
LTIMEX: Representing the Local Semantics of
Temporal Expressions

Paweł Mazur1,2

1Institute of Applied Informatics,

Wrocław University of Technology

Wyb. Wyspiańskiego 27,

50-370 Wrocław, Poland

Email: pawel@mazur.wroclaw.pl

Robert Dale2

2Centre for Language Technology

Macquarie University

NSW 2109, Sydney, Australia

Email: Robert.Dale@mq.edu.au

Email: Pawel.Mazur@mq.edu.au

Abstract—Semantic information retrieval requires that we
have a means of capturing the semantics of documents; and a
potentially useful feature of the semantics of many documents
is the temporal information they contain. In particular, the
temporal expressions contained in documents provide important
information about the time course of the events those documents
describe. Unfortunately, temporal expressions are often context-
dependent, requiring the application of information about the
context in order to work out their true values. We describe a rep-
resentational formalism for temporal information that captures
what we call the local semantics of such expressions; this permits
a modularity whereby the context-independent contribution to
meaning can be computed independently of the global context of
interpretation, which may not be immediately or easily available.
Our representation, LTIMEX, is intended as an extension to
widely-used TIMEX2 and TimeML representations.

I. INTRODUCTION

A
N IMPORTANT part of the meaning of many documents

is the temporal information they contain. In particular,

many documents present narratives over sequences of events,

and specifications of dates and times in the form of temporal

expressions provide timestamps for these events; these are

of significant utility for any application that aims to mine

information about events across a large document set. From

the information retrieval perspective, time is an important

notion that can be used for indexing, organizing, retrieving

and, finally, presenting the content of documents; these issues

have been the topic of recent studies (see, for example, [1]).

Unfortunately, not all such temporal information is ex-

pressed in easy-to-capture and easy-to-interpret expressions.

While fully-specified expressions, such as dates like 25th

November 2010, are not uncommon in text, far more common

are context-dependent temporal expressions, like yesterday,

10th June, and the previous summer. Properly assigning values

to such expressions is the aim of temporal expression tagging;

the TIMEX2 standard (introduced as annotation guidelines in

[2]) and TimeML (see [3], [4]) have been developed as forms

of representation for such values, and a considerable body

of research focuses on developing tools that can accurately

annotate such expressions with their absolute values (see, for

example, [5]–[10]).

The assumption underlying the processing carried out by

existing tools is that there are two distinct stages involved: first

the extent of the temporal expression must be determined—

in other words, it must be properly recognised—and then its

value may be computed, taking into account both the lexical

content of the expression and the wider context in which it is

situated.

This second step conflates knowledge from two sources:

information that can be derived from the content of the

temporal expression itself, and arbitrary real-world reasoning

that takes account of contextual information. As a simple

example, the meaning of yesterday depends crucially on the

time at which is uttered; however, common to all instances

of its use is that it means ‘the day before today’. Based

on this observation, we can compute the partial meaning

of such expressions, thus permitting a modularisation of the

process into a part that computes the context-independent local

semantics of the expression, and a part which uses the wider

context to determine the global semantics. The first of these

can proceed in the absence of the second. However, we then

require an interface between the two levels of processing;

for this we propose what we call LTIMEX, an extension of

the TIMEX2 and TimeML representations that allows us to

capture partial meanings.

In this paper, which further develops our earlier work

presented in [11], we describe the LTIMEX representation

in some detail. Section II explains the relationship between

LTIMEX and the existing TIMEX2 and TimeML standards;

Section III describes in detail how we represent a wide variety

of categories of temporal expressions using LTIMEX; and

Section IV draws some conclusions about the utility of the

scheme.

II. BACKGROUND: THE TIMEX2 REPRESENTATION

TIMEX2, developed by the information extraction community,

is a widely-used annotation standard for temporal expressions

in text; it serves as a target representation for temporal

expression taggers. For the purpose of its use in this standard, a

temporal expression is defined as a linguistic expression which

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 201–208

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 201

TABLE I
ENCODING OF POINTS AND PERIODS IN TIMEX2.

Attribute Value Meaning
1 The second millennium AD
19 The 20th century AD
199 The 1990s
1992 Year 1992
1992-06-27 27 June 1992
1992-06-27T18:04 27 June 1992 18:04
1992-06-27T18:04:56 1992-06-27 18:04:56
1992-06-27TMO morning of 27 June 1992
1992-W04 The fourth week of 1992
1992-SU Summer of 1992
1992-H1 1st half of 1992
1992-Q3 3rd quarter of 1992
BC0346 Year 346 BCE
MA6 6 million years ago
PAST REF vague reference to past
T19:00 7pm (used in a non-specific context)
XXXX-06-XX a day in June (non-specific context)
P2Y3M 2 years and 3 months
P2DT6H 2 days and 6 hours
PT3.5H 3.5 hours
P2DE 2 decades

references a point in time (such as a calendar date or time of

day) or a period (also called a duration).1

TIMEX2 defines five attributes to represent the meaning

of a temporal expression: VAL, ANCHOR_VAL, ANCHOR_DIR,

MOD, SET. These attributes are used, respectively, to encode

the temporal location of a point on a timeline or a duration of

a period; to encode the temporal location of one of the period’s

end-points; to capture the direction of temporal reference from

the anchoring point; to express modifications to more basic

temporal values; and to flag whether the temporal expression

refers to a set of temporal entities.

Values of the VAL and ANCHOR_VAL attributes use a

string representation based on formats defined in the ISO-

8601 standard: calendar date (YYYY-MM-DD), week date

(YYYY-Www-D), time of day (hh:mm:ss), date and time

(YYYY-MM-DDThh:mm:ss), and duration (PnYnMnDTnHnMnS

or PnW). The individual character positions in the date and

time strings correspond to particular granularities of temporal

information, as demonstrated by the examples in Table I.

TIMEX2 extends the encodings provided in the ISO standard

by introducing tokens representing additional temporal gran-

ularities: for example, in place of a month number, TIMEX2

also permits codes for year seasons (e.g. SU for summer),

half-years (e.g. H1), and quarter-years (e.g. Q3). It also adds

support for BCE years, references to the distant past (i.e.

billions, millions, and thousands of years ago) and general

references to the past, present and future. For non-specific

1The distinction between a point and a period in TIMEX2 is different from
the distinction often made in artificial intelligence and work on the philosophy
of time. In contrast to usage in those areas, here a point is not a durationless
instant, but a point on a timeline of some granularity. For example, a month
is annotated as a point, not a period, when referenced as an element of a
calendar (e.g. He graduated in November).

use of expressions (as in, for example, a sunny day in June)

TIMEX2 uses an uppercase X to fill the slots at the unspecified

granularities (for example, XXXX-06-XX). In regard to the

encoding of duration, TIMEX2 adds new temporal units for

decades, centuries and millennia.

In documents, a temporal expression tagger encodes these

values as attributes of inline XML annotations, as in the

following example:

(1) I left town on <TIMEX2 VAL="2010-07-15">15th July

2010</TIMEX2>.

What is notable about this temporal expression is that it is

fully-specified or explicit: the temporal value can be computed

using the lexical content of the string alone, without any

reference to context.2

Not all temporal expressions are of this kind; rather, many

are context-dependent, in that they only partially specify a

temporal value, and require incorporation of information avail-

able in the context in order to derive their full interpretation.

Unfortunately, the nature of the TIMEX2 representation means

that there is no way of annotating the value of temporal

expressions until this full interpretation has been carried out.

To address this problem, in this paper we describe an

extension of TIMEX2 that uses a few simple notational devices

to permit the representation of partially-interpreted temporal

expressions in a way that is consistent with the original

TIMEX2 specification. This has the benefit that it is easy to

learn for those already familiar with TIMEX2 annotation; it

can also take advantage of existing tools for evaluating the

performance of temporal expression taggers. Most importantly,

though, it provides us with an interface language that enables a

modularisation of the process of temporal expression interpre-

tation, so that we can use distinct components for determining

the local semantic interpretation of a temporal expression and

for the process of incorporating contextual information.

In TimeML, temporal expressions are annotated inline using

TIMEX3 tags. TIMEX3 is a subsequent annotation standard

to TIMEX2 which uses a different set of attributes. A detailed

description is not appropriate here, but we note that its value

attribute is used in exactly the same way as TIMEX2 uses

the VAL attribute, which is the most important and relevant

attribute for the development of LTIMEX. TIMEX3 represents

the end-points of a period by means of additional TIMEX3 an-

notations, so its value attribute also replaces the ANCHOR_VAL

attribute in TIMEX2. Thus, although LTIMEX was originally

developed as an extension to TIMEX2, it is also compatible

with TimeML and TIMEX3.

III. REPRESENTING PARTIAL INTERPRETATIONS

TIMEX2 was designed to annotate temporal expressions with

their global semantics, i.e. the temporal value obtained by

interpreting the expression in the context of the content of

the document in which it is used. Our experience with the

2This is not entirely true, since at least a particular calendar and a particular
timezone are assumed, so values will always be relative to these. For most
practical purposes, however, this makes the expressions context-free.

202 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

TABLE II
A SUMMARY OF THE LTIMEX ATTRIBUTES.

Attribute Comments
L-VAL Encodes the local semantics of expressions concerning the temporal location of points:

for underspecified values, the missing slots are filled with x;
underspecified time is separated from the date components with t;
for offsets, the encodings start with +, -, > or <;
ordinally-specified elements are encoded with the pattern $nu.
Encoding of durations is the same as in TIMEX2.

L-ANCHOR_VAL Local semantics of temporal location of end-points;
see the description of L-VAL.

L-ANCHOR_DIR, L-MOD, L-SET Same values as for the corresponding attributes in TIMEX2.
L-TYPE Encodes the taxonomical type of an expression. The possible values are: EXPLICIT,

UNDERSPECIFIED, OFFSET, OFFSET-DEICTIC, OFFSET-ANAPHORIC, EVENT-BASED,
EVENT-BASED-POINT, EVENT-BASED-PERIOD, PERIOD, SET, SET-POINTS,
SET-PERIODS.

L-EVENT_ID Stores an identifier of an event for event-based expressions.
L-ANCHOR_TYPE For anchored period expressions where the anchor is an offset, indicates the type of the offset;

the possible values of the attribute are DEICTIC and ANAPHORIC.

development of a temporal expression tagger (presented in [9])

revealed that it is beneficial for both design and evaluation to

explicitly recognize the semantics of the expression with no

context involved; we refer to this as the local semantics, rep-

resenting the partial and underspecified context-free meaning

of the expression.

LTIMEX extends the set of attributes from TIMEX2 to

provide a vocabulary for capturing partially-specified meaning.

Some of these local attributes simply mirror the existing

attributes; others, however, add new types of information that

are intended to be of use to a subsequent processing stage that

determines the global semantics of the temporal expression.

The attributes provided by LTIMEX are shown in Table II.

A key feature here is the L-TYPE attribute, which stores the

type of an expression; this captures the essential distinctions

between different kinds of expressions, so that this information

can be used to guide subsequent processing. In Table III we

present the types of temporal expressions that we distinguish in

this work, along with examples of each. These do not represent

a flat taxonomy: the major types are expressions referring

to single point and duration temporal entities, each of which

may have subtypes; but there are also expressions referring to

sets of such temporal entities, as well as ordinally-specified,

modified and non-specific expressions.

Many of these types are introduced in TIMEX2 at the

level of what we refer to as global semantics. The literature

on temporal expression tagging identifies subtypes of point

expressions that require different interpretation algorithms to

derive their global semantics: explicit, underspecified, and

deictic and anaphoric offsets.3 We follow these taxonomic

distinctions for the purpose of representing the local semantics.

For the same reason, we also identify ordinally-specified

expressions, allowing a further level of distinction for explicit,

underspecified and offset expressions.

3The terminology used in literature in this regard varies; in this work we
use what we believe are the most intuitive terms.

TABLE III
THE TYPES OF TEMPORAL EXPRESSIONS.

Expression Type Example Expression
Explicit Point Friday, 3 April 1998
Underspecified Point 23rd June
Deictic Offset tomorrow
Anaphoric Offset the next month
Event-based Point the day when the last fortress fell
Duration six months and two days
Event-based Duration the first two minutes of the meeting
Ordinally-specified the last Tuesday in 1997
Modified Points the middle of August
Modified Durations nearly two decades
Non-specific Point a sunny day in July
Set every Tuesday

TABLE IV
VALUES ASSIGNED TO EXPLICIT DATES AND TIMES IN TIMEX2.

No Expression Representation (VAL)
1 3rd January 1987 1987-01-03
2 Friday, 3 April 1998 1998-04-03
3 24/03/1980 1980-03-24
4 03/24/1980 1980-03-24
5 November 1996 1996-11
6 1960s 196
7 12th January 2001 11:59 pm 2001-01-12T23:59

Below, we present the LTIMEX scheme by discussing the

representation of local semantics for a wide variety of types

of temporal expressions that are found in real texts.

A. Explicit Expressions

These expressions are the only context-independent point

expressions. For these, the local semantics is always the same

as the global semantics, so our L-VAL simply mirrors the VAL

in TIMEX2. We present some examples in Table IV.

PAWEL MAZUR, ROBERT DALE: LTIMEX: REPRESENTING THE LOCAL SEMANTICS OF TEMPORAL EXPRESSIONS 203

TABLE V
EXAMPLES OF UNDERSPECIFIED EXPRESSIONS IN LTIMEX.

No Expression Representation (L-VAL)
1 January 3 xxxx-01-03
2 the nineteenth xxxx-xx-19
3 November xxxx-11
4 summer xxxx-SU
5 ’63 xx63
6 the ’60s xx6
7 9 pm xxxx-xx-xxT21
8 11:59 pm xxxx-xx-xxT23:59
9 eleven in the morning xxxx-xx-xxT11:00
10 ten minutes to 3 xxxx-xx-xxt02:50
11 15 minutes after the hour xxxx-xx-xxtxx:15
12 Friday xxxx-Wxx-5
13 8:00 p.m. Friday xxxx-Wxx-5T20:00
14 eight o’clock Friday xxxx-Wxx-5t08:00

B. Underspecified Expressions

Underspecified expressions differ from explicit expressions in

that they omit elements of information, which then have to be

recovered from the context by some process of interpretation.

LTIMEX provides for the representation of underspecified ex-

pressions by marking those elements of the temporal value that

are missing with a special symbol; here we use a lowercase x,

reminiscent of its common use as a variable.4 Table V presents

examples of a range of underspecified expressions along with

their L-VAL attributes using this encoding.

For underspecified expressions referring to times that do not

indicate the part of day (either ‘am’ or ‘pm’), such as those

in Rows 10, 11 and 14 of the table, we use a lowercase t

separator (instead of the standard T separator) between the date

and time parts of the representation. Together, these notational

conventions indicate explicitly those parts of a temporal value

that remain uninstantiated.

A few other elements of this representation are worthy of

mention. The local semantics of bare weekday names, such

as Monday or Friday, can not be represented in the standard

month-based format yyyy-mm-dd, and therefore must be

represented in the week-based format yyyy-Wnn-d, where nn

is the ISO week number and d is the number of the weekday

within that week (1 denotes Monday and 7 is used for Sunday).

C. Offset Expressions

Offset expressions, as we call them, encode a function which,

when applied to a reference time, returns the global semantic

value denoting the temporal location of the entity referred to

by the expression. This temporal function either adds or sub-

tracts a number of units at some granularity: for example, last

4Underspecified expressions should not be confused with non-specific
expressions; these represent two quite independent semantic phenomena. The
former omits some information because it is assumed the reader will be
able to retrieve it from the context (e.g. 14th June), while the latter is
typically used generically (e.g. ‘The dry season starts in May’). In the string-
based semantic representation, the underspecified expressions we introduce
in LTIMEX use lowercase xs (e.g. xxxx-06-14), while non-specific
expressions, already part of TIMEX2, are annotated with uppercase Xs (e.g.
XXXX-WXX-7TMO).

TABLE VI
LOCAL SEMANTICS OF OFFSET EXPRESSIONS OF DATES.

No Deictic Expression Anaphoric Expression L-VAL

1 today the same day +0000-00-00
2 tomorrow the following day +0000-00-01
3 yesterday the previous day −0000-00-01
4 five days ago five days earlier −0000-00-05
5 last month the previous month −0000-01
6 last summer the previous summer −0001-SU
7 two weeks ago two weeks earlier −0000-W02
8 (in) two weeks two weeks later +0000-W02
9 this weekend that weekend +0000-W00-WE
10 this year that year +0000
11 three years ago three years earlier −0003
12 next century the following century +01

year is equivalent to subtracting one year from the year of the

reference date, and three days later means adding three days.

Based on the reference time used, we further distinguish

two kinds of offsets: these may be either deictic or anaphoric.

For deictic expressions the reference time is the time-stamp

of the utterance5 (S in the Reichenbachian framework [12,

pp. 291–298]) and for anaphoric expressions the reference is

to be found somewhere in the context. For example, yesterday

is deictic, but the previous day is an anaphoric expression.

In LTIMEX, both these expressions have the same offset

encoded as the value of the L-VAL attribute; the L-TYPE

attribute indicates whether the expression is OFFSET-DEICTIC

or OFFSET-ANAPHORIC. The interpretation algorithm can use

the value of this attribute to decide whether to apply the offset

to the time-stamp of the document or to use a temporal focus

tracking mechanism to select the correct reference time. If,

for any reason, the annotator or a temporal expression tagger

cannot decide on the subtype of the offset, L-TYPE can be

specified simply as OFFSET, leaving the decision about the

subtype to the interpretation module.

Table VI presents pairings of deictic and anaphoric date

expressions which share the same value for the L-VAL at-

tribute. A leading + or − indicates whether the operation

to be performed is addition or subtraction; for consistency

with TIMEX2, we use the ISO-based format to encode the

magnitude of the offset. The number of filled slots determines

the granularity of the unit of the operation. For example,

+0000-00-05 encodes the addition of five days and -0002

encodes the subtraction of two years. Of course, for expres-

sions with zero offset (e.g. today) one could use either + or −;

by convention we use +.

An offset date expression may be accompanied by unam-

biguous (e.g. 6 a.m.) or ambiguous (e.g. 6 o’clock) information

about the time within the referred-to day; see Rows 1–9 of

Table VII. In these cases only the date component of the

expression (e.g. today or tomorrow) has the form of an offset;

here the T and t separators combine an offset on their left

with an absolute value on their right.

5In practical terms, the utterance time may be the time of speaking, the
date of publication, the date and time of sending an email, and so on.

204 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

TABLE VII
THE LOCAL SEMANTICS OF OFFSET EXPRESSIONS WITH REFERENCES TO TIMES OF DAY.

No Expression Representation (L-VAL) Type
1 6 a.m. today +0000-00-00T06:00 deictic date offset + explicit time
2 6 p.m. that day +0000-00-00T18:00 anaphoric date offset + explicit time
3 6 p.m. two days ago −0000-00-02T18:00 deictic date offset + explicit time
4 6 o’clock two days ago −0000-00-02t06:00 deictic date offset + underspecified time
5 tomorrow morning +0000-00-01TMO deictic date offset + explicit time
6 morning the day before −0000-00-01TMO anaphoric date offset + explicit time
7 last night −0000-00-01TNI deictic date offset + explicit time
8 11pm last night −0000-00-01T23:00 deictic date offset + explicit time
9 2am last night +0000-00-00T02:00 deictic date offset + explicit time
10 two hours earlier +0000-00-00T−02 anaphoric time offset
11 an hour and twenty minutes later +0000-00-00T+01:20 anaphoric time offset
12 in six hours time +0000-00-00T+06 deictic time offset
13 five minutes ago +0000-00-00T−00:05 deictic time offset
14 in sixty seconds +0000-00-00T+00:00:60 deictic time offset
15 sixty seconds later +0000-00-00T+00:00:60 anaphoric time offset
16 tomorrow two hours later +0000-00-01T+02 deictic date offset + time offset
17 the next day two hours later +0000-00-01T+02 anaphoric date offset + time offset
18 8 May 2001, one hour later 2001-05-08T+01 explicit date + time offset
19 17 May, one hour earlier xxxx-05-17T-01 underspecified date + time offset

Just as there can be date offsets that have no time in-

formation, we can also have time offsets with no date in-

formation; for example, five minutes ago. In such cases we

add the operator (+ or −) just after the T separator. Con-

sider the representation of eighteen hours and fifteen minutes

later: this has the value +0000-00-00T+18:15, making it

distinct from the representation of 6:15pm today, which is

+0000-00-00T18:15. More examples are provided in Rows

10–15 of Table VII.

A time offset may also appear together with a date offset,

as shown in Rows 16 and 17 in Table VII, or even with an

explicit or underspecified date, as shown in Rows 18 and 19.

In the first case the representation combines a non-zero date

offset with a time offset; in the second case we have a non-

offset representation of a date followed by the encoding of the

time offset.

Finally, we also need to be able to represent offset ex-

pressions built on cycle-based calendar elements (weekday

and month names), such as last Monday or next March. In

Table VIII we present examples with the proper encodings. In

our representation we only indicate the direction (< for last,

> for next) and the weekday or month name mentioned in

the expression (Dn and Mnn, respectively). It will be the task

of the interpretation stage to determine which calendar week

and year is intended. Expressions using the determiner this

(e.g. this Wednesday or this June) are treated as underspecified

expressions unless the determiner is used together with other

tokens indicating the direction of interpretation (e.g. this

coming Wednesday).

D. Event-based Point Expressions

An event-based expression identifies a temporal

entity by means of a reference to an event. In

such expressions, the L-TYPE attribute has the value

TABLE VIII
THE LOCAL SEMANTICS OF OFFSET EXPRESSIONS INVOLVING ELEMENTS

OF CYCLE-BASED CALENDARS.

No Deictic Expression Anaphoric Expression L-VAL

1 last Monday the previous Monday <D1
2 next Wednesday the next Wednesday >D3
3 this coming Wednesday that coming Wednesday >D3
4 this Wednesday that Wednesday xxxx-Wxx-3
5 last June the previous June <M06
6 next June the next June >M06
7 this June that June xxxx-06

L-TYPE=EVENT-BASED-POINT, and we provide the identifier

of the event in the L-EVENT_ID attribute. If an application

does not perform event recognition, or in a given circumstance

is unable to identify the event in question, then the value of

this attribute is left empty.

In some cases the temporal value is expressed as an offset

to the time of an event, as in Example (2):

(2) Ten seconds after the second explosion the plane hit the

ground.

L-VAL=+0000-00-00T+00:10

L-TYPE=EVENT-BASED-POINT L-EVENT_ID=e

(3) Jane got a salary raise the day after Michael lost his job.

L-VAL=+0000-00-01 L-TYPE=EVENT-BASED-POINT

L-EVENT_ID=e

Here the L-VAL attribute encodes the offset, just as it does in

offset point expressions. The specified type of the expression

indicates that the reference time to be used in the interpretation

is the time of the event indicated by the e event variable.

In cases when the time denoted by the expression can

be computed from the time-stamp of the event simply by

refining its granularity, we use a zero-offset just to indicate

the granularity (temporal unit) of the result. Consider the

PAWEL MAZUR, ROBERT DALE: LTIMEX: REPRESENTING THE LOCAL SEMANTICS OF TEMPORAL EXPRESSIONS 205

following example:

(4) I met my wife the year when I bought my house.

L-VAL=+0000

L-TYPE=EVENT-BASED-POINT L-EVENT_ID=e

The temporal value of the expression is to be calculated here

by adding zero years to the year of the event time-stamp, and

discarding any more detailed information that the time-stamp

might provide (e.g. the month and day).

In other cases, the time denoted by the expression may be

exactly the time of the event, as in the following example:

(5) At the time of the peace agreement the United States

agreed to replace equipment on a one-by-one basis.

L-VAL=EVENT_TIME

L-TYPE=EVENT-BASED-POINT L-EVENT_ID=e

Note that the expression does not indicate the granularity.

In such cases, the L-VAL attribute contains the EVENT_TIME

token, which means that the temporal value is the time of the

underlying event.

For point temporal expressions which refer to a part of an

event, as in Example (6), we use the encoding of ordinally-

specified expressions, which we discuss in detail in Sec-

tion III-G:

(6) The casualties included 19,240 dead on the third day of

the Battle of the Somme.

L-VAL=3D L-TYPE=EVENT-BASED-POINT

L-EVENT_ID=e

The 3D value tells us that, of the whole time span of the event,

the expression refers only to the third day.

E. Period Expressions

For expressions that denote periods, L-VAL takes the same

values as the corresponding VAL attribute in TIMEX2; this

also covers those cases where the duration mixes different

units, as in the following example:

(7) This project will run for one year and two months.

L-VAL=P1Y2M

The anchoring attributes are to be filled in only if the

anchor is mentioned within the extent of the expression.

The anchor may be provided in various forms, including an

explicit (see Example (8)), underspecified (see Example (9))

or offset (see Examples (10) and (11)) point. In each case, the

L-ANCHOR_VAL attributes encode that anchoring point in one

of the formats we have already introduced:

(8) The accounts are paid in full for the six months ended 31

March 2009.

L-VAL=P6M

L-ANCHOR_VAL=2009-03-31 L-ANCHOR_DIR=ENDING

(9) The accounts are paid in full for the six months ended

March 31.

L-VAL=P6M

L-ANCHOR_VAL=xxxx-03-31 L-ANCHOR_DIR=ENDING

(10) The renovations will last five days starting tomorrow.

L-VAL=P5D L-ANCHOR_TYPE=DEICTIC

L-ANCHOR_VAL=+0000-00-01

L-ANCHOR_DIR=STARTING

(11) The movie festival will end on 18 July, but then we have

the theatre workshops that will run for a whole week

starting just the very next day.

L-VAL=P1W L-ANCHOR_TYPE=ANAPHORIC

L-ANCHOR_VAL=+0000-00-01

L-ANCHOR_DIR=STARTING

In the last example above we also use the L-ANCHOR_TYPE

attribute to encode the type of the offset of the anchor;

the possible values here are DEICTIC and ANAPHORIC. The

expression may be also anchored implicitly, as in the following

example:

(12) The next three days were extremely hot and humid.

L-VAL=P3D

L-ANCHOR_VAL=+0000-00-00

L-ANCHOR_DIR=STARTING

In such cases we provide the offset in the L-ANCHOR_VAL

attribute, but leave it to the interpretation algorithm to decide

(for example, based on the tense of the sentence) whether the

anchor is deictic or anaphoric.

If the expression itself does not state when the period starts

or ends, then no anchor-related attributes are specified:

(13) The Nile Movie Festival lasted five days. L-VAL=P5D

If the rest of the document provides such information, the

anchor is to be determined in the interpretation stage, when the

global semantics is derived; this also means that the final anno-

tation does not have the L-ANCHOR_VAL and L-ANCHOR_DIR

attributes, it only has ANCHOR_VAL and ANCHOR_DIR.

F. Event-based Period Expressions

For event-based periods, we encode the duration in the L-VAL

attribute just as in the case of other durations discussed in

Section III-E, but the type of the expression in the L-TYPE

attribute is specified as EVENT-BASED-PERIOD. Similarly to

the annotation of event-based point expressions, we provide

the identifier of the underlying event in the L-EVENT_ID

attribute. The time of the event, however, does not serve here

as the reference time to be used in the following interpretation

stage to calculate the value of the VAL attribute; rather, it

determines the location of the period, and is used to compute

one of the period’s anchors. Consider the following examples:

(14) The rate of US combat deaths in Baghdad nearly

doubled in the first seven weeks of the “surge” in

security activity.

L-VAL=P7W

L-ANCHOR_VAL=EVENT_START

L-ANCHOR_DIR=STARTING

L-EVENT_ID=e L-TYPE=EVENT-BASED-PERIOD

(15) The last three days of the battle were extremely brutal.

L-VAL=P3D

L-ANCHOR_VAL=EVENT_END L-ANCHOR_DIR=ENDING

L-EVENT_ID=e L-TYPE=EVENT-BASED-PERIOD

(16) I was so panicked I could not take a single step for 30

minutes after the earth quake.

L-VAL=PT30M

L-ANCHOR_VAL=EVENT_END

206 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

TABLE IX
THE LOCAL SEMANTICS OF ORDINALLY-SPECIFIED REFERENCES.

No Expression Representation (L-VAL)
1 the first Tuesday 1D2
2 the third day 3D
3 the last Tuesday $1D2
4 the last day $1D
5 the last but one day $2D
6 the penultimate day $2D
7 the last month $1M
8 the last February $1M02

L-ANCHOR_DIR=STARTING

L-EVENT_ID=e L-TYPE=EVENT-BASED-PERIOD

(17) There was no terrorist warning in the three years before

the bombing in the underground.

L-VAL=P3Y

L-ANCHOR_VAL=EVENT_START

L-ANCHOR_DIR=ENDING

L-EVENT_ID=e L-TYPE=EVENT-BASED-PERIOD

To handle the fact that events themselves span over some

periods of time, we introduce two tokens, EVENT_START and

EVENT_END, to be used in the L-ANCHOR_VAL attribute. These

tokens indicate which end of the period of the event is to be

used as the anchor.

G. Ordinally-specified expressions

Some temporal expressions use what we call ordinally-

specified elements; for example, the expressions in Exam-

ples (18a)–(18c) make reference to a specific day by means

of selecting the third day of some coarser temporal unit or an

event.

(18) a. the third day of the next month

b. the third day of the previous decade

c. the third day of the trip

To encode such ordinally-specified elements we use the format

$nu, where n is a number, u indicates the temporal unit to

be used, and $ is an optional marker used when the ordinal

is to be counted from the end of some chunk of time (e.g.

last, penultimate). Examples of ordinally-specified elements of

expressions and their representations are shown in Table IX.

Expressions using ordinally-specified elements are anno-

tated with multiple TIMEX2 annotations, as shown in Ex-

amples (19)–(21). The ordinally-specified format is recorded

only in the outermost annotation; the inner expression, which

may be, for example, underspecified or an offset, receives its

own proper representation of its local semantics.

(19) <TIMEX2 L-VAL="3D">the third day of

<TIMEX2 L-VAL="+0000-01">the next month

</TIMEX2></TIMEX2>

(20) <TIMEX2 L-VAL="$1D1">the last Monday of <TIMEX2

L-VAL="xxxx-05">May</TIMEX2></TIMEX2>

(21) <TIMEX2 L-VAL="1D">the first day of

<TIMEX2 L-VAL="2M">the second month of

<TIMEX2 L-VAL="+0001">next year</TIMEX2>

</TIMEX2></TIMEX2>

When deriving the global semantics from the local semantics,

the individual values of the nested expressions must be com-

bined together; the process is carried out recursively from the

outermost to the innermost, resolving the temporal references

while backtracking from the innermost to the outermost.

The type recorded in the L-TYPE of an expression whose

L-VAL is ordinally specified is the same as the type of its

innermost expression; Example (19) is an anaphoric offset,

Example (20) is underspecified, and Example (21) is deictic.

H. Non-Specific Expressions

In many cases the decision that a temporal expression is non-

specific can be only made when analysing the whole sentence,

or even the entire document. For example, consider the generic

references to months in the following sentence:

(22) In the southern hemisphere days are much longer in

January than in July.

These are not obviously non-specific when we consider only

the extent of the expressions themselves. The local semantic

representations are therefore underspecified, i.e. xxxx-01 and

xxxx-07. In the interpretation stage, the lowercase xs must

not be instantiated with a specific year, but must be converted

into markers of non-specificity (uppercase Xs, for example, if

TIMEX2 is the scheme used for global semantics representa-

tion).

Indefinite noun phrases, on the other hand, can already be

recognized as non-specific at the level of local semantics:

(23) a. I was born on a Sunday. L-VAL=XXXX-WXX-7

b. I met my wife on a sunny day in July.

L-VAL=XXXX-07-XX

In such cases, we can already mark the relevant slots as non-

specific, obtaining the same value as expected in VAL.

Periods of indefinite duration, such as a few days, can also

be recognized as non-specific without reference to the context.

The encoding of such durations uses X instead of a specific

number, e.g. PXD.

Similarly, some set expressions can be identified as non-

specific already at the stage of local semantic analysis; for

example, every few days or some Mondays in 2004. Unfortu-

nately, TIMEX2 is unable to represent the semantics of these

expressions correctly,6 and in consequence our representation

fails here too.

I. Set Expressions

The semantic representation of set expressions is complex,

because these expressions do not refer to a single entity, but

to a set of entities. Neither TIMEX2 nor TimeML express the

semantics of these expressions sufficiently well to make these

schemes applicable to all set expressions. As an alternative,

Pan’s [13] first-order logic representation for set expressions,

which is formally sound and has much broader coverage, can

6For example, some Mondays in 2004 is represented just in the same way
as all Mondays in 2004: VAL=2004-WXX-1, SET=YES.

PAWEL MAZUR, ROBERT DALE: LTIMEX: REPRESENTING THE LOCAL SEMANTICS OF TEMPORAL EXPRESSIONS 207

be encoded in OWL; but the complexity of OWL goes far

beyond the goals of TIMEX2 and TimeML.

As indicated earlier, our aim is to provide a representation

for local semantics that is compatible with the use of TIMEX2

for representing the global semantics of temporal expressions.

Inevitably, this compromises the expressiveness of our repre-

sentation.

We indicate the set type by assigning the value YES to

the L-SET attribute (following the use of the SET attribute

in TIMEX2), and we specify any underspecification or offset

that might appear, as in the following examples:

(24) a. every winter in the 80s L-VAL=xx8-WI L-SET=YES

b. monthly L-VAL=xxxx-XX L-SET=YES

In some cases we may be able to obtain a reliable representa-

tion by using values or attribute combinations not authorized

in TIMEX2. For instance, in Example (25a) the expression

is represented by means of any period of two years with its

ending anchored on years having zero as their final digit (e.g.

1960, 1990, 2000). In Example (25b) we do something similar,

but we anchor the periods on the last day of a month (and

in doing so we specify the anchor with the format used for

ordinally-specified references).

(25) a. the last two years of every decade

L-VAL=P2Y L-SET=YES

L-ANCHOR_VAL=XXX0 L-ANCHOR_DIR=ENDING

b. the last two days of every month

L-VAL=P2D L-SET=YES

L-ANCHOR_VAL=XXXX-XX-$1D

L-ANCHOR_DIR=ENDING

This, however, already goes beyond the TIMEX2 rules, which

prohibit using the anchor attributes for set expressions [2,

p. 42].

IV. CONCLUSION

We have developed a string-based representation of the

context-independent semantics of temporal expressions, which

we call LTIMEX. It can be easily integrated with the exist-

ing annotation schemes (specifically, TIMEX2 and TimeML)

which currently allow only for the representation of fully-

interpreted semantics. We are thus proposing an extension

to these schemes that provides a means of support for an

additional level of semantic representation; this in turn leads to

a modular design of temporal expression tagging, with a well-

defined interface between the recognition and interpretation

modules, and allows for more detailed evaluation of taggers.

Table II summarises the attributes used in LTIMEX and

their values. We use in total eight attributes: three are used

in the same way as their TIMEX2 counterparts (L-MOD,

L-SET and L-ANCHOR_DIR); L-VAL represents the partial7

context-independent meaning of the expression; similarly,

L-ANCHOR_VAL encodes information about the temporal lo-

cation of an anchor of a period; and three attributes are

7It is partial in the sense that it does not capture information about temporal
modifiers and anchors, which are encompassed in separate attributes: L-MOD,
L-ANCHOR_DIR, and L-ANCHOR_VAL.

completely new: L-TYPE, which encodes the taxonomical type

of the expression; L-EVENT_ID, which for event-based expres-

sions stores the identifier of the event; and L-ANCHOR_TYPE,

which, for durations with the anchor expressed by means of

an offset, encodes whether it is deictic or anaphoric.

The first obvious task that arises as possible future work is

to use LTIMEX for a significant data annotation task; possible

candidate corpora already annotated with temporal expressions

are WikiWars [14] (TIMEX2) and TimeBank8 (TimeML).

Another area left for future work is the improvement in

the representation of set expressions. This could perhaps be

aligned with further development of TimeML, which is to

become an ISO standard (see the discussion in [15]); although

this goes further than TIMEX2, it still does not have a proper

means to represent the global semantics of set expressions.

REFERENCES

[1] O. R. Alonso, “Temporal Information Retrieval,” Ph.D. dissertation,
University of California, 2008.

[2] L. Ferro, L. Gerber, I. Mani, B. Sundheim, and G. Wilson, “TIDES 2005
Standard for the Annotation of Temporal Expressions,” MITRE, Tech.
Rep., September 2005.

[3] J. Pustejovsky, J. Castaño, R. Ingria, R. Saurı́, R. Gaizauskas, A. Setzer,
and G. Katz, “TimeML: Robust Specification of Event and Temporal
Expressions in Text,” in IWCS-5, Fifth International Workshop on

Computational Semantics, Tilburg, The Netherlands, January 2003.
[4] R. Saurı́, J. Littman, B. Knippen, R. Gaizauskas, A. Setzer, and J. Puste-

jovsky, “TimeML Annotation Guidelines Version 1.2.1,” January 2006.
[Online]. Available: http://www.timeml.org/site/publications/specs.html

[5] NIST, “The ACE 2004 Evaluation Plan,” 2004,
www.itl.nist.gov/iad/mig/tests/ace/2004/doc/ace04-evalplan-v7.pdf.

[6] I. Mani and G. Wilson, “Robust Temporal Processing of News,” in
Proceedings of the 38th Annual Meeting on Association for Compu-

tational Linguistics (ACL ’00). Morristown, NJ, USA: Association for
Computational Linguistics, October 2000, pp. 69–76.

[7] F. Schilder, “Extracting Meaning from Temporal Nouns and Temporal
Prepositions,” ACM Transactions on Asian Language Information Pro-

cessing (TALIP), vol. 3, no. 1, pp. 33–50, March 2004.
[8] D. Ahn, J. van Rantwijk, and M. de Rijke, “A Cascaded Machine Learn-

ing Approach to Interpreting Temporal Expressions,” in Proceedings of

Human Language Technologies: The Annual Conference of the North

American Chapter of the Association for Computational Linguistics
(NAACL-HLT 2007), Rochester, NY, USA, April 2007.

[9] P. Mazur and R. Dale, “The DANTE Temporal Expression Tagger,” in
Proceedings of the 3rd Language And Technology Conference (LTC),
Z. Vetulani, Ed., Poznan, Poland, October 2007.

[10] J. Strötgen and M. Gertz, “HeidelTime: High Quality Rule-Based
Extraction and Normalization of Temporal Expressions,” in Proceedings

of the 5th International Workshop on Semantic Evaluation. Uppsala,
Sweden: ACL, July 2010, pp. 321–324.

[11] P. Mazur and R. Dale, “An Intermediate Representation for the Interpre-
tation of Temporal Expressions,” in Proceedings of the COLING/ACL

2006 Interactive Presentation Sessions. Sydney, Australia: Association
for Computational Linguistics, July 2006, pp. 33–36.

[12] H. Reichenbach, Elements of Symbolic Logic. Macmillan, 1947.
[13] F. Pan, “Representing Complex Temporal Phenomena for the Semantic

Web and Natural Language,” Ph.D. dissertation, University of Southern
California, 2007.

[14] P. Mazur and R. Dale, “Wikiwars: A new corpus for research on
temporal expressions,” in Proceedings of the EMNLP 2010, Conference
on Empirical Methods in Natural Language Processing, 2010.

[15] J. Pustejovsky, K. Lee, H. Bunt, and L. Romary, “ISO-TimeML:
An International Standard for Semantic Annotation,” in Proceedings
of the Seventh conference on International Language Resources and

Evaluation (LREC’10). Valletta, Malta: European Language Resources
Association (ELRA), May 2010.

8See the catalogue entry LDC2006T08 at http://www.ldc.upenn.edu.

208 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

