
Cache-Aware Matrix Multiplication on Multicore
Systems for IPM-based LP Solvers

Mujahed Eleyat
Miriam AS, Halden &

IDI, NTNU, Trondheim

Norway

Email: mujahed@miriam.as

Lasse Natvig, Jørn Amundsen
Department of Computer and Information Science (IDI)

Norwegian University of Science and Technology (NTNU)

Trondheim, Norway

Email: lasse@idi.ntnu.no, jorn.amundsen@ntnu.no

Abstract—We profile GLPK, an open source linear program-
ming solver, and show empirically that the form of matrix
multiplication used in interior point methods takes a significant
portion of the total execution time when solving some of the
Netlib and other LP data sets. Then, we discuss the drawbacks
of the matrix multiplication algorithm used in GLPK in terms
of cache utilization and use blocking to develop two cache-
aware implementations. We apply OpenMP to develop parallel
implementations with load balancing. The best implementation
achieved a median speedup of 21.9 when executed on a 12-core
AMD Opteron.

Keywords: sparse matrix multiplication, cache optimization,
interior point methods, multicore systems.

I. INTRODUCTION

D
URING recent years, processor designers have moved

away from uniprocessor systems to multicore systems.

This shift is mainly due to manufactures inability to continue

enhancing the performance of single-core processors [1]. In-

creasing clock speeds requires higher voltage and causes, con-

sequently, too much heat to dissipate. On the other hand, using

deeper pipelines and other advanced architectural techniques

have yielded decreasing improvements. In addition, and due

to the speed gap between main memory and the processing

cores, there has been more demand for an efficient cache

system to allow exploiting the collective processing power [2].

As a result, multicore programmers need not only to provide

a parallel implementation of the application, but they also

have to take cache utilization into consideration for efficient

utilization of the multicore system. Techniques to reduce cache

and TLB misses depend on the application memory access

pattern, for example, tiling/blocking [3] is the most popular

method for applications with poor exploitation of temporal

locality.

A Linear Programming (LP) solver is one of many compute-

intensive applications that could benefit from the high multi-

core performance. It works as a decision maker that chooses

values of many variables to achieve a goal (maximum profit,

best resource allocation, etc.) while satisfying a set of con-

straints that are specified as mathematical equalities and in-

equalities [5]. If we have m constraints and n variables, the

LP-problem in standard form can be written as:

minimize z = cTx, subject to Ax = b, x ≥ 0,

where x is an n-dimensional column vector, cT is an n-

dimensional row vector, A is a m × n matrix, and b is an

m-dimensional column vector.

Solving LP problems in an efficient way is crucial for

industrial and scientific fields, especially since an application

might need to solve large problems and/or a long sequence

of problems. For example, Miriam Regina, a network gas

flow simulator developed by Miriam AS [4], solves thousands

of LP problems to make a single allocation of gas flow in

the network. On the other hand, it needs to solve bigger LP

instances for the simulation to cover large networks that span

the national boundaries.

The motivation for investigating matrix multiplication in

interior point methods (IPM) [5, 6] is that it takes a large

fraction of the total computation time when solving some of

the data sets. In addition, it is a special form of multiplication

of the form ADAT , where A is a sparse matrix, D is a

diagonal matrix, and AT is the transpose of A. Moreover,

sparse multiplication is a form of irregular computation that is

much more challenging to accelerate than dense multiplication.

On the other side, the structure of the multiplication result is

constant through all IPM iterations, a fact that may be used

to enhance its computation performance.

In this paper, we profile serial GLPK [7], an open source

LP solver, and present empirical results showing that matrix

multiplication takes a relatively long time to compute for some

Netlib and miscellaneous problems [8, 9]. We also analyse

memory access patterns of sparse multiplication and develop

cache-aware algorithms that reduce the rate of cache and TLB

misses. Moreover, a parallel version is also provided while

trying to exploit the cache hierarchy of the multicore system.

The paper is organized as follows: Section II gives a brief

overview of the AMD Opteron compute node used. Then,

compute-intensive parts of the LP solver are introduced in

section III. Section IV explains GLPK implementation of

sparse matrix multiplication while section V describes tech-

niques to enhance cache utilization. We present related work in

section VI and conclude with experimental results and future

work.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 431–438

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 431

II. MULTI-CORE HARDWARE

Introduced in 2009, the 64-bit Istanbul processor is the first

6-core AMD Opteron R© processor and is available for 2-, 4-,

and 8-socket systems, with clock speeds ranging from 2.0 to

2.8 GHz [10].

Fig. 1 shows a simplified block diagram. The processor

has six cores, three levels of cache, a crossbar connecting the

cores, the System Request Interface, the Memory controller,

and three HyperTransport 3.0 links. The memory controller

supports DDR2 memory with a bandwidth of up to 12.8 GB/s.

In addition, the HyperTransport 3.0 links provide an aggregate

bandwidth of 57.6 GB/s and are used to allow communication

between different Istanbul processors. Each core has two levels

of cache, a 512 KB L2 cache, 64 KB data cache and 64 KB

instruction cache. However, all cores share a 6 MB L3 cache.

AMD Opteron multiprocessor systems are based on the

cache coherent Non-Uniform Memory Access (ccNUMA)

architecture. Each processor is connected directly to its own

dedicated memory banks and it uses HT links to communicate

with I/O busses and the other processor(s). Fig. 2 shows a

block diagram of a 2-socket system.

III. GLPK AND IPM COMPUTATIONAL KERNELS

The GLPK (GNU Linear Programming Kit) package is a

set of ANSI C routines contained into a callable library and

intended for solving large-scale linear programming, mixed

integer programming, and other related problems [7]. GLKP

has routines for solving LP problems using either simplex or

one of the primal-dual interior point methods (IPMs), namely

the Mehrotra’s predictor-corrector method [6]. This method,

as well as other primal-dual interior point methods, keeps

repeating a set of matrix operations, until it converges to an

optimal solution. Every iteration of the algorithm includes the

following computations [11]:

1) Sparse matrix-matrix multiplication of the form S =
PAD(PA)T , where P is a permutation matrix stored

System Request Interface

L3 Cache

Crossbar

HyperTransport 3.0 Memory controller

CPU

L1 Cache

L2 Cache

CPU

L1 Cache

L2 Cache

CPU

L1 Cache

L2 Cache

CPU

L1 Cache

L2 Cache

CPU

L1 Cache

L2 Cache

CPU

L1 Cache

L2 Cache

Fig. 1. Simplified block diagram of an AMD Opteron Istanbul processor.

L3 Cache

System Request Interface

HT3MC

C
P

U

System Request Interface

MC

I/O DRAM

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

HT3 L3 CacheHT3

HT3

DRAM I/O

CrossbarCrossbar

Fig. 2. Block diagram of a 2-socket system

as a single dimensional array, A is the sparse working

constraint matrix stored using the CRS format, D is a

diagonal matrix stored using a single dimensional array,

and (PA)T is the transpose of matrix PA. The output

matrix S is a symmetric positive definite matrix.

2) Cholesky factorization of a symmetric sparse matrix S,

the result of step 1, into LLT where L is the lower factor

matrix and LT is the transpose of L.

3) Backward/forward solving using Cholesky factors.

A. Compressed row storage CRS

Since most practical problems are very sparse, GLPK uses

compressed row storage (CRS) to store the constraint matrix

and other matrices used in the IPM algorithm. CRS is a

general storage format that makes no assumptions about the

sparsity structure of the matrix [12]. As shown in Table I, CRS

uses three contiguous arrays to store a sparse matrix A: Aval

stores all nonzero elements row by row, Aind holds the column

indices of the nonzeros, and Aptr holds the offset of each row

into Aval. CRS is usually used to access the matrix row by

row, while another format called compressed column storage

(CCS) is used when a column by column access is needed.

Similar to CRS, CSS uses three arrays to store the matrix,

however, it stores the nonzeros column by column and Aptr

have pointers to the start of columns in Aval.

B. Time analysis of IPM computational kernels

Time analysis of serial IPM-based GLPK has been per-

formed when solving big data sets taken from Netlib and the

BPMPD website [9]. Size, number of nonzeros, and sparsity,

fraction of nonzero elements of the matrix, of each data set

TABLE I
A MATRIX A AND ITS CRS STORAGE

A =







0 3 0 0 1

4 1 0 0 0

0 5 9 2 0

6 0 0 5 3

0 0 5 9 0







Aval 3 1 4 1 5 9 2 6 5 3 5 9

Aind 2 5 1 2 2 3 4 1 4 5 3 4

Aptr 1 3 5 8 11 13 (nonzero count + 1)

432 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

are shown in Table II. Results of time analysis are presented

in Table III and they show that Cholesky factorization and

sparse matrix multiplication of the form ADAT are the two

most computationally expensive tasks of the solver. However,

a few of the data sets, namely BPMPD, CZPROB, and

NEMSEMM1, show that a considerable amount of time is

spent executing other parts of the code. These results show the

importance of accelerating Cholesky factorization and sparse

multiplication in order to enhance the performance of IPM

based LP solvers.

IV. ORIGINAL IMPLEMENTATION OF GLPK MATRIX

MULTIPLICATION AND CACHE PROBLEMS

As mentioned earlier, the sparse matrix product S in IPM

has the form S = PAD(PA)T . This product is computed

in two phases: symbolic and numeric. The symbolic phase is

performed once and is used to determine the nonzero structure

of S for use in the numeric phase.

The numeric phase, which is implemented based on Gus-

tavson’s algorithm [15], is executed every iteration to de-

termine the numeric values of si,j≥i of S. Algorithm 1

shows the pseudocode of the GLPK serial implementation of

S = PAD(PA)T where A is an m×n matrix and P is stored

in a permutation vector π. The matrix product is computed row

by row (line 1) and the permutation is applied at lines 2 and 5.

If row k of S has nnz nonzeros, then its computation requires

multiplying row i (ip after permutation) of A by D and by

other nnz rows of A. Since rows have different sparsity, row

ip is decompressed into a vector w (line 3) as illustrated in

Algorithm 2 . Each nonzero in row i of S is finally obtained

by performing a dot product between Dw and a row of A

(line 6).

The GLPK implementation of S = PAD(PA)T suffers

from the following problems with regard to cache utilization:

• Because of the sparsity of A, a small fraction of the

values in D and w need to be read for the computation of

each nonzero of S. However, these values are scattered

irregularly over large vectors, D and w, that don’t have

room in L1 and L2 cache. Such irregular access pattern

will cause a high cache miss rate.

TABLE II
INFORMATION ABOUT THE TEST DATA SETS

Problem Column Row Nonzeros Sparsity

name count count ×10
−4

FIT2D 10525 21024 150042 6.8

CZPROB 929 3333 10022 32.4

NEMSEMM1 5668 74151 1036227 24.7

WORLD 47259 79053 220891 0.6

NSCT2 23003 37563 697738 8.1

BPMPD 33841 1144020 3450992 0.9

OLIVIER 11144 22977 108562 4.2

BAS1LP 9872 14286 596697 42.3

DFL001 6084 12243 35658 4.8

QAP12 3192 8856 38304 13.5

QAP15 6330 22275 94950 6.7

TABLE III
PROFILING SERIAL GLPK

Problem ADAT Cholesky Bck/fwd Others

name (%) (%) solver (%) (%)

FIT2D 98.8 0.3 0.1 0.8

CZPROB 69.1 7.7 2.2 21.0

NEMSEMM1 66.3 13.7 1.0 19.0

WORLD 6.3 81.4 4.8 7.5

NSCT2 6.1 92.6 0.4 0.9

BPMPD 34.9 13.8 1.5 49.8

OLIVIER 33.4 57.5 3.0 6.1

BAS1LP 11.4 85.8 0.8 2.0

DFL001 0.2 98.7 0.8 0.3

QAP12 0.1 99.2 0.6 0.2

QAP15 0.0 98.7 0.3 1.0

Algorithm 1 Serial implementation of S = PAD(PA)T ,

using Aα for row α of A.

1: for i = 1→ m do

2: ip = π(i)
3: w = (Aip)

T {see Algorithm 2}

4: for j = i→ mandsij 6= 0 do

5: jp = π(j)
6: sij = AjpDw

7: end for

8: end for

• Although the rows of A have small number of values

that are stored contiguously, the permutations makes it

difficult to benefit from data locality and might cause

much TLB misses for matrices with high number of

nonzeros [13].

V. CACHE-AWARE MATRIX MULTIPLICATION

Trying to exploit cache and avoid the problems mentioned

in the previous section, we use 1D and 2D partitioning

and develop techniques to avoid the overhead of accessing

zero blocks and zero block rows. Both extensions of the

original algorithm avoid the negative effect of permutation

by performing it during the blocking phase, i.e. the rows

are permuted in memory before they are split into several

blocks. This allows more uniform access to rows of partitions

during multiplication. The new algorithms are explained in the

following subsections.

A. 1D partitioning of the matrix A

The method is based on a vertical partitioning of PA into

blocks A(1), A(2), . . . , A(v), where v is the number of vertical

partitions. Moreover, partitioning is made once since A is

Algorithm 2 Decompression of a row of matrix A into w.

1: for k = Aptr(ip)→ Aptr(ip + 1) do

2: l = Aind(k)
3: w(l) = Aval(k)
4: end for

MUJAHED ELEYAT ET AL.: CACHE-AWARE MATRIX MULTIPLICATION 433

constant and only D changes through the IPM iterations. In

addition, each of the blocks is stored in memory as an inde-

pendent matrix using CRS. Algorithm 3 shows the pseudocode

of the 1D algorithm. D and w are accessed in smaller chunks

D(1), D(2), . . . , D(v) and w′ whose size depends on the width

of A-partitions. The goal is to have D(·)’s and w′ that can

fit into L1/L2 cache and be reused through loop iterations at

line 5.

One of the drawbacks of 1D partitioning is that many of the

partitioned rows have no elements (zero rows) which waste

cycles on loading and comparing Aptr values. Fig. 3A shows

an example of a vertical partitioning where 60% of the blocked

rows have no elements. In fact, the percentage of zero rows is

much higher in real problems as the matrices are much more

sparse than the one shown in Fig. 3A. Another drawback is

the extra storage of ptr array of each partition.

To avoid wasting time on zero partition rows, a higher level

of compressed storage is used to efficiently access the nonzero

rows of partitions. The matrix, as shown in Fig. 3A, is treated

as an m× v matrix and a new second level of CRS structure

(only ptr and ind) is added and used to access nonzero partition

rows. This adds more to storage requirements, but has a good

effect on performance. The added Partsptr and Partsind are

shown Fig. 3B, and the associated multiplication algorithm

is shown in Algorithm 4.

B. 2D partitioning of the matrix A

Data blocking is a well known technique to utilize data

spatial locality [20] and it is well suited for dense matrix

multiplication. We try to apply the same technique to sparse

matrix multiplication by dividing matrix A into M×N blocks

and consequently matrix S into M×M blocks all stored using

CRS. Computation of an S block is achieved by multiplying

two rows of A blocks as shown in Algorithm 5. Blocks have

different sparsity and many A and S blocks may have no

elements (zero blocks). Different sparsity of different blocks

is a reason why blocking is not as efficient as when dealing

with dense matrices. However, trying to exploit the existence

of zero blocks we add extra information to S blocks as shown

in the following:

• Each block of S has an array that stores the indices of

nonzero rows.

Algorithm 3 Vertically partitioned implementation of S =

PAD(PA)T , using A
(p)
α for row α of partition A(p).

Require: A← PA {performed when partitioning}

1: for i = 1→ m do

2: for partition p = 1→ v do

3: w′ = (A
(p)
i)T

4: for j = i→ mandsij 6= 0 do

5: sij +=A
(p)
j D(p)w′

6: end for

7: end for

8: end for

Algorithm 4 Extension of Algorithm 3 with second level CRS

Require: A← PA {performed when partitioning}

1: for i = 1→ m do

2: for t = Parts ptr(i)→ Parts ptr(i+ 1) do

3: partition p = Parts ind(t)

4: w′ = (A
(p)
i)T

5: for j = i→ mandsij 6= 0 do

6: sij +=A
(p)
j D(p)w′

7: end for

8: end for

9: end for

Algorithm 5 2D partitioning of matrix A

1: for I = 1→M do

2: for J = 1→M do

3: for K = 1→ N do

4: SI,J +=AI,KAJ,K

5: end for

6: end for

7: end for

• Each block of S has an array of indices of participating

pairs of A blocks.

The goal of the first point is to allow utilization of the

already known S matrix structure. However, the second point

aims at avoiding accessing A blocks that don’t participate into

computation of an S block. Two pairs of A blocks participate

in the computation if their product produces one or more

nonzeros, which is simply determined by checking if they have

at least one common index of nonzero columns. We determine

participating blocks just after the symbolic phase and use it

through all IPM iterations. Suppose that matrix A has M ×N

blocks then S has M ×M blocks as shown in Algorithm 5.

C. Parallel computation of S and load balancing

Parallelization of original GLPK implementation and our

implementations of the sparse matrix multiplication have been

achieved with OpenMP, mainly for loop parallelization. The

original GLPK implementation is parallelized by parallelizing

the for loop shown at line 1 in Algorithm 1, causing each core

B: Using a second level of CRS

(ptr and ind) for fast access of

nonzero rows of partitions.

1

3

4

5

6

2

1 2 3

1 2 3 4 5 7 8

A: Blocking A into 3 vertical partitions

1 1 2 1 2 3 1

Parts
ind

Parts
ptr

Fig. 3. 1D partitioning of matrix A

434 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Listing 1. Parallel block based matrix multiplication

#pragma omp parallel for

for row = 1 to M

for col = 1 to M

...

A. Parallel 2D algorithm without load balancing

shares = assign_shares (num_cores, num_nonzeros[]);

#pragma omp parallel for

for i = 1 to num_cores

for row = shares [i]. from to shares [i]. to

for col = 1 to M

...

B. Parallel 2D algorithm with load balancing

to compute a chunk of S rows. Similarly, 1D partitioning of

A also uses the same principle as the outer loop iterates over

rows of S. Finally, multiplication based on 2D partitioning of

A is parallelized by parallelizing the for loop shown at line 1

of Algorithm 5, causing each core to compute a chunk of rows

of S blocks.

Due to different levels of sparsity within the same matrix in

general, and as will be seen in the performance results section,

our parallel implementation suffers from load imbalance. To

address this, we divide S into a number of shares that equals

the number of cores, and assign one core to each share. An

ideal share would be any share whose number of nonzeros

equals the number of nonzeros in S divided by the number

of cores. Therefore, we try to assign shares such that they

differ as less as possible from an ideal share. To force a core

to compute one share, we add an outer loop over shares and

apply the omp parallel for construct to the new added

loop as shown in Listing 1.

A share is composed of a number of consecutive S rows

in the original and 1D algorithms, but it is made of a number

of consecutive rows of blocks in the 2D algorithm, making

it harder to determine shares that are close to an ideal share.

For the 2D algorithm, we try to determine shares that are

bigger than an ideal share within a specified tolerance. If t

denotes tolerance and d denotes number of nonzeros in an

ideal share, then a share can have up to (1+ t)d nonzeros. In

our implementation, we start trying a 5% tolerance and decide

all the shares except the last one. If the size of the last share

doesn’t satisfy the tolerance constraint, we keep increasing

the tolerance by 5% and repeat the algorithm until all shares

respect the tolerance constraint.

VI. RELATED WORK

Our implementations, although not intended for general

sparse matrix multiplication, are based on the classical Gus-

tavson algorithm [15] using compressed row storage of ma-

trices. That algorithm is also used in Csparse [19] and Mat-

lab [21] and is proven to be optimal with respect to number

of operations and storage space of general sparse matrices.
Algorithms for sparse multiplication are developed with

focus on optimizing number of operations and storage require-

ments, however they only perform better than Gustavson’s

algorithm when working on certain class of matrices. For ex-

ample, Park et al. [17] built an efficient algorithm that is based

on a compact storage of banded and triangular matrices. On

the other hand, Buluç et al. [16] introduced what they called

the doubly compressed sparse column (DCSC) which uses

less space than compressed column storage (CSC) for storing

hypersparse matrices, matrices where number of nonzeros is

less than the dimension of the matrix. Such matrices may be

the result of a 2D partitioning of sparse matrices for parallel

processing.
To our knowledge, Sulatycke et al. are the only researchers

who presented sparse matrix algorithms that take efficiency of

caches into consideration [14]. Their cache aware algorithms

are based on interchanging loops of a standard multiplication

algorithm. Moreover, they presented a parallel version that is

based on static and dynamic splitting of matrix rows among

several threads. However, their experiments were conducted

on up to 1000 x 1000 10% sparse matrices, which are much

smaller and less sparse than those tested in this paper.
Most recent research about sparse matrix multiplication

have been performed by Buluç et al. In [16], they discussed the

scalability limitations of matrix multiplication on thousands of

processors. Moreover, they developed a sequential hypersparse

matrix multiplication algorithm using the DCSC sparse storage

to overcome the presented limitations. Parallel implemen-

tation was simulated by dividing input matrices using 2D

blocking decomposition, excluding other costs like updates

and parallelization overheads. Based on their work in [22],

load imbalance, hiding communication costs, and additions of

submatrices, are the main challenges of parallelizing sparse

multiplication. In addition, they have also analysed the scal-

ability of using 1D and 2D block decomposition to divide

the work among the processors and show analytically and

experimentally that the 2D based algorithms are more scalable

than those based on 1D blocking.

VII. PERFORMANCE RESULTS AND CONCLUSION

A. Cache aware matrix multiplication

Our experiments are performed on a 2 x 6 cores AMD

Opteron (Istanbul 2431) compute node. All code including

GLPK 4.43 is compiled with GCC 4.4.3, with optimization

level 3 (-O3). Moreover, execution time of only the first

IPM iteration has been measured when solving each of the

data sets because iterations caused by solving one data set

take the same amount of execution time. Table IV reports

the execution time of original GLPK implementation and the

new two implementations of the serial matrix multiplication,

executed on a single core. Speedup is calculated taking the

original implementation as a baseline. The following can be

concluded:

1) The new 1D and 2D algorithms execute faster than

the original one for all data sets. However, FIT2D is

MUJAHED ELEYAT ET AL.: CACHE-AWARE MATRIX MULTIPLICATION 435

accelerated much more than other data sets. This can be

explained by the unique nonzero structure of its PA as

shown in Fig. 4. The figure is created by placing a dot in

the location of each nonzero element, i.e. the horizontal

thin bar in the figure represents a group of adjacent dense

rows in the matrix. The nonzero structure of this matrix

is special because most rows have two values while the

last few rows are dense. The original implementation

is slow because it accesses most of the D values when

one of the dense rows in the bottom of PA is involved,

causing much L1 and L2 cache misses. However, the 1D

and 2D implementations utilize the cache and improve

locality of access as explained in section V.

2) Different data sets are accelerated by different values due

to the difference in sparsity. Moreover, the distribution

of nonzeros is different among different data sets.

3) 2D avoids accessing nonzero blocks and blocks whose

multiplication doesn’t result in any nonzeros, while 1D

avoids accessing nonzero rows of partitions. 2D cause

more performance when nonzeros are concentrated in

chunks causing a lot of nonparticipating blocks to be

avoided.

B. Size of partitions/blocks

Table V shows sizes of partitions/blocks that cause optimal

speedup for both implementations and for different data sets.

The results show that the optimal dimensioning of block-

/partitions are more related to the distribution of nonzeros

than to the sparsity of data sets. If we fix partition size in

the 1D implementation to 100 and the block size in the 2D

implementation to 100 × 100, the speedup of NSCT2 and

BAS1LP is reduced by 16% and 14% respectively. However,

the speedup of 2D partitioning for CZPROB, NEMSEMM1,

NSCT2, BPMPD, OLIVIER, and BAS1LP is reduced by an

average of 8%.

C. Parallel sparse matrix multiplication

The performance of the parallel matrix multiplication for

original implementation and our implementations before and

after load balancing is shown in Figs. 5-9. The results show

the high importance of the load balancing. In addition, they

show that problems that have longer serial execution time scale

better than those which have relatively lower execution time.

TABLE IV
SERIAL TIMINGS OF ORIGINAL AND NEW IMPLEMENTATIONS

Problem Orig. 1D [s] 2D [s] Speedup

name [s] 1 3 1 3

FIT2D 2.455 0.0261 0.0227 94.1 108.0

CZPROB 0.004 0.0006 0.0007 6.6 5.7

NEMSEMM1 0.279 0.0783 0.0684 3.6 4.1

WORLD 0.049 0.0292 0.0414 1.7 1.2

NSCT2 2.015 1.6290 1.2490 1.2 1.6

BPMPD 0.433 0.1047 0.1211 4.1 3.6

OLIVIER 0.088 0.0164 0.0180 5.4 4.9

BAS1LP 0.992 0.7724 0.5933 1.3 1.7

Fig. 4. Nonzero structure of FIT2D after permutation.

Although both implementations show a comparable speedup

when executed serially, the later has better speedup when both

are executed in parallel. The median speedup of the 1D and 2D

implementations is 12.0 and 21.9. Table VI shows the speedup

achieved when executing the implementations on 10 cores with

the execution time of the original serial algorithm as a baseline.

We chose to show the results on 10 cores since some data sets

show bad performance when executed on 11 and 12 cores.

To have a more clear view, we show the parallel perfor-

mance of NEMSEMM1 as an example, in Fig. 10. The figure

shows that speedup doesn’t increase smoothly with increasing

number of cores. This behaviour is due to two main reasons.

First, a strange varying OpenMP overhead is observed. It is

measured as the difference between the matrix multiplication

time and the execution time of the thread that takes most

time to finish computing its share. Second, because nonzeros

can be concentrated in a small part(s) of the matrix, using

nonzeros to divide the shares among threads doesn’t always

guarantee that load balancing will be improved. For example,

in the 2D algorithm, one thread might be responsible for

computing many very sparse blocks, while a second one might

be responsible for computing a much lower number of dense

blocks. The overhead caused by these two reasons can have a

relatively big effect on performance as shown when using 11

and 12 cores.

VIII. CONCLUSION AND FUTURE WORK

An efficient LP solver is crucial for many scientific and

industrial applications. However, most research has been fo-

TABLE V
SIZES OF PARTITIONS/BLOCKS

Problem Sparsity 1D 2D

name ×10
−4 width width x height

FIT2D 6.8 100 100 x 100

CZPROB 32.4 100 100 x 50

NEMSEMM1 24.7 100 100 x 50

WORLD 0.6 100 100 x 100

NSCT2 8.1 1500 100 x 50

BPMPD 0.9 100 100 x 70

OLIVIER 4.2 100 600 x 625

BAS1LP 42.3 400 200 x 50

436 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14

Cores

W
a

ll
c
lo

c
k
 t
im

e
 [
s
]

FIT2D

CZPROB

NEMSEMM1

WORLD

NSCT2

BPMPD

OLIVIER

BAS1LP

Fig. 5. Parallel original GLPK implementation without load balancing.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14

Cores

W
a

ll
c
lo

c
k
 t
im

e
 [
s
]

FIT2D

CZPROB

NEMSEMM1

WORLD

NSCT2

BPMPD

OLIVIER

BAS1LP

Fig. 6. Parallel original GLPK implementation with load balancing.

cused on an efficient Cholesky factorization since it is the

most expensive computation in interior point methods. We

showed that, similar to Cholesky factorization, sparse matrix

multiplication in IPM-based solvers use a relatively high per-

centage of the total execution time when solving some big data

sets, and proposed two cache-aware implementations of the

sparse multiplication algorithm used in GLPK. Moreover, we

used OpenMP to parallelize the multiplication and developed

TABLE VI
PARALLEL SPEEDUP OF THE TWO ALGORITHMS ON 10 CORES

Problem Speedup

name 1D 2D

FIT2D 270.3 374.4

CZPROB 15.6 23.9

NEMSEMM1 19.7 28.8

WORLD 7.4 8.9

NSCT2 8.3 9.5

BPMPD 7.0 24.1

OLIVIER 18.8 19.8

BAS1LP 6.6 10.2

Median
12.0 21.9

Speedup

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14

Cores

W
a

ll
c
lo

c
k
 t
im

e
 [
s
]

FIT2D

CZPROB

NEMSEMM1

WORLD

NSCT2

BPMPD

OLIVIER

BAS1LP

Fig. 7. Parallel 1D algorithm with load balancing.

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14

Cores

W
a

ll
c
lo

c
k
 t
im

e
 [
s
]

FIT2D

CZPROB

NEMSEMM1

WORLD

NSCT2

BPMPD

OLIVIER

BAS1LP

Fig. 8. Parallel 2D without load balancing.

a simple, but efficient technique for load balancing.

Due to many zero rows of very sparse blocks, CRS and CCS

are not optimal wrt. space for storing very sparse blocks, but

we had to use them for two reasons,

• Block sparsity varies a lot even in the same data set

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14

Cores

W
a

ll
c
lo

c
k
 t
im

e
 [
s
]

FIT2D

CZPROB

NEMSEMM1

WORLD

NSCT2

BPMPD

OLIVIER

BAS1LP

Fig. 9. Parallel 2D with load balancing.

MUJAHED ELEYAT ET AL.: CACHE-AWARE MATRIX MULTIPLICATION 437

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14

Cores

S
p
e
e
d
u
p

Orig. GLPK

1D

2D

Fig. 10. NEMSEMM1 with load balancing. Original serial execution time
is used as a baseline.

• Our algorithms requires very fast access to rows/columns.

It might be possible to use different storage and computation

mechanisms for blocks based on their sparsity. One approach

to accomplish this is to use 2D partitioning but using larger

blocks, and then choose the appropriate storage mechanism

and block multiplication procedure based on the sparsity level.

In case of dense (or close to dense blocks), another level of

blocking can be performed to better utilize the cache.

Since blocking is our main technique of exploiting cache, it

is interesting to try our algorithms on other multicore systems

that have different cache systems.

REFERENCES

[1] S. H. Fuller and L. I. Millett, “The Future of Computing

Performance: Game Over or Next Level,” IEEE Com-

puter, vol. 44, pp. 31–38, January 2011.

[2] M. V. Wilkes, “The Memory Gap and the Future of High

Performance Memories,” ACM Computer Architecture

News, vol. 29, pp. 2–7, March 2001.

[3] M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The Cache

Performance and Optimizations of Blocked Algorithms,”

Proc. 4th Int’l Conf. on Architectural Support for Pro-

gramming Languages and Operating Systems, California,

pp. 63–74, April 1991.

[4] Miriam AS, available at http://www.miriam.as (accessed

September 2010)

[5] D. G. Luenberger and Y. Ye, “Linear and Nonlinear

Programming,” Springer Science, 3rd ed., N.Y., 2007.

[6] S. Mehrotra, “On the Implementation of a Primal-Dual

Interior Point Method”, SIAM J. on Optim., pp. 575–601,

1992.

[7] GLPK (GNU Linear Programming Kit), available at http:

//gnu.org/software/glpk/ (accessed: September 2010).

[8] The NETLIB LP Test Problem Set, available at

http://www.numerical.rl.ac.uk/cute/netlib.html (accessed

September 2010).

[9] BPMPD Home Page, available at http://www.sztaki.hu/

~meszaros/bpmpd/ (accessed September 2010).

[10] Paul G. Howard, “Six-Core AMD Opteron processor

Istanbul,” white paper, Microway Inc., 2009.

[11] M. Smelyanskiy, V. W. Lee, D. Kim, A. D. Nguyen,

and P. Dubey, “Scaling Performance of Interior-Point

Method on Large-Scale Chip Multiprocessor System”,

Proc. ACM/IEEE Conf. Supercomputing (SC07), 2007.

[12] R. Shahnaz, A. Usman, and I. R. Chughtai, “Review of

Storage Techniques for Sparse Matrices”, IEEE INMIC

2005 Conf. Proc., pp. 1–7, December 2005.

[13] K. Kaspersky, “Code Optimization: Effective Memory

Usage,” A-List Publishing, Wayne, Pennsylvania, 2003.

[14] P. D. Sulatycke and K. Ghose, “Caching Efficient Mul-

tithreaded Fast Multiplication of Sparse Matrices,” Proc.

Merged Int’l Symp. Par. Proc. and Par. and Distr. Proc.,

pp. 117–124, 1998.

[15] F. G. Gustavson, “Two Fast Algorithms for Sparse Ma-

trices: Multiplication and Permuted Transposition,” ACM

Trans. Math. Software, vol. 4, pp. 250–269, 1978.

[16] A. Buluç and J. R. Gilbert, “On the Representation and

Multiplication of Hypersparse Matrices,” IPDPS, IEEE,

pp. 1–11, 2008.

[17] S. C. Park, J. P. Draayer, and S. Q. Zheng, “Fast Sparse

Matrix Multiplication,” Comp. Phys. Comm., vol. 70,

pp. 557–568, 1992.

[18] R. Yuster and U. Zwick, “Fast Sparse Matrix Multiplica-

tion,” ACM Trans. on Algorithms, vol. 1, pp. 2–13, 2005.

[19] T. A. Davis, “Direct Methods for Sparse Linear Systems,”

Soc. for Ind. and Appl. Math., 2006.

[20] M. Kowarschik and C. Weiss, “An Overview of Cache

Optimization Techniques and Cache-Aware Numerical

Algorithms,” LNCS, vol. 2625, pp. 213–232, 2003.

[21] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse Matri-

ces in MATLAB: Design and Implementation,” SIAM J.

Matrix Anal. and Appl., vol. 13, pp. 333–356, 1992.

[22] A. Buluç and J. R. Gilbert, “Challenges and Advances in

Parallel Sparse Matrix-Matrix Multiplication”, Int’l Conf.

on Par. Proc. (ICPP’08), pp. 503-510, September 2008.

438 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

