using a

first order extrapolation and almost 3
2 convergence order using

a Shamanskii variant. The two steps in the first order variant

require factorization and solution of two distinct linear systems

while the Shamanskii variant uses a single factorization to

solve two related linear systems.

We compare a sub- 32 sequence ρk using both a first order

extrapolation and a Shamanskii–2 extrapolation. We may

observe in table I that the extrapolation does not require any

Newton correction for the last four two-steps extrapolations.

In the tables, the first 7 iterations are identical and thus are

omitted. We observe that the first order variant requires a few

more iterations to reach our (tight) tolerance.

The first order variant could be improved by considering

a sub-quadratic sequence for ρk, and we exhibit the results

in table III. The first 13 iterations are identical with those

from table II, and we confirm that overall, this variant betters

the slower sequence ρk, but the Shamanskii variant is still

the most efficient. The limiting order when considering two

factorizations is quadratic for the linear extrapolation and 9
4 for

the Shamanskii version, which is coherent with our example.

As a final remark regarding this simple illustration, the

quadratic penalty using Shamanskii strategy benefits much

less than log-barrier algorithms. Nevertheless, our example

suggests that it (Shamanskii) may improve upon the plain first

order extrapolation.

TABLE I
SECOND ORDER SUB

3

2
VARIANT

ρ Iter ‖∇p(x, ρ)‖ ‖g(x)‖ ∇L

Ex two 7 2.2e+00 5.8e-02
1.0e-02
Nwt 8 1.2e-02 5.5e-02
Nwt 9 6.5e-05 5.5e-02

Ex two 10 2.7e-02 5.6e-03
1.0e-03
Nwt 11 1.1e-06 5.6e-03

Ex two 12 2.7e-04 5.6e-04
1.0e-04
Nwt 13 1.2e-09 5.6e-04

Ex two 14 2.7e-06 5.6e-05
1.0e-05
Ex two 15 2.8e-08 5.6e-06
1.0e-06
Ex two 16 9.8e-08 5.6e-08 5.5e-12
1.0e-08
Ex two 17 6.9e-05 5.6e-11 1.2e-15
1.0e-11
Ex two 18 1.2e-01 5.6e-14 1.2e-15

VIII. CONCLUSION AND FUTURE WORK

In this paper, we summarized known results about the

asymptotic behavior of SUMT algorithms in non-linear op-

timization. We considered both interior and exterior penalty

variants. Overall, exterior variants enjoy better asymptotic

properties.

As can be seen from the table, interior variants suffer from

poorer asymptotic convergence order. In particular, for the

inexact predictor-corrector strategy, one has to impose c > 0.5
i.e. the residual of the extrapolation and the Newton correction

has to be reduced to an order at least 1.5 merely to provide

an overall two-steps superlinear behavior. The exterior variant

is somewhat more forgiving in this context.

High order predictors make interior and exterior approaches

competitive. Actually, the use of higher order predictors allow

to bypass any Newton corrector step asymptotically, and for

both the interior and exterior variant, allow to reach the same

order of convergence limit, namely k+1
2 for order k > 1

extrapolates.
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TABLE II
FIRST ORDER SUB

3

2
VARIANT

ρ Iter ‖∇p(x, ρ)‖ ‖g(x)‖ ∇L

Ex one 7 1.3e+01 1.1e-01
1.0e-02
Nwt 8 4.7e-01 5.3e-02
Nwt 9 4.4e-04 5.5e-02

Ex one 10 1.7e+00 5.8e-03
1.0e-03
Nwt 11 7.4e-04 5.6e-03

Ex one 12 1.7e-01 5.6e-04
1.0e-04
Nwt 13 7.4e-07 5.6e-04

Ex one 14 1.8e-02 5.6e-05
1.0e-05
Nwt 15 7.0e-10 5.6e-05

Ex one 16 1.8e-03 5.6e-06
1.0e-06
Nwt 17 1.6e-09 5.6e-06

Ex one 18 2.2e-03 5.6e-08 7.2e-12
1.0e-08
Ex one 19 2.2e+00 5.4e-11 1.6e-12
1.0e-11
Ex one 20 2.2e+03 7.4e-12 1.2e-12
1.0e-14
Nwt 21 3.1e-02 5.6e-14 1.5e-11
Nwt 22 3.1e-02 5.6e-14 3.4e-15

TABLE III
FIRST ORDER SUB QUADRATIC VARIANT

ρ Iter ‖∇p(x, ρ)‖ ‖g(x)‖ ∇L

Ex one 14 2.2e-01 5.6e-06
1.0e-06
Nwt 15 1.0e-08 5.6e-06

Ex one 16 2.2e-02 5.6e-09 7.3e-12
1.0e-09
Ex one 17 2.2e+03 7.5e-12 1.7e-12
1.0e-14
Nwt 18 1.8e-01 5.6e-14 1.7e-11
Nwt 19 3.1e-02 5.6e-14 4.8e-15

It should be recalled that order–k predictor incur a com-

putational cost of O(n3) arithmetic operation to factorize

the jacobian matrix plus k times O(n2) to obtain the high

order terms while the corrector steps involve the solution of a

linear system, again O(n3). Therefore, from a complexity per

iteration point of view, high order predictors are far preferable

to their first order predictor-corrector counterpart: they require

only one O(n3) factorization and k O(n2) substitutions while

the first order approach requires two O(n3) factorization and

two O(n2) substitutions.
The results presented suggest that the use of the Shamanskii

approximation to the higher order trajectory derivatives is a

simple solution to reach good asymptotic convergence prop-

erties, equivalently good for interior and exterior variants of

SUMT. This contrasts with the usage of a simple extrapolation,

or approximate computations of the predictor and corrector

steps.

The analysis may be combined into a mixed penalty ap-

proach to treat programs involving both equality constraints

and inequalities. This new strategy outperforms (from an
asymptotic analysis point of view) previous studies using

mixed interior and exterior penalties. The analysis also may be

applied to the exponential penalty as well as other variations.

Future works will involve implementation and comparisons

with primal-dual methods. Primal-dual interior point methods

have very good convergence properties, but require skill to

ensure global convergence while exhibiting good asymptotic

behavior.

TABLE IV
LIMITING CONVERGENCE ORDERS FOR VARIANTS DISCUSSED IN THE

PAPER

variant interior exterior

corrector linear linear

predictor-corrector[1] 2–steps 4

3
2–steps quadratic

order-k ≥ 2 pred k+1

2

k+1

2

inexact pred-corr 2–steps– 2

3
(1 + c) 2–steps 1 + c
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