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Abstract—Recent changes in computational sciences force
reevaluation of the role of dense matrix multiplication. Among
others, this resulted in a proposal to consider generalized matrix
multiplication, based on the theory of algebraic semirings. The
aim of this note is to outline an initial object oriented model of

the generalized matrix-multiply-add operation.

I. INTRODUCTION

THE DENSE matrix multiplication appears in many com-

putational problems. Its arithmetic complexity (O(n3))
and inherent data dependencies pose a challenge for reducing

its run-time complexity. There exist three basic approaches to

decrease the execution time of dense matrix multiplication.

(1) Reducing the number of (time consuming) scalar mul-

tiplications, while increasing the number of (much faster)

additions; see, discussion and references in [1]. These ap-

proaches had very good theoretical arithmetical complexity,

and worked well when implemented on computers with a

single processor and main memory. However, due to complex

data access patterns they became difficult to efficiently imple-

ment on computers with hierarchical memory. Furthermore,

recursive matrix multiplication requires extra memory; e.g.

Cray’s implementation of Strassen’s algorithm required extra

space of 2.34 ∗N2 for matrices of size N ×N .

(2) Parallelization of matrix multiplication, which is based

one of four classes of schedules ([2]): (i) Broadcast-Compute-

Shift; (ii) All-Shift-Compute (or Systolic); (iii) Broadcast-

Compute-Roll; and (iv) Compute-Roll-All (or Orbital). The

latter is characterized by regularity and locality of data move-

ment, maximal data reuse without data replication, recurrent

ability to involve into computing all matrix data at once (retina

I/O), etc.

(3) Combination of these approaches, where irregularity of

data movement is exaggerated through the complexity of the

underlying hardware. Interestingly, work on recursive (and

recursive-parallel) matrix multiplication seems to be subsiding,

as the last known to us paper comes from 2006 [3].

Note that, in sparse matrix algebra the main goal was to save

memory; achieved via indexing structures storing information

about non-zero elements (resulting in complex data access

patterns; [4]. However, nowadays the basic element becomes

a dense block while regularity of data access compensates for

the multiplications by zero [5].

Generalized matrix multiplication appears in the Algebraic

Path Problem (APP), examples of which include: finding

the most reliable path, finding the critical path, finding the

maximum capacity path, etc. Here, a generalized is based

on the algebraic theory of semirings (see [6] and references

collected there). Note that, standard linear algebra (with its

matrix multiplication) is an example of an algebraic (ma-

trix) semiring. Application of algebraic semirings to “unify

through generalization” a large class of computational prob-

lems, should be viewed in the context of recent changes in

CPU architectures: (1) popularity of fused miltiply-add (FMA)

units, which take three scalar operands and produce a result

of c ← a · b + c in a single clock cycle, (2) increase of

the number of cores-per-processor (e.g. recent announcement

of 10-core processors from Intel), and (3) success of GPU

processors (e.g. the Fermi architecture from Nvidia and the

Cypress architecture from AMD) that combine multiple FMA

units (e.g. the Fermi architecture delivers in a single cycle 512

single-precision, or 256 double-precision FMA results).

Finally, the work reported in [4] illustrates a important

aspect of highly optimized codes that deal with complex

matrix structures. While the code code generator, is approx-

imately 6,000 lines long, the generated code is more than

100,000 lines. Therefore, when thinking about fast matrix

multiplication, one needs to consider also the programming

cost required to develop and later update codes based on

complex data structures and movements.

II. ALGEBRAIC SEMIRINGS IN SCIENTIFIC CALCULATIONS

Since 1970’s, a number of problems have been combined

into the Algebraic Path Problem (APP; see [7]). The APP

includes problems from linear algebra, graph theory, optimiza-

tion, etc. while their solution draws from theory of semirings.

A closed semiring (S,⊕,⊗, ∗, 0̄, 1̄) is an algebraic structure

defined for a set S, with two binary operations: addition

⊕ : S × S → S and multiplication ⊗ : S × S → S, a unary

operation called closure ∗ : S → S, and two constants 0̄ and

1̄ in S. Here, we are particularly interested in the case when

the elements of the set S are matrices. Thus, following [7],

we introduce a matrix semiring (Sn×n,
⊕

,
⊗

,⋆, Ō, Ī) as a

set of n × n matrices Sn×n over a closed scalar semiring

(S,⊕,⊗, ∗, 0̄, 1̄) with two binary operations, matrix addition
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1) Matrix Inversion Problem:

(α) a(i, j) = a(i, j) +
∑

N−1

k=0
a(i, k)× a(k, j);

(ω) c = a× b+ c;
2) All-Pairs Shortest Paths Problem:

(α) a(i, j) = min
{

a(i, j),minN−1

k=0
[a(i, k) + a(k, j)]

}

;
(ω) c = min(c, a+ b);
3) Minimum Spanning Tree Problem:

(α) a(i, j) = min
{

a(i, j),minN−1

k=0
[max

(

a(i, k), a(k, j)]
}

;
(ω) c = min[c,max(a, b)].

Fig. 1. Matrix and scalar semiring operations for sample APP problems

⊕

: Sn×n × Sn×n → Sn×n and matrix multiplication
⊗

: Sn×n × Sn×n → Sn×n, a unary operation called

closure of a matrix ⋆ : Sn×n → Sn×n, the zero n × n

matrix Ō whose all elements equal to 0̄, and the n × n

identity matrix Ī whose all main diagonal elements equal to 1̄
and 0̄ otherwise. Here, matrix addition and multiplication are

defined as usually in linear algebra. Note that, special cases

matrices that are non-square, symmetric, structural, etc., while

not usually considered in the theory of semirings, are also

handled by the above provided definition.

The existing blocked algorithms for solving the APP, are

rich in generalized block MAA operations, which are their

most compute intensive parts [8]. In the generalized block

MMA, addition and multiplication originate from any semiring

(possibly different than the standard numerical algebra). In

Figure 1 we present the relation between the scalar multiply-

add operation (ω), and the correspondingMMA kernel (α), for
different semirings for three sample APP applications; here, N

is the size of the matrix block (see, also [8]).

Overall, the generalized MMA is one of key operations for

the APP problems, including MMA-based numerical linear

algebra algorithms, which include block-formulations of linear

algebraic problems (as conceptualized in the level 3 BLAS

operations [9], and applied in the LAPACK library [10]).

III. MATRIX OPERATIONS AND COMPUTER HARDWARE

In 1970’s it was realized that many matrix algorithms

consist of similar building blocks (e.g. a vector update, or a

dot-product). As a result, Cray computers provided optimized

vector operations: y ← y + αx, while IBM supercomputers

featured optimized dot products. This resulted also in creation

of libraries of routines for scientific computing (e.g. the

scilib library on the Cray’s, and the ESSL library on the

IBM’s). Separately, the first hardware implementation of the

fused multiply-add (FMA) operation was delivered in the

IBM RS/6000 workstations [11]. Following this path, most

current processors from IBM, Intel, AMD, NVidia, and others,

include scalar floating-point FMA [12]. Observe that, the basic

arithmetic operations: add and multiply, are performed by the

FMA unit by making a = 1.0 (or b = 1.0) for addition, or
c = 0.0 for multiplication. Therefore, the two fundamental

constants, 0.0 and 1.0, have to be available in the hardware.

Therefore, processors that perform the FMA implement in

hardware the scalar (+,×) semiring.

Obviously, the FMAs speed-up (∼ 2×) the solution of

scientific, engineering, and multimedia algorithms based on

the linear algebra (matrix) transforms [13]. On the other hand,

lack of hardware support penalizes APP solvers from other

semirings. For instance, in [8] authors have showed that the

“penalty” for lack of a generalized FMA unit in the Cell/B.E.

processor may be up to 400%. Obviously, this can be seen

from the “positive side.” Having hardware unit fully supporting

operations listed in Figure 1 would speed up solution of

APP problems by up to 4 times. Interestingly, we have just

found that the AMD Cypress GPU processor supports the

(min,max)-operation through a single call with 2 clock cycles

per result. Therefore, the Minimum Spanning Tree problem

(see, Figure 1) could be solved substantially more efficiently

than previously realized. Furthermore, this could mean that

the AMD hardware has build-in elements corresponding to

−∞ and ∞. This, in turn, could constitute an important

step towards hardware support of generalized scalar FMA

operations needed to realize many APP kernels(see, also [8]).

In the 1990’s three designs for parallel computers have

been tried: (1) array processors, (2) shared memory parallel

computers, and (3) distributed memory parallel computers.

After a number of “trails-and-errors,” combined with progress

in miniaturization, we witness the first two approaches joined

within a processor and such processors combined into large

machines. Specifically, while vendors like IBM, Intel and

AMD develop multi-core processors with slowly increasing

number of cores, the Nvidia and the AMD develop array

processors on the chip. However, all these designs lead to

processors consisting of thousands of FMA units.

IV. PROPOSED GENERALIZED MULTLPY-AND-ADD

Based on these considerations, in [14] we have defined a

generic generalized matrix-multiply-add operation (MMA),

C← MMA[⊗,⊕](A, B, C) : C← A⊗ B⊕ C,

where the [⊗,⊕] operations originate from different matrix

semirings. Note that, like in the scalar FMAs, generalized

matrix addition and multiplication, can be implemented by

making an n × n matrix A (or B) = Ō for addition, or a

matrix C = Ī for multiplication (see, Section II).

Obviously, the generalized MMA resemples the GEMM

operation from the level 3 BLAS. Therefore, in [14] it was

shown that, except for the triangular solve, BLAS 3 oper-

ations can be expressed in terms of the generalized MMA

(in the linear algebra semiring). Note also that the proposed

approach supports the idea that, in future computer hardware,

data manipulation will be easiest to complete through matrix

multiplication. Specifically, since the MMA represents a linear

transformation of a vector space, it can be used for reordering

of matrix rows/columns, matrix rotation, transposition, etc.

Furthermore, operations like global reduction and broadcast

can be easily obtained via matrix multiplication (see, [2]).

In summary, the proposal put forward in [14] covers three

important aspects: a) it subsumes the level 3 BLAS, b) it

generalizes the MMA, to encompass most of APP kernels,
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and c) allows for new way of writing APP kernels, optimized

for computers consisting of large number of processors with

thousands of generalized FMA cores each, and simplified to

support code maintainability.

V. STATE-OF-THE-ART IN OBJECT ORIENTED BLAS

While our work extends and generalizes dense matrix mul-

tiplication, its object oriented (OO) realization should be con-

ceptually related to OO numerical linear algebra, including the

OO BLAS. Here, we briefly introduce selected OO realizations

of numerical linear algebra in general, and BLAS in particular:

MTL, uBLAS, TNT, Armadillo, and Eigen.

The uBLAS project ([15]) was focused on design of a C++

library that provided BLAS functionality. An additional goal

of uBLAS was to evaluate if the abstraction penalty, resulting

from object orientation, is acceptable. The uBLAS was guided

by: (i) Blitz++ [16], POOMA [17], and MTL [18]. Data found

on the Web indicates that the project was completed around

2002 and later subsumed into the BOOST [19] library.

The TNT project ([20]) is a collection of interfaces and C++

reference implementations that includes, among others, oper-

ations on multidimensional arrays and sparse matrices. The

library, while not updated since 2004, can still be downloaded

from the project Web site.

The MTL project remained active until around 2008-09,

when the last paper/presentation concerning the MTL 4 was

reported. Interestingly, this project provided not only an open

source library, but also a paid one (more optimized).

There are two projects that are vigorously pursued today:

Armadillo ([21]; last release on June 29, 2011) and Eigen

([22]; last release on May 30, 2011). Both support an extensive

set of matrix operations. While Eigen seems to be focused on

vector processor optimizations, Armadillo “links” with vendor

optimized matrix libraries: MKL and ACML.

VI. INITIAL OBJECT ORIENTED MODEL

Following the ideas described above, in Figure 2 we depict

our proposed OO model for the generalized matrix multipli-

cation. Here, we see the interface to be made available to the

user. It will allow to instantiate needed matrices and develop

code with generalized matrix operations: matrix addition,

matrix multiplication, and the MMA. We also define the

abstract class scalar Semiring needed to define operations

of the scalar semiring (operations on elements of matrices).

The main class is the Matrix class. It describes how the

matrix operations defined in the interface class are realized.

Among others, it contains the MMA function, which is used

to actually realize the matrix operations. The implementation

of the MMA function is to be provided by the user, or by the

hardware vendor (in a way similar to the vendor-optimized

implementation of BLAS kernels).

Finally, we depict a sample specialization of the

scalar Semiring class (for the Shortest Path Problem; see,

Figure 1), with elements from the R+, 0̄ = 1, 1̄ = ∞,

⊕ = min, while⊗ = +. Based on this specific scalar semiring

(and, possibly, a generalized FMA unit), the appropriate MMA

operation is implemented in the Matrix class.

VII. SAMPLE REALIZATION

Let us now recall that one of our goals is to simplify code

development (in a way that the BLAS simplified it 30+ years

ago). Therefore, code should be as simple as possible, with

details of the implementation hidden. With this in mind, let

us start from defining the interfaces. The Matrixinterface

defines operations available to the user to write her codes (for

simplicity, our description is limited to square matrices).

i n t e r f a c e M a t r i x i n t e r f a c e {
I n i t ( n ) ; / / i n i t i a l i s a t i o n o f square ma t r i x nxn

Matr ix ma t r i x0 ( n )

{ /∗ g e n e r a l i z e d 0 ma t r i x ∗ /}
Matr ix ma t r i x11 ( n )

{ /∗ g e n e r a l i z e d i d e n t i t y ma t r i x ∗ /}
Matr ix operator +

{ /∗ g e n e r a l i z e d ma t r i x a d d i t i o n A+B∗ /}
Matr ix operator ∗

{ /∗ g e n e r a l i z e d ma t r i x p r oduc t A∗B∗ /}
Matr ix Column Permuta t ion (A, i , j )

{ /∗ g e n e r a l i z e d pe rmu ta t i o n o f column i

and j i n ma t r i x A∗ /}
Matr ix Row Permuta t ion (A, i , j )

/∗ g e n e r a l i z e d pe rmu ta t i o n o f column i and

j i n ma t r i x A∗ /
. . .

}

Here, user can create matrix objects, zero and identity

matrices (for a given semiring). Furthermore, we define

generalized matrix operators and two permutation matrices.

This interface can be extended to include other user-defined

operations. Next, we define the scalar Semiring class.

a b s t r a c t c l a s s s c a l a r S em i r i n g {
pub l i c :

/ / T −− t y p e o f e l emen t ;

ze ro , one : T ;

+ : c=a+b ;

∗ : c=a∗b ;
}

It specifies generalized operations addition and

multiplication as well as elements 0̄ and 1̄. It has to

be provided by the user, to “select” the semiring.

With the two interfaces in place, we can define the core

class Matrix, which is not made visible to the user (is

internal to the realization of the generalized MMA). It in-

herits the scalar Semiring interface, and implements the

Matrix interface interface.

c l a s s Matr ix i n h e r i t s c a l a r S em i r i n g

implemen t M a t r i x i n t e r f a c e {
T : t yp e of e l emen t ; /∗ double , s i n g l e , . . . ∗ /
n : i n t ;

/ / Methods

I n i t ( n ) ; / i n i t i a l i s a t i o n of s qua r e ma t r i x nxn

Mat r ix ma t r i x 0 ( n ) { /∗ g e n e r a l i z e d 0 ma t r i x ∗ /}
Matr ix ma t r ix1 1 ( n ) { /∗ g e n e r a l i z e d i d e n t i t y ma t r i x ∗ /}
Matr ix ma t r ix 1P ( i , j , n )

{ /∗ g e n e r a l i z e d i d e n t i t y ma t r i x w i t h i n t e r c h a n g e d

columns i and j ∗ /}
Matr ix A+B {re turn MMA(A,M1: ma t r i x 1 ( n ) ,B)}
Matr ix A∗B {A,B}{re turn MMA(A,B ,M0: ma t r i x 0 ( n ) )}
Matr ix Column Permuta t ion (A, i , j ){

P=mat r ix 1P ( i , j , n ) ;

O=ma t r i x 0 ( n ) ;

re turn MMA(P ,A,O)}
Matr ix Row Permuta t ion (A, i , j ){

P=mat r ix 1P ( i , j , n ) ;

O=ma t r i x 0 ( n ) ;

re turn MMA(A, P ,O}
. . .

pr i va t e MMA(A,B ,C : Ma t r ix ( n ) ){
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Fig. 2. General schema of the proposed object oriented model of generalized matrix multiplication

re turn vendor / u s e r s p e c i f i c r e a l i z a t i o n of

MMA = C+A∗B where+ and ∗ a r e from

c l a s s s c a l a r S em i r i n g }
}

The key part of this class is the private function MMA.

This is the actual ( user/vendor specific) realization of the

MMA operation. As a result, user can perform operations:

A ⊕ B, A ⊗ B, or C ⊕ A ⊗ B, written in the code as

A+B, A ∗B, or C +A ∗B without any knowledge of their

actual hardware/software realization. Observe also, that matrix

column permutation, and row permutation have been defined in

operations Column Permutation and Row Permutation,

which are implemented through a call to the MMA function

with appropriate matrices (see, also [14]).

Finally, in the next snippet we show the class

scalar Semiring rewritten for the Shortest Path Problem

(see, Figure1). After defining this class the user can simply

apply the generalized MMA operation within the solver.

/∗T = R+ PLUS i n f i n i t y , + = min , ∗ = +,

ZER0 = i n f i n i t y , ONE = 0; ∗ /

c l a s s s c a l a r S em i r i n g {
z e ro=” i n f i n i t y ” ;

one =0 ;

a+b = min ( a , b ) ;

a∗b = a+b ;

}

VIII. CONCLUDING REMARKS

The aim of this paper was to propose the object model for

the generalized matrix multiplication. The proposed approach

is not language specific and presented at a very high level.

Next, we will proceed with its more detailed realization in

most important languages used in scientific computing.
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