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Abstract—The paper deals with a representation of the
antibody-antigen chromosomes. The proposed new binary de-
coding allows us to prove the dependence between subsequent
generations of chromosomes, using quick and simple operations
on chromosomes indices, instead of processing the binary strings.
Some formal properties of the immune system were expressed
based on this representation. A consistency theoretical proof
for epistatic properties as well as exploration possibilities of a
crossover operator was given.
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I. INTRODUCTION

A
RTIFICIAL Immune Systems (AISs) constitute currently

a significant trend in the studies on biologically inspired

calculations [2], [14]. Much work on AIS has concentrated on

simple extraction of biological metaphors and direct applica-

tion. There is very limited work on the more theoretical aspects

of AIS, especially on the formal proofs of AIS algorithms

[13]. A complete proof for a specifc multiobjective clonal

selection algorithm using Markov chains has been given in

[15]. In [1] Markov chain model of the B-cell algorithm

has been developed to show a convergence proof, and also

a mathematical model of the mutation operator.

Work in theoretical immunology has developed various

representations for the interactions between antibody and anti-

gen, and affinity metrics for modeling these such interactions.

These antibody-antigen binding models were proposed for

describing antibody cross-reactivity [5].

In this paper we attempt to model binary space, which

includes both antigens and antibodies, and try to theoretically

predict their further development based on knowledge of the

first (initial) population. Antibody-antigen chromosomes are

represented as binary, fixed-length chromosomes, using an

alternative to zero-one decoding technique, called Hadamard

representation.

In addition to above mentioned aim, the present paper seeks

to address potential capabilities of a crossover operator. There

is much criticism of the role of the crossover in evolutionary

algorithm (EA) literature. Several authors [11], [3], [4] have

pointed out that the crossover causes the premature conver-

gence of the EA, i.e. the EA loses population diversity before

some goal is met. Some of them argue that for problems

of nontrivial size and difficulty, the contribution of crossover
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search is marginal [8]. Spears [10] claims that mutation is

more powerful than crossover in terms of exploration, although

the two operators can be treated as two forms of a searching

operator. Experiments conducted by Schaffer and Eshelman

[12] have been indicated that population of chromosomes

manipulated by crossover contains epistatic interaction.

A consistency theoretical proof for epistatic properties as

well as exploration possibilities of a crossover operator is

given in this paper.

This paper extends the results of our previous study [9] by

(1) using different notation that leads to a shift of the indices,

(2) defining a crossover operator in Hn space, (3) introducing

new property of the immune system called Expansive system

with global range, (4) proving formal properties of a crossover

operator (Theorem 1), (5) and supporting the states of AIS

by redefined examples. In addition, some remarks on Schema

Theorem used in Hadamard space are made.

This paper is organized as follows. Section 2 describes

binary representation used in the research, next Section 3

gives some formal properties of populations in AIS. Section

4 formulates a concept of an ancestral population. Finally

Section 5 concludes the paper with future works.

II. BINARY REPRESENTATION

A. Hadamard model

In the study [9] the search space {0, 1}n was replaced by

{−1, 1}n (so called a Hadamard representation [6]). Thanks to

use a new binary model the requirement of orthogonal columns

pairs is omitted. Subject of this study is the following set:

Hn = {(hs,n, hs,n−1, . . . , hs,2, hs,1) :∀s ∈ {0, 1, . . . , 2n − 1}

∀i ∈ {1, 2, . . . , n} hs,i ∈ {−1, 1}} (1)

Its elements represent all possible binary chromosomes of

equal length n, where n is a natural number higher than 1.

The proposed representation has one, apparently insignificant

property, which distinguishes it from the binary representa-

tion: a square of each coordinates is equaled 1. This fact

draws two subsequent conclusions: the sum of the squares

of coordinate of each element of the Hn space is constant

and equals this space dimension, and there is no element with

zero coordinates. The collection of these simple facts allows

for the formulation of rules for phenotypes (indices) and

development of automate methods of moving frame Hn, as

well as determination of the distance (level of differentiation)

between the elements of this space.
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At the beginning, we determined the order of the indexing

of points in Hn and their four representations, which we will

use alternating (see Table I).

TABLE I
INDEXING AND REPRESENTATION OF POINTS IN H

n SPACE.

Element’s Decimal Binary Hadamard
symbol representation representation representation

r0 0 (0,0,. . . ,0,0,0) ( 1, 1,. . . , 1, 1, 1)
r1 1 (0,0,. . . ,0,0,1) ( 1, 1,. . . , 1, 1,-1)
r2 2 (0,0,. . . ,0,1,0) ( 1, 1,. . . , 1,-1, 1)
r3 3 (0,0,. . . ,0,1,1) ( 1, 1,. . . , 1,-1, -1)

.

.

.
.
.
.

.

.

.
.
.
.

r2n−3 2
n
− 3 (1,1,. . . ,1, 0, 1) (-1,-1,. . . ,-1, 1,-1)

r2n−2 2
n
− 2 (1,1,. . . ,1, 1, 0) (-1,-1,. . . ,-1,-1, 1)

r2n−1 2
n
− 1 (1,1,. . . ,1, 1, 1) (-1,-1,. . . ,-1,-1,-1)

The number of points included in Hn is equal to |Hn | =
2n. For each element in the binary representation there are

numerous functions transforming the elements of this repre-

sentation to the elements of the Hadamard representation and

inversely (see [9]).

Index s of the element rs having a binary repre-

sentation (bs,n, . . . , bs,1) and the Hadamard representation

(hs,n, . . . , hs,1), and equal to the value of the decimal rep-

resentation, can be calculated from one of the formulas:

ID(rs) = s =

n
∑

t=1

2t−1bs,t =

n
∑

t=1

2t−2(1− hs,t) (2)

In cases of doubt, we will use the function symbol ID(rs),
otherwise the sign of the index s will be used.

B. The distance in Hn

The distance of two points

rt = (ht,n, ht,n−1,, . . . , ht,2, ht,1) and

rk = (hk,n, hk,n−1, . . . , hk,2, hk,1) in Hn space is measured

according to the following equation:

∀rt, rk ∈ Hn w(rt, rk) = n−
1

4

n
∑

i=1

(ht,i + hk,i)
2 (3)

The distance defined in that way will always be a nonnega-

tive integer, which will tell us on how many coordinates in

Hadamard representation the values differ (exactly as in the

binary representation) (see Table I). In addition, Hn space

with the w distance determined in this way is metric and

has many interesting properties (proved in [9]). For example,

there is an algorithmic method for construction a table of

distances between any elements from the Hn space (without

calculating the distance between elements). Bearing in mind

that the space Hn contains 2n elements, and the space Hn+1

contains 2n+1 = 2 · 2n, the distance table Wn+1 of dimesion

2n+1×2n+1 is to be obtained form the table Wn of dimension

2n × 2n according to the following formula:

〈Wn〉
7→

−→

〈

Wn 〈Wn + 1〉

〈Wn + 1〉T Wn

〉

,

where +1 means addition to each element of the table a value

of 1, and WT
n the transpose of a matrix Wn. The number situ-

ated on the cross of the k-row with the t-column corresponds

to w(rk, rt) distance. Exceptionally, for the purposes of this

algorithm, we assume that W0 = 〈0〉, because, as already

mentioned, the spaces Hn where n > 1 are considered in this

study. The distance table for n = 4 is presented in Table II.

In the work [9] the definition of the polar points was

introduced. Two points rt and rk in Hn are called polar points

if and only if for each coordinate these points have opposite

values.

∀j ∈ {1, . . . , n} ht,j = −hk,j

According to the formula (3), the distance between polar

points is constant and equals w(rt, rk) = n. Some other

properties of polar points were given in [9].

C. Crossover in Hn

Any two points from Hn can be provided in accordance

with the definition (1) as:

rt = (rt,n, rt,n−1, . . . , rt,2, rt,1)

rk = (rk,n, rk,n−1, . . . , rk,2, rk,1)

Assuming that c is the position of the cutting operation in

a crossover counted from the right, fulfilling the inequality

0 ≤ c ≤ n, we define the operation of the crossing-over an

element rt with an element rk after the locus c as follows (note

that crossover operator corresponds to 1-point-crossover):

K({rt, rk} , c) 7→

{(rt,n, rt,n−1, . . . , rt,c+1, rk,c, rk,c−1, . . . , rk,1),

(rk,n, rk,n−1, . . . , rk,c+1, rt,c, rt,c−1, . . . , rt,1)}

The newly received elements belong to the Hn and can be

symbolically represented:

rs = (rt,n, rt,n−1, . . . , rt,c+1, rk,c, rk,c−1, . . . , rk,1) (4)

rq = (rk,n, rk,n−1, . . . , rk,c+1, rt,c, rt,c−1, . . . , rt,1) (5)

Now, the operation of the crosover can be written as

K({rt, rk} , c) 7→ {rs, rq}, (6)

where the indices s and q can be taken from the formulas

([9]):

s = t− (t mod 2c) + (k mod 2c) (7)

q = k − (k mod 2c) + (t mod 2c) (8)

III. PROPERTIES OF ARTIFICIAL IMMUNE SYSTEM IN Hn

SPACE

This section depicts some properties of AIS, in which

antibody-antigen chromosomes are represented using

Hadamard encoding. Introduced properties are illustrated by

the examples based on the content of Table II.
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TABLE II
THE DISTANCE TABLE BETWEEN ANY ELEMENTS IN H

4 .

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

r0 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4
r1 1 0 2 1 2 1 3 2 2 1 3 2 3 2 4 3
r2 1 2 0 1 2 3 1 2 2 3 1 2 3 4 2 3
r3 2 1 1 0 3 2 2 1 3 2 2 1 4 3 3 2
r4 1 2 2 3 0 1 1 2 2 3 3 4 1 2 2 3
r5 2 1 3 2 1 0 2 1 3 2 4 3 2 1 3 2
r6 2 3 1 2 1 2 0 1 3 4 2 3 2 3 1 2
r7 3 2 2 1 2 1 1 0 4 3 3 2 3 2 2 1
r8 1 2 2 3 2 3 3 4 0 1 1 2 1 2 2 3
r9 2 1 3 2 3 2 4 3 1 0 2 1 2 1 3 2
r10 2 3 1 2 3 4 2 3 1 2 0 1 2 3 1 2
r11 3 2 2 1 4 3 3 2 2 1 1 0 3 2 2 1
r12 2 3 3 4 1 2 2 3 1 2 2 3 0 1 1 2
r13 3 2 4 3 2 1 3 2 2 1 3 2 1 0 2 1
r14 3 4 2 3 2 3 1 2 2 3 1 2 1 2 0 1
r15 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0

A. Radius of tolerance

A radius of tolerance R is understood as the border value

enabling a mutual recognition of elements in Hn space.

Two elements x, y ∈ Hn recognize or do not tolerate each

other if the distance between them is higher than the radius

of tolerance.

w(x, y) > R (9)

where R complies with the inequality: 0 ≤ R ≤ n.

Elements x, y ∈ Hn complying the weak inequality

w(x, y) ≤ R (10)

will be described as not recognizing or tolerating each other.

Example 0

In the examples considered here we use the H4 space, whose

distance tables are presented in Table II. Moreover, for all the

demonstrated examples we assume the value of the radius of

tolerance R = 2.

B. Self-aggression

System Bk ⊆ Hn undergoes self-aggression if elements

x, y occur, which recognize each other and belong to this

system.

∃x, y ∈ Bk : w(x, y) > R (11)

Example 1

In H4 the systems undergoing self-aggression are for

example:

B8 = {r0, r1, r2, r4, r8, r3, r5, r6} where w(r1, r6) = 3
B4 = {r3, r5, r6, r9} where w(r6, r9) = 4

System Bk ⊆ Hn is free of self-aggression if any two ele-

ments belonging to this system do not recognize themselves.

∀x, y ∈ Bk w(x, y) ≤ R (12)

Example 2

Free systems of self-aggression, when R = 2:

B5 = {r0, r1, r2, r4, r8}
B3 = {r3, r5, r6}
B2 = {r0, r1}

Let us notice that system B2 is free of self-aggression also

when R = 1.

Systems undergoing self-aggresion have elements (chromo-

somes) dispersed in the space under consideration, systems

free of self-aggression are centered around a certain element

(chromosome) and we have a suspicion that this is a local

extremum for many used objective functions.

C. Dazzling distance set

A dazzling distance set of a system Bk ⊆ Hn is a set of

points of Hn recognized by any point of Bk .

P (Bk) = {z ∈ Hn : ∃x ∈ Bk ∧ w(x, z) > R} (13)

Example 3

For B3 = {r3, r5, r6} from the Example 2 the dazzling

distance set is:

P (B3) = {r1, r2, r4, r8, r9, r10, r11, r12, r13, r14}

If Bk undergoes self-aggression then some points belonging

to Bk simultaneously belong to P (Bk), which means that

Bk ∩ P (Bk) 6= ∅

because, according to (11) there is a pair of points x, y ∈ Bk

that w(x, y) > R and y ∈ Hn, what gives (13).

Example 4

The system B4 = {r3, r5, r6, r9} from the Example 1 is in

such a state:

P (B4) = {r1, r2, r4, r6, r7, r8, r9, r10, r11, r12, r13, r14}

and we have:

B4 ∩ P (B4) = {r6, r9} 6= ∅

Otherwise, if Bk is free of self-aggression, then Bk and

P (Bk) are disjunctive sets, which can be presented as follows:

Bk ∩ P (Bk) = ∅ (14)

since, according to (12), any two elements x, y ∈ Bk satisfy

the inequality w(x, y) ≤ R, which contradicts (13).
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Example 5

B3 (described in Example 2 and 3) is free of self-aggression,

for which identity occurs:

B3 ∩ P (B3) = ∅

D. Complete system

System Bk is complete if its dazzling distance set contains

its whole completion Bk = Hn\Bk.

Bk ⊆ P (Bk) (15)

Example 6

The conditions of the complete system are fulfilled by B7 =
{r0, r1, r2, r3, r4}, for which following identities occur:

P (B7) = {r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}

B7 = {r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15} ,

Thus, a relation occurs:

B7 ⊆ P (B7)

The statement, that we are dealing with a complete system,

gives us confidence that in many problems we control the

entire space under consideration, using only a certain part of

the elements (chromosomes) of that space. In many issues, the

important task to deal with is to set the minimum complete

systems (i.e. which contain the smallest number of elements)

for a given space.

E. Balanced system

System Bk is balanced if at the same time it is a system

free of self-aggression, and complete. System Bk satisfies the

equality

Bk = P (Bk)

The relationship Bk ⊆ P (Bk) we have from the definition of a

complete system (see (15)). Inverse relationship Bk ⊇ P (Bk),
we get as a request from two facts: P (Bk) ⊆ Hn = Bk ∪Bk,

as well as Bk as a system free of self-aggression satisfies (14),

and therefore Bk ⊇ P (Bk).

Example 7

This time let us assume that B5 = {r0, r1, r2, r4, r8} (B5 is

taken from the Example 2). For such a system the following

identities are fulfilled:

P (B5) = {r3, r5, r6, r7, r9, r10, r11, r12, r13, r14, r15}

B5 = {r3, r5, r6, r7, r9, r10, r11, r12, r13, r14, r15}

and

B5 = P (B5)

F. Extensive system

We call Bk ⊆ Hn an extensive system if each crossing-over

of its elements results in offspring, which also belongs to this

system.

∀x, y ∈ Bk ⊆ Hn ∀c ∈ {0, 1, . . . , n} K({x, y} , c) ⊆ Bk

Example 8

The examples of the extensive systems are presented below:

B2 = {r0, r1}

B4 = {r0, r1, r2, r3}

H4

B1 = {r0}

To check the extensibility of B2 and B4 systems, equations

(7) and (8) can be used. It can be noticed that both the

singleton system and any Hn space, as a whole, are extensive

systems.

G. Expansive system

A system Bk is expansive if it possesses elements (not nec-

essary different), which after a crossing-over produce elements

out of the system.

∃x, y ∈ Bk ⊆ Hn ∃c ∈ {0, 1, . . . , n} : K({x, y} , c) 6⊂ Bk

Example 9

Let us assume B9 = {r0, r1, r2} ⊆ H4. Assuming in

equations (6) (7) and (8) fore c = 1, t = 1, k = 2 we have:

K({r1, r2} , 1) 7→ {r0, r3} 6⊂ B9

due to the element r3 /∈ B9.

H. Expansive system with global range

We say that the expansive system Bk ⊆ Hn is global in

range, if each element from the completation of Bk can be

obtained only as a result of crossing-over of its elements and

offsprings.

Example 10

Note that the set of elements B11 = {r0, r15} is the expansive

system with global range. These two elements are sufficient

to be the ancestors of all space Hn. And more generally, any

system consisting of two polar points, is a expansive system

with global range (proof to be found below).

Definition 1

An initial or primary population is a set of chromosomes

(elements) from the Hn space, which receives an evolutionary

process (or program) input. We assume that all elements of

such a set take part in the first selection process for the parent

pool.

Definition 2

We say that the population is ancestral, if all its elements

can be obtained from a primary population as a result of the

assembling only crossing-overs.

Note that this definition does not reject the elements created

by the assembly of other operations (for example, mutation
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or inversion) on the initial population, but it requires the

existence of the potential emergence of such elements by

submitting only the crossing-overs of the initial population and

its posterity. In this case, we also have the ancestral population.

IV. ANCESTRAL POPULATION

Theorem 1

The whole space Hn is the ancestral population if and only

if there are the elements in the primary population P , which

have the following properties:

for each position (locus), we have two elements from P having

different (in terms of dual opposing) values.

Proof

⇒ (proof by contradiction)

Suppose that for the initial population P ⊆ Hn there is the

locus l ∈ {1, , n}, with the property that all elements from

P have one value (in the case of binary representation, for

example 0, and Hadamard representation 1). Then, according

to formulas (4) and (5), the value of the position l will not

change, regardless of the choice of parental pairs, the choice

of the value c as a point of crossing-over, and the number of

crossing-over operations. So we had no opportunity to receive

elements with the value on position l different, than the one

which have all the elements of P . And that means that we do

not receive as a result of crossing-overs the elements from Hn

with the opposite value (from our example is a binary value 1

or Hadamard value -1) to be set in position l in the space P .

This would contradict the assumption that all space Hn is the

ancestral population. Thus, the implication in this direction is

true.

⇐
In the proof of equivalence in the other direction, we use

the Restore Pattern using Crossovers (RPC) Algorithm (see

Algorithm 1). Let the pattern W be an arbitrary element in

space Hn. Meeting the objectives of Theorem T1, irrespective

of the value that we are going to set to fixed, but any position

(locus) c of the pattern W , we will always find a chromosome

in the initial population with a value at that position of

searched pattern W . This assures us that the inner loop L1

always ends up with a variable found with a value of true.

This, in turn, runs a block BL1, which carries the crossing-

overs and, possibly, newly formed chromosomes attach to the

pool taking part in further operations. The algorithm assumed

that the offspings replace parents. In a case when offsprings

join to the current population and parents would remain in it, a

block BL1 should look like:

begin of BL11

G := first element from(K({G,B[i]},c))

B := B ∪ K(K({G,B[i]},c),c)

maks := maks + 2

end of BL11

And in a case when we want do attach to the pool the

element matching the pattern, a block BL1 should look

like:

begin of BL12

G := first element from(K({G,B[i]},c))

B := B ∪ {G}

Algorithm 1 RPC Algorithm

Input:

n {the length of chromosome}
W[1,..,n]{the table containing the pattern of the chromo-

some}
j {the number of chromosomes in a population}
PB[1,..,j][1,..,n] {the table of tables containing the chromo-

somes of the initial population}

Definition:

B[1,..,j+2n][1,..,n] {the table of tables containing the chro-

mosomes of the current population}

begin

B := BP {insert BP into the first n-positions of B}
maks := j

c := n

G := B[1]

repeat

i := 0

found := false

repeat

begin of L1

i := i + 1

if W[c] = B[i][c] then

found := true

end if

end of L1

until (found or (i = maks))

if found then

begin of BL1

G := first element from(K({G,B[i]},c))

B := (B \ K({G, B[i]},c)) ∪ K({G,B[i]},c)

end of BL1

end if

c := c - 1

until ((not found) or (c = 0))

Output:

if found then

G

else

false

end if

end

maks := maks + 1

end of BL12

The function first element from() returns, according to (6),

chromosom resulting from crossing-over, having at locus c a

value equals to the value of the pattern at the same position

(see (4) and (5)).

Summing up, since the RPC Algorithm, meeting the

objectives-led part of the Theorem, is able from the initial

population—using only crossing-overs—create any element

from the space Hn, so Hn is the ancestral population.
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Fig. 1. Exemplary ancestral population with the primary population h0

and h7.

End of Proof

At the end, as a conclusion of the above Theorem 1 let us

write, without any proof, convenient Theorem in applications:

Theorem 2

If a primary population P ⊆ Hn contains the pair of polar

points, then the whole space Hn is an ancestral population.
For example, having two polar points h0 and h7 as a primary

population from H3 we are able after four crossovers obtain all

8 points from the space in question, according to Theorem 2

(see Figure 1). More crossover operations are needed when

using natural selection and random points of crossing.
At this point, it seems natural to mention the Schema

Theorem [7], one of the fundamental theorems of genetic

algorithms. The Theorem 1 shows that, if not all space Hn is

the ancestral population, there must be positions (perhaps one

such a position) in all chromosomes of the initial population,

having the same value (locus). Thus, we should look for above-

average schemes at those positions. Crossover operation is

only possible to duplicate chromosomes with such a chosen

scheme. Changes of this trend can only be caused by other

operations (for example, mutation or inversion). Given that the

vast majority of models considered, crossing is an operation

with a much greater likelihood of occurrences in relation to

other operations, reducing the quantity or even just reducing

the growth of occurrences in the next population will be

proportionately less likely.
Introduced concepts allow us to distinct and classify differ-

ent populations, what is more to penetrate into the potential

future directions of their evolution (states reachable, unreach-

able, etc.) regardless of the selected crossover algorithms,

selection of parents, or the elimination of individuals. And

then, we should be able to compare the genetic algorithms in

terms of efficiency and optimization.
Comparing the two algorithms, we need to ensure compa-

rability of the population, on which we conduct experiments.

It is obvious that the same algorithm, e.g. over the population

of the class of expansive systems, has a chance of finding new

solutions in successive generations, but over the populations
form extensive class, after reviewing the current population,

better solutions are no longer found.

V. CONCLUSIONS AND FUTURE WORK

The introduced Hadamard representation allows us to prove

the dependence between subsequent generations of binary

chromosomes encoding antibody and antigen space. Some

properties of this representation were pointed out, which

allows for quick and simple operations on chromosomes

indices, instead of processing the binary sequences. The main

contributions of this paper are to introduce new property of the

immune system called Expansive system with global range,

and to prove for epistatic properties as well as exploration

possibilities of a crossover operator. Some remarks on Schema

Theorem over {−1, 1}n space were also made.

Future research will show to what extent the Hadamard

chromosomes are exploitable.
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[14] Wierzchoń S.T. (2001), Sztuczne Systemy Immunologiczne. Teoria i

zastosowania, Akademicka Oficyna Wydawnicza EXIT, Warszawa (in
Polish).

[15] Villalobos-Arias M., Coello Coello C. A., Hernandez-Lerma O. (2004),
Convergence Analysis of a Multiobjective Artifcial Immune System Algo-

rithm, In: LNCS 3239, Springer, Berlin, Heidelberg, 226–235.

96 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011


