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Abstract—We consider the problem of finding all subtree
repeats in a given unranked ordered tree. We show a new, elegant,
and simple method, which is based on the construction of a tree
indexing structure called the subtree pushdown automaton. We
propose a solution for computing all subtree repeats from the
deterministic subtree pushdown automaton constructed over the
subject tree. The method we present is directly analogous to the
relationship between string deterministic suffix automata and
factor repeats in a given string.

I. INTRODUCTION

TREES are one of the fundamental data structures used

in Computer Science. Given a tree, finding beforehand

unknown subtree repeats of the tree, and the positions of

their occurrences, is a problem with many applications – data

compression of trees, compiler code optimization, locating

code clones in software packages, analysing various data tree

structures, such as XML, and so on.

Periodicity in strings has been of interest since the beginning

of the 20th century, and efficient methods for finding various

kinds of repetitions and repeats in a string form an important

part of well-researched stringology theory [1], [2], [3]. Some

of these methods are based on principles of constructing and

analysing string suffix trees or string suffix automata, which

represent complete indexes of the suffixes of a string [4], [5],

[6], [7], [8].

Trees can also be seen as strings in their linear notation. A

linear notation of a tree can be obtained by the corresponding

traversing of the tree. Moreover, every sequential algorithm

on a tree traverses nodes of the tree in a sequential order,

and follows a linear notation of the tree. In [9], the authors

show that the deterministic pushdown automaton (PDA) is an

appropriate model of computation for labelled ordered trees

in postfix notation, and that the trees in postfix notation,

acceptable by deterministic PDA, form a proper superclass

of the class of regular tree languages [10], which are accepted

by finite tree automata.
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In this article, we present a new, elegant, and simple method

for finding all subtree repeats in a given unranked ordered tree,

and the positions of their occurrences. This problem can be

defined as follows.

Problem 1: Find all subtree repeats within a given subject

tree t.

The presented method is based on principles of constructing

and analysing the deterministic subtree pushdown automaton

(SPA), similarly as in the case of the above mentioned methods

for finding repeats in strings. The SPA for ranked ordered

trees was originally introduced in [11]. The construction of

an SPA is based on the fact that the postfix bar notation of

each subtree is a factor of the postfix bar notation of the tree.

The underlying tree structure is processed by the use of the

pushdown store. By analogy with the string factor automaton,

the SPA represents a complete index of a given tree for all

possible subtrees. Given a tree of size n, the advantages of

the deterministic SPA are:

• Given an input subtree of size m, the deterministic SPA

performs the search phase in time linear in m, and not

depending on n.

• The number of subtrees of the tree is n and the total size

of the deterministic SPA is linear in n.

We recall that the problem of tree indexing is defined as

follows:

Problem 2: Construct an indexing structure over a subject

tree t, so that one can efficiently query whether a given subtree

p exists in t.

II. PRELIMINARIES

A. Basic Definitions

An alphabet Σ is a finite, nonempty set of symbols. A string

is a succession of zero or more symbols from an alphabet Σ.
The string with zero symbols is denoted by ε. The set of all

strings over the alphabet Σ is denoted by Σ∗. A string x of

length m is represented by x1x2 . . . xm, where xi ∈ Σ for

1 ≤ i ≤ m. The length of a string x is denoted by |x|. A
string w is a factor of x if x = uwv for u, v ∈ Σ∗, and is

represented as w = xi . . . xj , 1 ≤ i ≤ j ≤ |x|.
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The number of nodes of a tree t is denoted by |t|. The postfix
bar notation bar(t) of a labeled ordered tree t is obtained by

applying Step recursively, starting at the root of t.

Step: Let this application of Step be node v. List a bar. If

v is a leaf, list v and halt. If v is an internal node having

descendants v1, v2, . . . , vr, apply Step to v1, v2, . . . , vr in that

order and then list v. For simplicity, throughout the article we

will refer to the postfix bar notation as bar notation.

An (extended) nondeterministic pushdown automaton is a

seven-tuple M = (Q,A, G, δ, q0, Z0, F ), where Q is a finite

set of states, A is the input alphabet, G is the pushdown

store alphabet, δ is a mapping from Q × (A ∪ {ε}) × G∗

into a set of finite subsets of Q × G∗, q0 ∈ Q is the initial

state, Z0 ∈ G is the initial content of the pushdown store,

and F ⊆ Q is the set of final (accepting) states. The triplet

(q, w, x) ∈ Q×A∗×G∗ denotes the configuration of a PDA.

In this article, we write the top of the pushdown store x on its

left hand side. The initial configuration of a PDA is a triplet

(q0, w, Z0) for the input string w ∈ A∗. The relation ⊢M⊂
(Q×A∗×Γ∗)× (Q×A∗×Γ∗) is a transition of a PDA M .

It holds that (q, aw, αβ) ⊢M (p, w, γβ) if (p, γ) ∈ δ(q, a, α).
For simplicity, in the rest of the text, we use the notation

pα
a
7−→
M

qβ when referring to the transition δ1(p, a, α) = (q, β)

of a PDA M . A PDA is deterministic, if:

1) |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.

2) If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β then α is

not a suffix of β and β is not a suffix of α.

3) If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix

of β and β is not a suffix of α.

A language L accepted by a PDA M is defined in two

distinct ways:

1) Accepted by final state: L(M) = {x : δ(q0, x, Z0) ⊢∗M
(q, ε, γ) ∧ x ∈ A∗ ∧γ ∈ Γ∗ ∧ q ∈ F}

2) Accepted by empty pushdown store: Lε(M) = {x :
(q0, x, Z0) ⊢∗M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}

In the rest of the text, we use the following labeling of edges

when illustrating transition diagrams of various PDA: For each

transition rule δ1(p, a, α) = (q, β) from the transition mapping

δ of a PDA, we label its edge leading from state p to state q

by the triplet of the form a|α 7→ β.

B. Properties of unranked ordered trees in bar notation

In this section, we present some basic properties of trees in

their bar notation.

Lemma 3: Given a tree t and its bar notation bar(t), the
bar notations of all subtrees of t are factors of bar(t).
However, not every factor of the bar notation of a tree

represents a subtree.

Definition 4: Let x = x1x2 . . . xm, m ≥ 1, be a string over

an alphabet Σ. Then, the bar checksum bc(x) =
∑m

i=1
b(xi),

where

b(xi) =

{

1 : xi = |
−1 : xi ∈ Σ

Theorem 5: Let bar(t) and x be a tree t in bar notation and

a factor of bar(t), respectively, over an alphabet Σ. Then, x

a

a

b

c

d

a

b

c

d

Fig. 2: An unranked ordered tree t having bar notation

bar(t) = | | | b | | d c a | | b | | d c a a

Input: Tree x = x1x2 . . . xn over Σ
Output: Nondeterministic SPA M

1: Q←
⋃n

i←0
{i}

2: B ←
⋃n

i←1
{ i : xi = | }

3: C ←
⋃n

i←1
{ i : xi 6= | }

4: T ←
⋃

{(0, ε, |, S, i) : ∀i ∈ B} ∪
⋃

{(0, S, xi, ε, i) : ∀i ∈
C} ∪

⋃

{(i− 1, ε, |, S, i) : ∀i ∈ B} ∪
⋃

{(i− 1, S, |, ε, i) :
∀i ∈ C}

5: δ(p, α, x)← {(q, β) : ∀ (p, α, x, q, β) ∈ T }
6: M ← (Q, {S},Σ, δ, 0, ε, ∅)

Fig. 3: Construction of a nondeterministic SPA

is the bar notation of a subtree of t, if and only if bc(x) = 0,
and bc(y) < 0 for each y, where x = zy, y, z ∈ Σ+.

III. TREE INDEXING BY PUSHDOWN AUTOMATA

A. Subtree Pushdown Automaton

The SPA represents a complete index of some tree t. The

language accepted by such automaton is the set of linearised

notations of all subtrees of t – in this case bar notations – and

is accepted by an empty pushdown store.

The construction of the nondeterministic SPA is similar to

the construction of the classical nondeterministic string suffix

automaton (see [2]) and is presented in Fig. 3. However, the

transformation to its equivalent deterministic version differs

substantially from that of the suffix automaton, as more

constraints are placed due to the fact that not every factor of

the linearised notation of a tree is a subtree (see Theorem 5).

Example 6: Consider the tree t illustrated in Fig. 2, having

bar notation bar(t) = | | | b | | d c a | | b | | d c a a . The nondeter-

ministic SPA constructed using the algorithm in Fig. 3, isM =
({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18},Σ,
{S}, δ, 0, ε, ∅)), illustrated in Fig. 1.

B. Construction of deterministic SPA

We are now in a position to present a simple method for

constructing a deterministic SPA to solve Problem 2, by using

a subset construction method, transforming the nondetermin-

istic SPA to a deterministic one.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

p |ε 7→ S p |ε 7→ S p |ε 7→ S b|S 7→ ε p |ε 7→ S p |ε 7→ S d|S 7→ ε c|S 7→ ε a|S 7→ ε p |ε 7→ S p |ε 7→ S a|S 7→ ε p |ε 7→ S p |ε 7→ S d|S 7→ ε c|S 7→ ε a|S 7→ ε a|S 7→ ε

p |ε 7→ S
p |ε 7→ S

b|S 7→ ε
p |ε 7→ S

p |ε 7→ S
d|S 7→ ε

c|S 7→ ε
a|S 7→ ε

p |ε 7→ S
p |ε 7→ S

a|S 7→ ε
p |ε 7→ S

p |ε 7→ S
d|S 7→ ε

c|S 7→ ε
a|S 7→ ε

a|S 7→ ε

Fig. 1: Non-deterministic SPA constructed from Example 6

Input: Nondeterministic SPA M = (Q,Σ, {S}, δ, 0, ε, ∅)
Output: Deterministic SPA M ′ = (Q′,Σ, {S}, δ′, {0}, ε, ∅)
1: Q′ ← {{0}}
2: L← { (E, 1) : δ(0, ε, |) = E × {S} }
3: while not emptyL do

4: (q, bc)← DEQUEUE(L)
5: Q′ ← Q′ ∪ {q}
6: for all x ∈ Σ do

7: qx ← {E : δ(p, S, x) = E × {ε}, ∀p ∈ q }
8: if qx 6= ∅ then
9: Q′ ← Q′ ∪ {qx}
10: δ′(q, S, x)← (qx, ε)
11: if bc > 1 then

12: ENQUEUE(L, (qx, bc− 1))
13: end if

14: end if

15: end for

16: qp ← {E : δ(p, ε, x) = E × {S}, ∀p ∈ q }
17: if qp 6= ∅ then
18: Q′ ← Q′ ∪ {qp}
19: δ′(q, ε, |)← (qp, S)
20: ENQUEUE(L, (qx, bc+ 1))
21: end if

22: end while

23: M ′ ← (Q′,Σ, {S}, δ′, {0}, ε, ∅)

Fig. 4: Transforming a nondeterministic SPA to an equivalent

deterministic

Fig. 4 presents the algorithm for the transformation, which is

based on the well-known technique of subset construction [12].

The nondeterministic SPA constructed from Alg. 3 is input–

driven, and thus can be transformed to an equivalent deter-

ministic SPA, which will serve as the indexing structure for

the given subject tree.

Example 7: Consider the nondeterministic SPA constructed

in Example 6. By applying the algorithm in Fig. 4, we obtain

a new deterministic SPA with its transition diagram illustrated

in Fig. 5.

Theorem 8: Given a tree t of size n, the deterministic

SPA constructed from bar(t) is input-driven, has exactly one

pushdown symbol, and consists of at most 4n+ 1 states.

IV. FINDING SUBTREE REPEATS

A. Definition of the problem

Problem 1 is to find all subtree repeats of a given tree t,

along with the positions and the types of their occurrences. The

positions and the types of the occurrences are summarised in

a table called the subtree repeats table.

Definition 9: Let t be a tree over an alphabet Σ. A subtree

position set sps(s, t), where s is a subtree of t, is the set

sps(s, t) = {i : bar(t) = x bar(s) y, x, y ∈ (Σ ∪ {|})∗, i =
|x|+ |bar(s)|+ 1}.
Informally, the subtree position set for a subtree s contains

the positions of the roots of all occurrences of the subtree s.

Example 10: Consider the tree t illustrated in Fig. 2. There

are four subtree repeats t1, t2, t3 and t4 in t having bar nota-

tions bar(t1) = | | b | | d c a, bar(t2) = | | d c, bar(t3) = | d and

bar(t4) = | b. It holds that sps(t1, t) = {9, 17}, sps(t2, t) =
{8, 16}, sps(t3, t) = {7, 15} and sps(t4, t) = {4, 12}.
Definition 11: Let t be a tree over an alphabet Σ. Given a

subtree s of t, the list of subtree repeats lsr(s, t) is a relation

in sps(s, t)× {F, S,G} defined as follows:

• (i, F ) ∈ lsr(s, t) iff bar(t) = x bar(s) y, i = |x| +
|bar(s)|, x 6= x1 bar(s)x2,

• (i, S) ∈ lsr(s, t) iff bar(t) = x bar(s) y, i = |x| +
|bar(s)|, x = x1 bar(s),

• (i, G) ∈ lsr(s, t) iff bar(t) = x bar(s) y, i = |x| +
|bar(s)|, x = x1 bar(s)x2

where x, y, x1, x2 ∈ Σ∗.
In other words, the list of subtree repeats can be categorised

in three types. F denotes that the subtree at the specific

position is the first subtree in the list. S denotes a square, i.e.

the specified subtree is a sibling of its previous subtree repeat,

and thus their bar notations are consequtive factors in the bar

notation of the subject tree. G stands for gap, and denotes

that there exists a gap – another different subtree – between

its previous repeat. In comparison with the types of repeats

found in strings (see [2], [8]), subtree repeats are missing the

type overlapping, as no two different occurrences of the same

subtree can overlap.

Definition 12: Given a tree t, the subtree repeats table

SRT(t) is the set of all triplets (sps(s, t), bar(s), lsr(s, t)),
where s is a subtree with more than one occurrence in t.

Example 13: Consider the tree t illustrated in Fig. 2. The

subtree repeats table SRT(t) is illustrated in Table I.

TOMAS FLOURI ET AL: TREE INDEXING BY PUSHDOWN AUTOMATA AND REPEATS OF SUBTREES 901



0 X Y 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4, 12 5, 13 6, 14 7, 15 8, 16 9, 17

p |ε 7→ S p |ε 7→ S p |ε 7→ S b|S 7→ ε p |ε 7→ S p |ε 7→ S d|S 7→ ε c|S 7→ ε a|S 7→ ε p |ε 7→ S p |ε 7→ S a|S 7→ ε p |ε 7→ S p |ε 7→ S d|S 7→ ε c|S 7→ ε a|S 7→ ε a|S 7→ ε

d|S 7→ ε

b|S 7→ ε

d|S 7→ ε

b|S 7→ ε

p |ε 7→ S p |ε 7→ S d|S 7→ ε c|S 7→ ε a|S 7→ ε

Fig. 5: Deterministic SPA from Example 7. Note that X denotes the state {1, 2, 35, 6, 10, 11, 13, 14} and Y the state

{2, 3, 6, 11, 14}

Input: A tree t in bar notation bar(t) = x1x2 . . . xn

Output: Subtree repeats table SRT(t)
1: Initialise SRT(t) = ∅
2: Construct a deterministic SPA M =

(Q,Σ, {S}, δ, {0}, ε, ∅) using the algorithms in Fig. 3

and 4

3: ENQUEUE(L, {{0}, ε, 0})
4: while notemptyL do

5: (q, x, bc)← DEQUEUE(L)
6: for all y ∈ Σ do

7: if δ(q, S, y) 6= ∅ then
8: ENQUEUE(L, {p, xy, bc− 1} : δ(q, S, y) = (p, ε))
9: end if

10: end for

11: if δ(q, ε, |) 6= ∅ then
12: ENQUEUE(L, {p, x|, bc+ 1} : δ(q, ε, y) = (p, S))
13: end if

14: if bc = 0 ∧ |x| > 0 ∧ |q| > 1 then

15: Let us denote that q = {r1, r2, . . . , r|q|} such that

ri > ri−1
16: lsr(x, t)← {(r1, F )}
17: for all ri ∈ q, i > 1 do

18: if ri − ri−1 = |x| then
19: lsr(x, t)← lsr(x, t) ∪ {(i, S)}
20: else {ri − ri−1 > |x|}
21: lsr(x, t)← lsr(x, t) ∪ {(i, G)}
22: end if

23: end for

24: end if

25: SRT(t)← SRT(t)∪{{i : (i, y) ∈ lsr(x, t)}, x, lsr(x, t)}
26: end while

Fig. 6: Construction of the subtree repeats table for a tree t

sps(s, t) bar(s) List of subtree repeats

9, 17 | | b | | d c a (9, F ), (17, S)
8, 16 | | d c (8, F ), (16, G)
7, 15 | d (7, F ), (15, G)
4, 12 | b (4, F ), (12, G)

TABLE I: Subtree repeats table SRT(t) from Example 13

B. Construction of the subtree repeats table

A well-known general property of the deterministic string

suffix automaton constructed for a string x is that the state in

which the deterministic string suffix automaton transits after

reading a factor y, corresponds to the set of ending positions

of all occurrences of the factor y in x [8].

The transitions of the deterministic SPA M constructed by

the algorithm in Fig. 4 for some tree t are extensions of the

transitions of the deterministic string suffix automaton [11],

and therefore the same general property also holds for the

SPA M : the state in which the SPA M transits after reading

the postfix notation x of some subtree s, corresponds to the set

of ending positions of all occurrences of x in bar(t), which,
in turn, corresponds to the positions of the root nodes of all

occurrences of s in t.

The deterministic SPA M accepts bar notations of all

subtrees of t by the empty pushdown store. The non-singleton

subset of some state q having its bc set to 0, which is repre-

sented by the empty pushdown store, denotes the positions of

the subtree read to transit from the initial state of M to state

q. The subtree repeats table can therefore be constructed by

traversing the deterministic SPA M and is described by the

algorithm in Fig. 6.
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