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Abstract—This paper compares two methodologically different
approaches to gene set analysis applied for selection of features
for sample classification based on microarray studies. We analyze
competitive and self-contained methods in terms of predictive per-
formance of features generated from most differentially expressed
gene sets (pathways) identified with these approaches. We also
observe stability of features returned. We use the features to train
several classifiers (e.g., SVM, random forest, nearest shrunken
centroids, etc.) We generally observe smaller classification errors
and better stability of features produced by the self-contained
algorithm. This comparative study is based on the leukemia data
set published in [3].

I. INTRODUCTION

B
UILDING diagnostic or prognostic classifiers based on

profiles of gene expression from microarray or similar

massive throughput experiments seems one the most challeng-

ing tasks in bioinformatics. The problem of class prediction

can be regarded as ill-formulated as the number of samples

(e.g., patients) in a typical microarray study does not exceed

a few hundred with the number of features (gene expression

values) recorded for a sample usually exceeding 20 thousand.

Many different approaches to class prediction based on mas-

sive throughput data were proposed (e.g., [7], [10], [13], [14]).

One of the most challenging problems is related to feature

selection based on high dimensional data. Standard approaches

start with identification of sets of differentially expressed genes

to be used as features for class prediction. These methods

focus on features with individual strong predictive power,

however they treat the features as unrelated and they do not

take into account potential (biological) relationships among

features. This explains why most feature selection methods

produce very unstable features, ie. small changes in training

data result in different feature sets, [25], [15], [16]. This further

explains why classifiers built from microarray studies are very

sensitive to the selection of parameters (such as the number

of features, etc.), and generally demonstrate unstable estimates

of prediction error.

In our previous work [17], we proposed an enhanced

procedure of feature selection based on domain knowledge

about potential relationships among features (genes). Such

knowledge of groups of functionally related genes is available

in databases e.g., KEGG, Gene Ontology or Biocarta, and is
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now being actively developed. The method proposed in [17]

derives features for class prediction from the most strongly

activated pathways. In [17] we compare this approach to the

standard method and empirically show that although individ-

ually weaker, the new features seem more stable and bring

improved performance.

In [17] the global test algorithm, developed in [11], was

applied to identify activated pathways to be used as features

for class prediction. Recently different approaches to gene set

analysis were proposed, e.g., [8], [23], [11], [4], [25]. They

can be broadly categorized as competitive or self-contained,

and they fundamentally differ methodologically, [12]. It is not

clear whether these two approaches produce similar feature

sets in terms of their predictive performance and in terms of

stability. The purpose of this work is to investigate this issue.

We compare predictive performance of features generated

with a selected competitive method (Gene set analysis (GSA)

algorithm) and a selected self-contained method (global test).

We also analyze whether the feature sets differ in terms of

stability.

The organization of the paper is as follows. First, com-

petitive and self-contained methods of gene set analysis are

described in detail. Then an algorithm of sample classification

based on activation of gene sets is presented. The algorithm

is later used to evaluate predictive performance and stability

of feature sets returned by the two gene set analysis methods.

Finally, results of a comparative study are elaborated based on

a real microarray assay.

II. GENE SET ANALYSIS METHODS

Many different approaches to gene set analysis have been

recently proposed. An overview of the most important methods

is available in [25], and the statistical issues related to these

different methods were analyzed by Goeman and Buehlmann

in [12]. The earliest developed and probably simplest methods

compare the list of genes in the set of interest with the list of

differentially expressed genes. An example of such methods is

the over-representation analysis (ORA) proposed in [6], which

compares these two lists of genes by means of contingency

tables. The chi-square test is used in order to verify the null

hypothesis that the differentially expressed genes are not over-

represented in the gene set of interest. Rejection of the null

hypothesis indicates that the gene set is differentially expressed
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(or activated). An extension of the ORA method is the Gene

Set Enrichment Analysis (GSEA), proposed in [20], [23],

which does not require that genes are potentially arbitrarily

declared as differentially expressed by using a fixed threshold.

The method ranks the genes by some measure of differential

expression and then tests the null hypothesis that the members

of the gene set of interest are uniformly distributed along the

ranking list. The null is tested against the alternative that the

gene set appears at the top or bottom of the ranking list, ie. can

be regarded as activated. GSEA uses a modified Kolmogorov-

Smirnov statistic to test the null hypothesis. Another method,

based on GSEA is the Get Set Analysis (GSA) algorithm

developed in [8]. It uses a maxmean statistic in place of the

Kolmogorov-Smirnov test which leads to slightly better power.

In the methodological paper [12], these and similar ap-

proaches were named as competitive methods. These methods

test whether a gene set is differentially expressed (or associated

with the target) by comparing expression of genes in the set

with expression of genes not in the set. A fundamentally

different approach is realized by self-contained methods [12],

which directly analyze association of genes in the set of

interest with the target and do not take the remaining genes

into account. Examples of self-contained methods are the

Global Test [11], Global Ancova, [18], PLAGE, [24] or SAM-

GS proposed in [4].

In this work we use gene set analysis methods to identify

pathways which will be used to generate features for classifica-

tion of samples. We identify the most differentially expressed

(or activated) pathways and then use genes in these pathways

as features for class prediction. In this study, we use one self-

contained approach (global test) and one competitive method

(GSA algorithm) and experimentally compare these methods

in terms of (a) predictive power of features returned, and (b)

stability of features in the presence of small modifications of

data. The gene set analysis methods used in the study are now

explained in detail.

A. Competitive methods – GSA algorithm

The competitive methods compare differential expression of

genes in the gene set of interest G with expression of genes not

in G. More specifically, they aim to verify the null hypothesis:

H0 : The genes in G are at most as often differentially

expressed as the genes not in G.

The GSEA method and its more powerful version GSA test

the specific null hypothesis that the genes in the set G are

uniformly distributed over the list of all genes ranked by some

measure of differential expression.

In order to test the hypothesis, the GSA algorithm uses the

maxmean statistic [25]:

M = max
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where m is the number of genes in G and ti is the measure

of differential expression of the i-th gene in G.

Significance of the M statistic is evaluated using the permu-

tation test (permutation involves both genes and class labels).

In the algorithm proposed in the next section we will use

the permutation based p-values to select the top differentially

expressed pathways whose member genes will be used as

features for class prediction.

B. Self-contained methods – global test

The global test method aims to verify the null hypothesis

of no association of the set G with the target, namely:

H0 : No genes in a set G are associated with the target (ie.

no genes in G are differentially expressed).

In order to test the hypothesis, global test uses generalized

linear models to express the relationship between expression

of genes in the set G and the target, such that

g (E (Yi|β)) = α+
m
∑

j=1

xijβj (2)

where g is link function in generalized linear models (e.g.,

the logit function for binary target), xi· denotes vector of

expression of m genes in the gene set G for sample i, with

class label Yi, and βj is the coefficient for gene j.

The assumption that no genes in G are associated with the

target is equivalent to testing the null hypothesis:

H0 : β1 = β2 = . . . = βm = 0 (3)

Global test assumes that the coefficients β1 . . . βm are iid

with mean 0 which simplifies the hypothesis and makes the test

feasible given small number of samples relative to the number

of genes in G. In the algorithm presented in the next section

we will use pathways with the smallest global test p-value as

features for class prediction.

III. ALGORITHM OF CLASS PREDICTION

In [17] we proposed an algorithm for class prediction based

on activation of pathways and compared it with the com-

monly used approach where top most differentially expressed

unrelated genes are used as features. Here we will use a

slightly modified version of this algorithm, with two different

methods of feature selection: GSA-based and global test (GT)-

based. The estimates of the expected prediction error (EPE)

returned by the algorithm will be used as a measure of quality

of features produced by these competing gene set analysis

methods.

Using the same notation as in [17], we denote results of

a microarray study as a matrix Xn,p with p features (gene

expressions) measured for n samples, with class designation

for a sample i given in Yi, i = 1, 2, . . . , n (which represent

e.g., tumor and control samples). Also let PWDB be the set

of d subsets (denoted PWi, i = 1, 2, . . . , d); these represent a

priori domain knowledge of groups of related features (e.g.,

genes in a signaling pathway or genes with a common GO

term, etc). The purpose of the algorithm proposed in [17] is
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to (a) build the sample classifier given X , Y and PWDB, and

(b) estimate the expected prediction error for new samples.

Since the number of samples n is small relative to the number

of features p (the p ≫ n problem), the EPE has to be estimated

by data reuse techniques. We use internal cross validation

(CV) where the data are repeatedly split into training and test

partitions, with the EPE calculated as the average misclassifi-

cation rate over all the test partitions. Internal cross validation

places the feature selection step within subsequent iterations

of cross validation, which is mandatory to obtain a reliable

measure of classifier performance, as argued e.g. in [19]. (Note

that the commonly used and computationally cheaper external

cross validation realizes the feature selection step once, prior

to the CV loop, and based on the complete training data.)
It should be noted that by using internal cross validation we

can simultaneously observe stability of features generated un-

der slight modifications of the training data. Namely, with the

leave-one-out (LOO) internal cross validation scheme the data

used for feature selection differs by one sample in consecutive

iterations of CV. Hence by observing how the features change

during CV steps we will be able to compare the GSA and GT-

based procedures in terms of stability of features generated.

This is the main justification of our choice to use the LOO

cross validation loop in the algorithm proposed. It should noted

that LOO cross validation (realizing low bias but high variance

of the estimate of prediction error) is often used in similar

studies, e.g., [9], [21], [22].
It should be noted that poor stability of features produced

by standard methods (ie. by selecting most differentially

expressed unrelated genes) may account for unstable behavior

of classifiers built from microarray data [16].
The class prediction algorithm can be summarized in the

following steps.

1) Leave out sample i, i = 1, 2, . . . , n for model testing,

ie., remove row i from X and element i from vector Y

and denote the remaining matrix and vector as Xi and

Y i.

2) Using the training data (Xi, Y i) calculate the p-

value with the GT or GSA for each of the PWs

in PWDB. Order the PWs by increasing p-value:

PW(1), PW(2), . . . , PW(d).

3) Remove columns from Xi related to features not present

in PW(1) ∪ . . . ∪ PW(k), denote this matrix as Xi
tr.

4) Using the training data (Xi
tr, Y

i) fit a predictive model

f and classify the sample Yi as Ŷi = f(Yi).
5) In the list of counters c (PWj) , j = 1, . . . , d, corre-

sponding to the d elements of PWDB, increment the

counters c
(

PW(j)

)

, j = 1, . . . , k, which correspond to

the PWs selected in the current step.

6) Repeat steps 1 through 5 for i = 1, 2, . . . , n.

7) Calculate the expected misclassification rate as EPE =
1
n

∑n

i=1 I(Ŷi 6= Yi).

In the following section, we will compare performance of

several classifiers based on GSA or GT features in terms of

the EPE. For the purposes of this numerical example, the

following classifiers were used:
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Fig. 1. Number of misclassifications as a function of the number of PWs
selected. SVM classifier. Solid line - GSA method, dashed line - global test.

• support vector machine (SVM),

• logistic regression with L2 (Ridge) penalty,

• nearest neighbors,

• nearest shrunken centroid algorithm,

• random forests.

The cost parameter of the SVM classifier as well as the

lambda (shrinkage) parameter of the logistic regression were

tuned using a simple grid search.

We will also compare the methods in terms of stability of

features selected for varying number of gene sets used as

features: k ∈ {1, 3, 5, 10, 20, 30}. Note that the counters in

step 5 of the algorithm are maintained to facilitate stability

analysis.

IV. COMPARATIVE STUDY

The numerical study is based on a subset of the acute

leukemia microarray data, published by S. Chiaretti [3]. The

dataset includes n = 79 samples with p = 12625 gene ex-

pressions; 37 samples represent patients with leukemia and 42

samples represent the control group (the samples are labeled in

the original data as ‘BCR/ABL’ and ‘NEG’, respectively). In

this example we use the KEGG signaling pathway databases

as the collection of gene sets PWDB. The task is to classify

patients as leukemia or control based on a profile of most

activated pathways.

The overall performance of the different classifiers for

varying number of most activated pathways used as features

is summarized in Figs. 1 through 5. In the figures the EPE

obtained for the global test and GSA feature selection is

compared (note that the EPE is shown as the the number of

misclassified items in 79 iterations of cross validation rather

than the ratio).
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Fig. 2. Number of misclassifications as a function of the number of PWs
selected. Logistic regression. Solid line - GSA method, dashed line - global
test.
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Fig. 3. Number of misclassifications as a function of the number of PWs
selected. KNN classifier. Solid line - GSA method, dashed line - global test.

We observe that the overall best result was realized by the

random forest classifier with k = 3 top PWs selected by the

GT algorithm. The winning classifier realized 9 misclassifica-

tions, ie. EPE = 11%. This result is better than the best result

obtained with the standard feature selection method where the

top ranking unrelated genes are selected as features [17]. We

also observe that for all the five classifiers the smallest number

of misclassifications along k ∈ {1, 3, 5, 10, 20, 30} is always

realized for features selected by the global test (dashed line
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Fig. 4. Number of misclassifications as a function of the number of PWs
selected. Nearest shrunken centroid algorithm. Solid line - GSA method,
dashed line - global test.
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Fig. 5. Number of misclassifications as a function of the number of PWs
selected. Random forest algorithm. Solid line - GSA method, dashed line -
global test.
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Fig. 6. Features selected in consecutive iterations of CV with corresponding
frequency, 1 PW.
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Fig. 7. Features selected in consecutive iterations of CV with corresponding
frequency, 3 PWs.

in Figs. 1–5), rather than the GSA method (solid line). The

smallest number of misclassifications observed for consecutive

classifiers are:

• SVM: 13,

• logistic regression: 11,

• nearest neighbors: 13,

• nearest shrunken centroid algorithm: 13,

• random forests: 9.

It can be observed that with growing number of features

(for k > 3), performance of models generally deteriorates,
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Fig. 8. Features selected in consecutive iterations of CV with corresponding
frequency, 5 PWs.
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Fig. 9. Features selected in consecutive iterations of CV with corresponding
frequency, 10 PWs.

however this effect is strong only for the nearest neighbors

classifier (Fig. 3), as the other models internally realize feature

selection and therefore are more immune to overfitting.

Another important characteristic of the competing methods

is stability of features observed when data changes slightly.

Analysis of stability of features is doable using the table of

counters c(PWj), j = 1, . . . , d maintained in step 5 of the

algorithm. The counters record how often (in all 79 iterations

of cross validation) a given pathway was selected as a feature.

High values of the counters indicate that the feature selection
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Fig. 10. Features selected in consecutive iterations of CV with corresponding
frequency, 20 PWs.

method tends to produce the same features even if data is

(slightly) different. On the other hand, if a change of just one

sample in the training data leads to many different features,

this should be regarded as a drawback of feature selection

used.

To analyze stability of features, we first present values of the

counters c for varying value of k (ie. the number of pathways

selected as features) – Figs. 6–10. Fig. 6 shows that the global

test kept selecting the same PW (PW with index = 184) over

all iterations of CV, while GSA selected 6 different features in

79 iterations, with the feature with index = 86 selected most

frequently. (It should be noted that pathways in Figs. 6–10 are

denoted by indices to the table of KEGG pathways, as given

e.g. in the Bioconductor hgu95av2.db package. For instance,

the pathway index=184 corresponds to the KEGG pathway ID

05130.)

For k = 3 (Fig. 7) global test always selects 2 features (184

and 130) and 77 out to 79 times also feature 214. The GSA

selects 10 different features (with the winner PW=86 selected

75 times). Similar observations hold for Figs. 8–10.

Although in the method proposed we do not check if p-

values of the selected PWs are significant (as we rely on

feature selection capabilities of the classifier used next), we

observe in this study that all the top k PWs selected in step 3

are significant under multiple testing adjustment for k up to 20

(Holm-adjusted p-values below 0.05). It should be also noted

that since the number of items in PWDB is much smaller

than the number of genes (e.g., KEGG database includes

ca. 200 pathways, as compared with ca. 104 genes on a

typical microarray), multiple testing correction in the proposed

method will be much less conservative than in standard gene

selection procedures.

TABLE I
NUMBER OF DIFFERENT PWS SELECTED AS FEATURES (NF) AND MEAN

FREQUENCY OF PW SELECTION IN THE CV PROCEDURE AS A FUNCTION

OF THE NUMBER OF TOP PWS (K IN STEP 3 OF THE ALGORITHM)

No of top PWs (k)
GSA GT

NF mean freq (%) NF mean freq (%)

1 6 16.7 1 100.0

3 10 30.0 4 75.0

5 17 29.4 8 62.5

10 29 34.5 15 66.7

20 43 46.5 29 69.0

30 55 54.5 37 81.1

Analysis of stability can be summarized by using two

measures calculated from the tables of counters c (see step 5

of algorithm):

NF =
d

∑

i=1

I(c (PWi) > 0) (4)

which gives the overall number of different features selected

in n = 79 rounds of cross validation, and

mean freq =
1

nNF

d
∑

i=1

c (PWi) =
k

NF
(5)

which shows mean frequency of selection of features in the

set of NF different features in n rounds of cross validation. It

should be noted that for fixed value of k the second measure

does not provide any more information than NF, however

this measure is convenient to highlight the difference between

the methods. Results for k ∈ {1, 3, 5, 10, 20, 30} are given

in Tab. 1, with the mean frequency expressed as percentage.

As already observed in Fig. 6, global test always selected

one feature (NF = 1, hence the frequency of its selection

is 100%, ie. 79 times in 79 rounds of CV); the GSA selects

6 features, each with mean frequency equal ca. 17% (which

translates into 13 times a feature is selected in 79 rounds of

CV). For growing k = 1, 3, 5 we observe decreasing mean

frequency, which suggests that a growing number of weaker

features start getting included, which leads to less consistent

feature selection when data changes. It is interesting to notice

that for k > 5 the mean frequency again increases, however

explanation of this effect requires further investigation.

The final conclusion from stability analysis is clear: the

sets of features selected by global test seem more stable as

compared to GSA-based features. This characteristic of the

global test may account for better predictive performance of

these features.

V. CONCLUSIONS

In this work two methods of gene set analysis were em-

pirically compared in terms of predictive performance of

classifiers built using most activated pathways as features.

The methods realize different approaches to pathway analysis:

global test is a self-contained algorithm and the GSA is a

competitive method. The comparative study brings several
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interesting observations. First, the self-contained method out-

performs the competitive approach in terms of classification

error. Second, features selected by the self-contained method

appear more stable if data is modified. This is a remarkable

characteristic of this feature selection procedure, as due to

high dimensionality and small number of samples used for

microarray class prediction, standard methods of feature selec-

tion demonstrate poor stability. Finally, the methods do select

different features (pathways) for prediction (although some

overlapping is observed). Based on these results a number of

interesting questions and directions for further research can be

raised. First, it seems interesting to investigate characteristics

of the features returned by the self-contained and competitive

methods: whether the activation of pathways is due to weaker

effect observed consistently over a large number of member

genes, or on the contrary - the method favors stronger local

effect in the set of member genes. Next, a hybrid method is

worth considering which would combine the strong points of

these two approaches. Further research is also necessary into

how features can be generated in a more sophisticated way

out of the set of most activated pathways. Also, the proposed

method requires more comprehensive validation based on

further microarray datasets as well as simulated data. Although

the purpose of this work was to compare different approaches

to gene set analysis in terms of quality of feature selection,

another interesting direction for further research involves com-

parison of these prior biological knowledge based methods

with regularized learning techniques such as ridge regression,

lasso or elastic net.
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