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Abstract—The research concerns a computer-based clinical
decision support for laryngopathies. The classification process
is based on a speech signal analysis in the time domain using
recurrent neural networks. In our experiments, we use the
modified Elman-Jordan neural network. In the preprocessing
step, an original signal is approximated using Bezier curves and
next the neural network is trained. Bezier curve approximation
reduces the amount of data to be learned as well as removes a
noise from the original signal.

Index Terms—computer-based clinical decision support; recur-
rent neural networks; laryngopathies; Bezier curves; approxima-
tion

I. INTRODUCTION

C
OMPUTER-BASED clinical decision support (CDS) is

defined as the use of a computer to bring relevant

knowledge to bear on the health care and well being of

a patient [1]. Our research concerns designing methods for

CDS in a non-invasive diagnosis of selected larynx diseases.

Two diseases are taken into consideration: Reinke’s edema

and laryngeal polyp. In general, the diagnosis is based on an

intelligent analysis of selected parameters of a patient’s speech

signal (phonation). The proposed approach is non-invasive.

Comparing it to direct methods shows that it has several

advantages. It is convenient for a patient because a mea-

surement instrument is located outside the voice organ. This

enables free articulation. Moreover, different physiological and

psychological patient factors impede making a diagnosis using

direct methods.

The majority of methods proposed to date are based only

on the statistical analysis of the speech spectrum (e.g. [2]) as

well as the wavelet analysis. In our research, we are going to

propose a hybrid approach, which is additionally based on a

signal analysis in the time domain. Preliminary observations of

signal samples for patients from a control group and patients

with a confirmed pathology clearly indicate deformations of

standard articulation in precise time intervals. In our previous

papers (see [3], [4], and [5]), we have taken into consideration

the usage of recurrent neural networks (RNNs), especially, the

Elman and Jordan networks [6], [7] also known as “simple

recurrent networks.” RNNs can be used for pattern recognition

in time series data due to their ability of memorizing some

information from the past. The Elman networks (ENs) are a

classical representative of RNNs. To improve learning ability

of ENs we have modified and combined them with the Jordan

networks. Such networks manifest a faster and more exact

achievement of the target pattern. Moreover, for the time

domain analysis, RNNs have the capability of extracting the

phoneme articulation pattern for a given patient (articulation is

an individual patient feature) and the capability of assessment

of its replication in the whole examined signal.

In contrast to approaches shown in [3], [4], and [5], in the

approach presented in this paper, we do not learn the neural

network using samples of a speech signal directly. Now, we

introduce a preprocessing step. In this step an original signal is

approximated using Bezier curves and next the neural network

is trained. Bezier curve approximation reduces the amount of

data to be learned (by one order of magnitude), as well as,

removes a noise from the original signal.

Our paper is organized as follows. After introduction, we

shortly describe the medical background related to larynx dis-

eases (Section II). In Section III, we show the procedure used

to find approximation of a speech signal using Bezier’s curves.

Section IV describes the use of the modified Elman-Jordan

neural network in finding disturbances in a speech signal. In

Section V, we present results obtained by experiments done on

real-life data. Some conclusions and final remarks are given

in Section VI.

II. MEDICAL BACKGROUND

A model of speech generation is based on the ”source-

filter” combination. The source is larynx stimulation, i.e.,

passive vibration of the vocal folds as a result of an increased

subglottis pressure. Such a phenomenon of making speech

sonorous in the glottis space is called phonation. The filter

is the remaining articulators of the speech canal creating

resonance spaces. A signal of larynx stimulation is shaped

and modulated in these spaces. A final product of this process

is called speech.
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Pathological changes appearing in the glottis space entail

a bigger or smaller impairment of the phonation functions of

the larynx. The subject matter of presented research concerns

diseases, which appear on the vocal folds, i.e., they have a

direct influence on phonation [8].

We are interested in two diseases: Reinke’s edema (Oedema

Reinke) and laryngeal polyp (Polypus laryngis).

A. Reinke’s Edema

Reinke’s edema appears often bilaterally, and usually asym-

metrically, on the vocal folds. It is created by transudation in

a slotted epithelial space of folds devoid of lymphatic vessels

and glands, called the Reinke’s space. In the pathogenesis of

disease, a big role is played by irritation of the laryngeal mu-

cosa by different factors like smoking, excessive vocal effort,

inhalatory toxins or allergens. The main symptoms are the

following: hoarseness resulting from disturbance of vocal fold

vibration or, in the case of large edemas, inspiratory dyspnea.

In the case of Reinke’s edemas, conservative therapy is not

applied. They are microsurgically removed by decortication

with saving the vocal muscle.

B. Laryngeal Polyp

Laryngeal polyp is a benign tumor arising as a result of

gentle hyperplasia of fibrous tissue in mucous membrane of

the vocal folds. In the pathogenesis, a big role is played by

factors causing chronic larynx inflammation and irritation of

the mucous membranes of the vocal folds: smoking, excessive

vocal effort, reflux, etc. The main symptoms are the following:

hoarseness, aphonia, cough, tickling in the larynx. In case of

very big polyps, dyspnea may appear. However, not big polyps

may be confused with vocal tumors especially when there

is a factor of the load of the patient voice. The polyp may

be pedunculated or may be placed on the wide base. If it is

necessary, polyps are microsurgically removed with saving a

free edge of vocal fold and vocal muscle.

III. PHONEME APPROXIMATION USING THE BEZIER

CURVES

In order to approximate a speech signal (phoneme), we

propose to use 4-point Bezier curves. A Bezier curve is a

parametric curve very popular in different applications of com-

puter graphics and related fields. A shape of the 4-point Bezier

curve is determined by four control points P0 = [P x
0
, P

y
0
],

P1 = [P x
1
, P

y
1
], P2 = [P x

2
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y
2
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]. The

curve interpolates points P0 and P3 and approximates points

P1 and P2. Two parametric equations determine the shape of

the curve:

x(t) = (1− t)3P x
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where t ∈ [0, 1]. Application of the Bezier curves has the

following advantages:

• a signal is encoded using a smaller number of values than

a number of samples (by one order of magnitude), this

can accelerate a learning process of neural networks,

• some noise from the original signal can be removed,

• due to transformations, signals with different magnitudes

and gradients can be compared.

The main disadvantage is the complicated process of finding

approximation of a signal in the form of a family of Bezier

curves.

In this section, we propose an iterative algorithm for finding

a family of Bezier curves best approximating a given signal

curve. The algorithm inches forward (from the beginning)

along the approximated signal curve (corresponding to a given

phoneme) trying to find the best Bezier curve approximating

the part of the signal curve. At each stage of searching, if

a better curve cannot be found, the current Bezier curve is

recorded for a covered part of the curve and new searching

for the remaining part is started. In this algorithm, a number of

Bezier curves approximating a given signal curve is not given

in advance. The presented algorithm can be called the stepping

algorithm. Algorithm 1 shows formally our procedure. An

error ε between the Bezier curve and the signal curve in a

given interval of samples (from start to end) is calculated

separately for coordinates x and y according to the following

formulas:

εx =
end
∑

i=start

|tiB − tiF |,

εy =
end
∑

i=start

|viB − viF |,

where {tiB , v
i
B}i, {t

i
F , v

i
F }i are sequences of samples of the

Bezier curve B and the signal curve F , respectively.

The presented algorithm has a polynomial time complexity.

Algorithm 1 uses Algorithm 2 for finding the best moving of

a given control point. This algorithm checks an error between

the Bezier curve and the original curve. If the error ε is

worsened (with respect to the previous one εp) after moving

a control point, then moving is canceled and its direction for

the next step is changed to opposite. A number of searching

steps is limited (in our experiments to 100).

IV. RECURRENT NEURAL NETWORKS FOR LEARNING

PHONEME PATTERNS

For each Bezier curve represented by four control points

P0 = [P x
0
, P

y
0
], P1 = [P x

1
, P

y
1
], P2 = [P x

2
, P

y
2
], and P3 =

[P x
3
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y
3
], we calculate three Euclidean distances:
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√

(P x
1
− P x

0
)2 + (P y

1
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y
0
)2,

D2 =
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(P x
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(P x
3
− P x

0
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3
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0
)2.

Let B be a family of Bezier curves approximating a

given phoneme. The phoneme is represented by sequences of

distances calculated for each Bezier curve. Such sequences

are used to learn the modified Elman-Jordan network. The

modified Elman-Jordan network has been proposed in [4].
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Algorithm 1: Algorithm for determining a family of

Bezier curves approximating a phoneme.

Input : F = [(t0, v0), (t1, v1), . . . , (tn−1, vn−1)] - a

phoneme (a vector of speech signal samples),

tau - error threshold, cmax - a maximal number

of attempts of searching, [sx
1
, s

y
1
], [sx

2
, s

y
2
] -

moving vectors, where sx
1
, s

y
1
, sx

2
, s

y
2
∈ [0, 1]

Output: B - the family of 4-point Bezier curves

approximating F .

B ← ∅;
start← 0; end← 1;

P1 ← null; P2 ← null;

εp1 ← null; εp2 ← null;

c← 0; stop← false;

while stop = false do
P0 ← (tstart, vstart);
if P1 = null then

P1 ← (tstart, vstart);
end

if P2 = null then
P2 ← (tstart, vstart);

end

P3 ← (tend, vend);
Create a curve B on the basis of P0, P1, P2, P3;

Calculate an error ε1 between B and F in the

interval [tstart, tend]
Move point P1 using Algorithm 2 by vector [sx

1
, s

y
1
];

Calculate an error ε2 between B and F in the

interval [tstart, tend];
Move point P2 using Algorithm 2 by vector [sx

2
, s

y
2
];

if (εxp1 < τ and ε
y
p1 < τ ) or (εxp2 < τ and ε

y
p2 < τ )

then

if 1 + end < n then
end← end+ 1;

else
stop = true;

end

εp1 ← null; εp2 ← null;

c← 0;
else

c← c+ 1;

end

if c > cmax then

if 1 + end < n then
B ← B ∪ {B};
start← end;

end← start+ 1;

P1 ← null; P2 ← null;

εp1 ← null; εp2 ← null;

c← 0;
else

stop← true;

end

end

end

Return B;

Algorithm 2: Algorithm for moving a control point.

Input : P - a control point to be moved, εp - a last

error, ε - a current error, [sx, sy] - a moving

vector.

Output: P - a moved control point

if εp = null then
εp ← ε;

end

if εx ≥ εxp then
P x ← P x − sx;

sx ← −sx;
end

if εy ≥ εyp then
P y ← P y − sy;

sy ← −sy;
end

if εx < εxp then
εp ← ε;

end

if εy < εyp then
εp ← ε;

end

P x ← P x + sx;

P y ← P y + sy;

Return P ;

Moreover, some learning abilities were tested in [5]. The

modified Elman-Jordan network consists of (see Figure 1):

• an input layer,

• a hidden layer,

• a context layer,

• an output layer,

• feedbacks for a hidden layer through the context layer,

such feedbacks are used in the Elman networks,

• feedback between an output layer and a hidden layer

through the context layer, such feedback is used in the

Jordan networks,

• feedback for an output layer.

Output feedback accelerates a learning process and causes

seamless modification of weights. Generally, the modified

Elman-Jordan network needs a smaller number of epochs

(sometimes by 50 per cent) for learning a given pattern

(see [5]).

In the approach presented in this paper, we use similar

procedure to that presented in [3], [4], and [5]. A difference

is that we use as the input for the neural network sequences

of distances calculated for Bezier curves approximating an

original speech signal instead of samples of that signal.

Articulation is an individual patient feature. Therefore, we

cannot train a neural network on the independent patterns of

phonation of individual vowels. For each patient, parameters

of Bezier curves of a speech signal are used for both training

and testing of a neural network. The procedure is as follows.

We divide the speech signal of an examined patient into

time windows corresponding to phonemes. The next step is
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Fig. 1. A structure of the trained Elman-Jordan neural network.

Algorithm 3: Algorithm for calculating an average mean

squared error corresponding to deformations in a speech

signal.

Input : S - a speech signal of a given patient (a vector

of samples), N - a neural network.

Output: EN - an average mean squared error

corresponding to deformations in S.

Wall ← Div2Win(S);
Wsel ← SelWin(Wall);
for each window w ∈Wsel do

B ← Bezier(w);
Train(N,B);
for each window w∗ ∈Wsel do

if w∗ 6= w then
B∗ ← Bezier(w∗);
E[w∗]←MSE(Test(N,B∗));

end

end

E[w]← Avg(E);
end

EN ← Avg(E);
Return EN ;

random selection of a number of time windows. This set of

selected windows is used for determining some coefficient

characterizing deformations in the speech signal. This coef-

ficient is constituted by an error obtained during testing of

the neural network. We propose to use the approach similar

to the cross-validation strategy. For each time window we

determine a family of Bezier curves approximating it (see

Algorithms 1 and 2) and next calculate distances for each

curve according to formulas shown at the beginning of this

section. Bezier curve parameters of one time window are

taken for training the neural network, whereas Bezier curve

parameters of the remaining ones, for testing of the neural

network. The network learns parameters of a selected time

window. If parameters of the remaining windows are similar

to the selected one in terms of the time patterns, then for such

windows an error generated by the network in a testing stage

is small. If significant replication disturbances in time appear

for patients with the larynx disease, then an error generated

by the network is greater. In this case, the time pattern is not

preserved in the whole signal. Therefore, the error generated

by the network reflects non-natural disturbances in the patient

phonation. Our approach can be expressed formally as it is

shown in Algorithm 3. In the algorithm we use the following

functions (procedures):

• Div2Win(S) - dividing the speech signal S into time

windows corresponding to phonemes,

• SelWin(W ) - selecting randomly a number of time

windows from the whole set W ,

• Bezier(w) - calculating a set of parameters of Bezier

curves approximating w,

• Train(N,B) - training a neural network N on a given

set B of parameters of Bezier curves,

• Test(N,B) - testing a neural network N on a given set

B of parameters of Bezier curves,

• MSE(E) - calculating a mean squared error for the
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TABLE I
SELECTED RESULTS OF EXPERIMENTS FOR WOMEN FROM THE CONTROL

GROUP OBTAINED USING THE MODIFIED ELMAN-JORDAN NETWORK.

ID EEJN nEJN

wCG1 0.0106 104
wCG2 0.0108 103
wCG3 0.0120 110
wCG4 0.0017 111
wCG5 0.0055 99
wCG6 0.0159 113
wCG7 0.0064 131
wCG8 0.0128 113
wCG9 0.0128 105
wCG10 0.0186 104

TABLE II
SELECTED RESULTS OF EXPERIMENTS FOR WOMEN WITH LARYNGEAL

POLYP OBTAINED USING THE MODIFIED ELMAN-JORDAN NETWORK.

ID EEJN nEJN

wP1 0.2184 98
wP2 0.0429 71
wP3 0.0139 87
wP4 0.0201 120
wP5 0.0155 132
wP6 0.0375 80
wP7 0.0148 210
wP8 0.0184 94
wP9 0.0229 88
wP10 0.0462 109

absolute error vector E:

MSE(E) =
1

n

n
∑

i=1

(Ei)
2,

where n is a number of elements in the vector E, Ei =
y(xi) − z(xi) and y(xi) is the obtained output for xi

whereas z(xi) is the desired output for xi.

• Avg(E) - calculating an arithmetic average for the vector

E of errors.

V. EXPERIMENTS

In the experiments, sound samples were analyzed. Samples

were recorded for two groups of patients [2]. The first group

included patients without disturbances of phonation. They

were confirmed by phoniatrist opinion. The second group

included patients of Otolaryngology Clinic of the Medical

University of Lublin in Poland. They had clinically confirmed

dysphonia as a result of Reinke’s edema or laryngeal polyp.

The information about diseases was received from patients’

documentations. Each recording was preceded by a course

of breathing exercises with an instruction about a way of

articulation. The task of all examined patients was to utter

separately Polish vowels: ”A”, ”I”, and ”U” with extended

articulation as long as possible, without intonation, and each

on separate expiration. Samples were normalized to the inter-

val [0.0, 1.0] before providing them to the next block. After

normalization, samples (as double numbers) were provided to

the block calculating the Bezier curve parameters.

In Tables I and II, we present results of experiments carried

out using the modified Elman-Jordan network described in

Section IV. Table I includes results for women from the control

group as well as Table II includes results for women with

laryngeal polyp. Both tables include results for women uttering

vowel ”A”. We give consecutively the average mean squared

error EEJN and an average number nEJN of epochs in the

training process.

It is easy to see that the modified Elman-Jordan network

trained by parameters of Bezier curves approximating the

speech signal has some ability to distinct between normal and

disease states. The distinction ability presented here would be

comparable with abilities obtained if the neural networks were

trained using the original speech signals (cf. [4], and [5]). In

the approach presented in this paper, we significantly reduce

the amount of data to be learned by the neural network. Such

observations are very important for further research, especially

in the context of a created computer tool for diagnosis of

larynx diseases.

VI. CONCLUSIONS

In the paper, we have shown the classification process of

laryngopathies based on a speech signal analysis in the time

domain using recurrent neural networks. In our experiments,

we have used the modified Elman-Jordan neural network

presented in our earlier papers. In the procedure, we have

introduced the preprocessing step. In this step, an original

signal is approximated using Bezier curves and next the neural

network is trained. Bezier curve approximation reduces the

amount of data to be learned as well as removes a noise from

the original signal. The quality of the proposed method in

terms of differentiating normal and pathological categories is

not entirely satisfactory, but it shows the direction of further

research. In the future, we will concentrate on two directions.

The first one is the optimization of the process of finding a

family of Bezier curves approximating the speech signal. The

second one is an improvement (tuning) of the proposed method

for better differentiating between cases belonging to different

categories.
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