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Abstract—The paper describes the process of designing a
task-oriented continuous speech recognition system for Polish,
based on CMU Sphinx4, to be used in the voice interface of
a computer game called Rally Navigator. The concept of the
game is presented, the stages of creating the acoustic model
and the language model are described in details, taking into
account the specificity of the Polish language. Results of initial
experiments show that as little as 15 minutes of audio material
is enough to produce a highly effective single-speaker command-
and-control ASR system for the computer game, providing the
sentence recognition accuracy of 97.6%. Results of the system
adaptation for a new speaker are presented. It is also showed
that the statistic trigram-based language model with negative
trigrams yields the best recognition results.

I. INTRODUCTION

A
UTOMATIC speech recognition (ASR) systems gradu-

ally replace keyboards and touch pads in various appli-

cations - so it happens in word processors where dictation

software is being introduced. But there are also trials to replace

joysticks and buttons in computer games, thus making the

games more interesting and enabling multimodal input. ASR

systems can be successful in computer games, on condition

that they provide high recognition accuracy and short process-

ing time.

To ensure realistic conditions, an ASR system in the com-

puter game should be able to recognize continuous speech,

which is how people usually talk. Continuous speech recogni-

tion is much more difficult than recognition of isolated words.

What is more, apart from a few examples ([1], [2]), such

systems barely exist for the Polish language, which is highly

inflective and thus hard to recognize.

This paper describes experiments with designing a small-

vocabulary task-oriented automatic continuous speech recogni-

tion system for Polish, which can be used in the voice interface

of a computer game.

II. AUTOMATIC SPEECH RECOGNITION

A. Methods for Continuous Speech Recognition

Early works on ASR systems, starting in the 1950s, con-

cerned recognition of isolated phonemes, or at best - a few

words. One example is the isolated digits recognizer con-

structed at Bell Labs in 1952 [3]. The invention of Dynamic

Time Warping (DTW) in the late 60s allowed for projects

on larger-vocabulary word recognition and for processing

of connected words [4]. In 1971 the ARPA SUR (Speech

Understanding Research) program started, aiming at creating

a reliable large vocabulary ASR for continuous speech. One

of its results was HARPY - an ASR system developed at the

Carnegie Mellon University, working with semantic accuracy

of 95% at the processing speed of 80 times real-time [4]. Stud-

ies on continuous speech recognition continued intensively in

the 1980s, when the usage of statistic acoustic modeling and

statistic language modeling advanced, and they have continued

till nowadays.

The key to successful continuous speech recognition is a

combination of a highly accurate acoustic modeling (AM) and

a proper language modeling (LM).

1) Acoustic modeling: its aim is to recognize as accurately

as possible the phonetic content of the input speech signal, by

comparing parameters of the speech signal (usually MFCC -

mel-frequency cepstral coefficients or PLP - perceptual linear

prediction parameters) with acoustic models stored in the

ASR system. There were successful trials of using artificial

neural networks for phonetic modeling, but contemporary

systems almost exclusively use statistical acoustic modeling

based on Hidden Markov Models (HMM). Context-dependent

phonemes, called also triphones, are usually the base speech

units used in acoustic modeling. Efficient acoustic models are

trained on multi-speaker speech corpora containing hours of

transcribed recordings, therefore their preparation for a new

language is a very demanding and time-consuming task.

2) Language modeling: it is very important, because for

continuous speech the word boundaries are difficult or impos-

sible to detect. The language model enables the ASR system to

decode the sequence of phonemes, recognized during acoustic

recognition into the correct sequence of words. A proper

language model makes it very likely that the recognized

sequence will have correct syntax and will be semantically

correct. One of the language modeling techniques is the use of

N -grams [5]. In this statistical method sequences of N words

are assigned various likelihoods. Such a language model is

created based on statistical analysis of a given language or a

given domain, depending on the ASR type (e.g. if it is a large-

vocabulary one or task-oriented). N ranges usually between

2 to 4. Some probability mass is left for 2-grams (bigrams)

and 3-grams (trigrams) unseen during the training procedure

- such an operation is called model smoothing.

Effective way of decoding the text is to perform a Viterbi

search on a recognition network (it can be in the form of
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a tree or word lattice), built out of the lexicon. Because of

high calculation complexity, often the acoustic recognition

(phoneme-based) and lexical one (word-based) are performed

sequentially: as we proceed with the signal analysis, word

sequence hypotheses are created, and at the same time acoustic

and language scores are calculated, so that only the paths with

highest scores are continued. The sequence with the highest

score which reaches the end of the signal is the decoded

sentence.

Another method of approaching language modeling is to

build a grammar describing all possible phrases. To describe

a grammar one can use Java Speech Grammar Format (JSGF)

[6], which is a part of Java Speech API [7] and is designed for

strict command and control systems. The grammar is defined

by declaring rules which can contain either words, operators,

or other previously declared objects. Such a language model

based on grammar leaves no margin for any unforeseen word

sequence.

B. The Sphinx Framework

CMU Sphinx framework, partly funded by DARPA, was

created and has been continuously developed at Carnegie Mel-

lon University. It consists of several subprojects. In our work

we used SphinxTrain [8] and Sphinx4 recognizer. SphinxTrain

consists of tools written in C which can be used to train and

adapt acoustic models. It also provides scripts which simplify

acoustic model generation. Sphinx4 is written in Java and is

a complete recognition system with modular architecture. It

communicates with the application in two ways: the first one

is the input, which acquires the audio data, and the output,

which returns the recognition - the best match for the data. The

other communication input is a recognizer control mechanism

and the output are system state notifications.

Internally, Sphinx4 consists of the frontend, the decoder, the

linguist and the configuration manager. The frontend receives

audio data and may perform early signal modifications like

removing long silences or amplifying the signal. After the

signal leaves the frontend, the feature extraction occurs and the

data reaches the decoder. Simultaneously the linguist generates

the possible word sequences (possibly as word lattices or trees)

based on the language model and sends them to the decoder.

With the voice features and data from the acoustic model the

decoder scores the possible sequences keeping only the most

probable. After the signal finishes or a final state is reached,

the result of the recognition is returned to the application. This

corresponds to the speech recognition process described earlier

in Section II.A.

Many of the above mentioned elements have several imple-

mentations, and each implementation can be separately con-

figured. E.g. there are implementations for both N -gram and

JSGF language models. The Sphinx framework was originally

designed for English, but nowadays it supports also, among

others, Spanish, French and Mandarin. However, there are no

acoustic nor language models available for Polish.

To use it with Polish, the package required some modifi-

cations to work properly, e.g. several internal classes needed

to be adapted to correctly read names containing non-ASCII

characters, which were found in the language models and

dictionaries.

C. Speech Recognition in Computer Games

Nowadays computer games are a large and well developing

industry, generating high revenues. To be successful in the

market, a game has to be easy to play, intuitive, must be fun

and interesting and, last but not least, must not irritate the

player.

While the first three of the requirements apply rather to the

game design, the last one refers as well to the ASR system,

and it places severe restrictions on the system. First of all,

the system must recognize the command in a short time. The

amount depends on how fast is the action in a game, but times

greater than one second are definitely too long. Secondly, the

accuracy of recognition must be really high. Should the system

make an error and issue a wrong command, the player would

be unhappy. Should such situation occur repeatedly, he or she

would quit the game and never play it again.

An ideal game using speech recognition should work ro-

bustly for every speaker, including people with various accents,

non-native speakers and even people with speech deficiencies.

There are many factors that can have negative impact on

speech recognition robustness:

• usually a fairly low quality microphones being used;

• games are often played in noisy environments;

• highly-effective, fast ASRs consume large amounts of

computing power, which may limit their usability on

consoles and older PCs.

It is, however, advantageous that games usually require

command-and-control (task-oriented) systems, which are eas-

ier to implement.

A computer game is a specific environment for a speech

recognition system. It can be treated as a special type of a

dialog system, in which in some cases the game may actually

predict what the user might want to say, knowing the game

scenario. This way the system may modify dynamically the

language model to reflect that. Care must be taken while

implementing such features and changes to the model must

remain moderate.

The usage of speech recognition systems in computer games

is yet unexplored. There have been a few attempts to utilize

ASR systems, particularly in strategy games [9] and flight

simulators [10]. ASR systems implemented in these games

did work properly, but have not been enthusiastically accepted,

mostly because they were tedious to use.

III. DESIGNING THE RECOGNITION SYSTEM FOR POLISH

In this section we will describe specificity of the Polish

language, we will present the concept of the computer game

Rally Navigator which is going to use the ASR interface and

we will describe the consecutive steps of designing the speech

recognition system for this game.
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TABLE I
POLISH PHONEMES INVENTORY, BASED ON [11]

phoneme type voiceness phonemes (in SAMPA)

vowels voiced a e o u i I
nasals voiced m n n’ N

plosives
unvoiced
voiced

p t k k’
b d g g’

fricatives
unvoiced
voiced

f s s’ S x
v z z’ Z

affricates
unvoiced
voiced

ts ts’ tS
dz dz’ dZ

laterals voiced l
liquids voiced j w
trills voiced r

A. The Polish Language

The Polish language belongs to West-Slavic language fam-

ily. Spoken language contains 38 phonemes: 6 vowels and 32

consonants [11], out of which fricatives are the most numerous

(9 phonemes). Most of the phonemes (plosives, fricatives

and affricates) exist in pairs: unvoiced-voiced, e.g. [ts’] -

[dz’]. Some of these voiced phonemes become unvoiced in an

unvoiced context (so called devoicing), and opposite: unvoiced

phonemes can become voiced in certain circumstances. This

results in pronunciation variation. As for the prosodic features:

a melody (pitch contour) of the word is irrelevant to the word’s

meaning, however the sentence melody sometimes carries

semantic information (e.g. can make a question or add an

emotional flavor).

¿From the point of view of grammar, the Polish language is

complex. It is highly inflective - nouns are inflected according

to 7 cases and 2 numbers, verbs are inflected according

to gender, tense and number, adjectives and numerals are

inflected, too [12]. There are 3 genders in singular and 2

genders in plural. Thanks to the high inflection, the word

order in a Polish sentence is rather free, as the function of

the word (e.g. whether a noun is a subject or an object) is

determined by the form of the word, and not by the position

of the word within the sentence. Subjects are often dropped,

because they can be deducted from the form of the verb. There

are no articles preceding nouns or any other parts of speech.

These features make continuous speech recognition for

Polish quite a demanding challenge. Lack of articles makes

detecting nouns difficult. High inflection sometimes causes

a single word to have dozens of forms, which often sound

similarly. Loose word order makes it very difficult to create a

good language model. Pronunciation variation, which can be

helpful in speech synthesis [13], disturbs speech recognition.

Luckily these problems are less severe if we consider a

small vocabulary recognition, which is usually the case for

a computer game.

B. Concept of the Computer Game

Our main aim while inventing the game was to make the

ASR system its integral part, not an additional or alternative

way of controlling it. We also wanted the game to be original

and innovative, possibly giving the player an opportunity

to experience something he has not experienced before. We

settled on a game we called Rally Navigator in which the

player would compete in races - not as a driver, but as a

navigator. The player’s task would be to provide the driver

with information about the route and track elements like

curves and straights. To make the game more difficult (and

the ASR system more complex) we also decided to include

speed control and gear switching. The aim of the game is to

win the rally. The more precise and well-timed the information

supplied by the player, the quicker the car reaches the finish

line.

C. Developing the Acoustic Model

The following elements were required to train a new acous-

tic model:

• audio data with recorded speech;

• transcription of each audio file;

• dictionary with phonetic representations of all words

appearing in the transcriptions;

• list of phonemes (and sounds) appearing in the transcrip-

tions.

The amount of audio data required to properly train the

model depends on the type of the model. For a simple

command-and-control one-speaker system (the one we began

from) the amount of data can be fairly low. For multi-speaker

systems the amount of required audio increases, and increases

even further for dictation purposes.
To reflect the conditions in which the system will be used,

the audio signal was recorded in a home environment, using

16 kHz sampling. The speaker read the following:

• 114 specially designed, phonetically balanced COR-

PORA [14] sentences, which contain all phonemes and

all diphones (pairs of phonemes) appearing in the Polish

language;

• the same set of sentences, but spoken faster. The reason

behind the faster set of data is that we predict that in

our game the players will sometimes speak hastily, for

example for a sequence of tight curves. The Corpora

sentences in total formed 11 minutes of our training data;

• sample commands, which will be used in game, and

numbers, which must be correctly recognized for the

game to work (curve angles are described with numbers,

so are gears and lengths of straight road).

In total, we prepared 25 minutes of audio.
The audio files were then transcribed, including special

silence marks for all silent moments appearing in the file.

Such marks allow the training algorithm to better align the

speech and, in turn, produce better models.
The phonetic dictionary was prepared in such a way that it

contained all words with all possible variants of their pronun-

ciation, to take into account pronunciation variability, caused

by various speaking manners and the specificity of Polish,

described earlier. Careful preparation of phonetic dictionary

prevents from incorrect association of a phoneme with audio

parameters of a different phoneme which would effect in

decreasing the model’s accuracy.
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The list of sounds contained mostly phonemes, but also

sounds like clicking a mouse button or breathing. It is impor-

tant to include such sounds in the transcriptions (if they occur

in audio files) for two reasons: they will not be mistaken with

other phonemes during training and the working ASR system

may successfully recognize and omit them.

To train our acoustic model we used applications and scripts

from SphinxTrain [8], which is a part of CMU Sphinx.

D. Training the Language Model

We decided to use a tool supplied by CMU Sphinx called

Sphinx Knowledge Base Tool [15], which generates the lan-

guage model from a list of sentences. The quality of the

model therefore depends on how well the list is prepared

or, in other words, how well it reflects the commands which

will be issued in the system. The generation process itself is

simple, the tool notes and counts all appearing n-grams and

then converts the results to n-gram language model format

compatible with Sphinx. The harder part is creating a good

set of sentences. For example, creating a file with all possible

commands is actually not a good idea. Longer commands with

more parameters would dominate the data making the less

complex commands less probable and the model would then

not reflect the real probabilities of N -grams in the system.

Furthermore, the amount of possible commands is very large,

especially if we want to make the system flexible and allow

different variations of the same command. One solution would

be to repeat the less complex commands in the training file,

so that their amount would be similar to the more complex

ones. This would make the file enormously big. But what if

we wanted to include two commands in a single sentence? We

could then make all possible combinations of these commands,

but that would cause the file to grow exponentially.

For our model we have decided to take a different approach.

We split our commands into at least three word long parts,

each part with at most two parameters and generated all

possible variations of each of such fragments. Some of these

fragments overlapped, so that all possible bigrams and trigrams

were included. This way also allowed us to repeat the less-

parametrized fragments, since the amount of repetitions did

not have to be large. This whole operation caused our training

file to become very small, simple and quick to generate.

After using the Sphinx Knowledge Base Tool on this file, the

resulting model required some fine-tuning. Most importantly

all impossible silence-starting and silence-ending N -grams

were removed.

The last stage of building the model was the inclusion of,

as we called them, negative n-grams, which are artificial n-

grams with near-zero probability. All sequences built from

unigrams, even if they are not included in bi- or trigrams, have

a greater than zero probability of being recognized. Negative

N -grams can be used to disallow word sequences which we

consider invalid in our systems, but are sometimes incorrectly

recognized by the system. We have identified several such

sequences using our tests and included appropriate negative

N -grams in our language model.

Our JSGF grammar was created manually. First we defined

groups of words describing parameters in our commands, like

distances, directions and angles. Then we defined constant

fragments of commands using these groups, some of these in

a few variations, each correct from polish languages point of

view. Next step was grouping these fragments into commands,

and some commands into sequences of commands. It is im-

portant to note, that we have tried to relax the strict commands

by making some words optional, and providing alternatives to

some of the words. After the grammar was complete we ran

the tests, and then repeated the whole process for sentences

from the tests which did not match any of the grammars rules.

IV. RESULTS

This section presents the most significant results of the

carried out experiments.

The ASR system was tested using a set of 85 recordings,

containing commands which are likely to occur in the Rally

Navigator game. It contained phrases 2-16 words long, total

number of tested words was 422. 2 male speakers were

recorded, speaker A whose voice was used the acoustic model

training, and speaker B used only for testing. Total time of

test recordings was 489 s.

Usually when testing ASR system tests, the following

metrics are evaluated:

• substitutions (Sub) - the number of words which were

recognized as other words

• insertions (Ins) - the number of words which were

wrongly added to the recognized words

• deletions (Del) - the number of words which omitted in

recognition

• word error rate (WER) - the ratio of word recognition

errors (such as substitutions, insertions and deletions)

against the total number of words;

• word accuracy (WA) - the ratio of correctly recognized

words against the total number of words; it is strongly

related to WER;

• sentence accuracy (SA) - the ratio of correctly recognized

sentences against the total number of sentences.

Figure 1 shows the recognition performance for various

language models. The JSGF grammar yielded the worst results

(WA = 79.15%, SA = 61.2% for speaker A). More detailed

analysis of the recognition logs showed that it worked very

well only for short sentences. However, it had trouble correctly

interpreting long word sequences, especially if they consisted

of more than one short command. The recognizer would in

such cases completely ignore the data after the first command,

in spite of the used grammar definition which allowed com-

pound commands.

After switching to the N -gram language models, the recog-

nition improved. Even unigram models enabled accuracy better

than the one for JSFG, but after adding information about

probabilities of bigrams and trigrams, the results improved

significantly, yielding word accuracy of 98.58% and sentence

accuracy of 92.9%. The use of negative trigrams turned out to
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Fig. 1. Word accuracy and sentence accuracy for recognition using various
language modeling.

be a successful move, giving for speaker A the final result of

WA = 99.29% and SA = 96.5% .

Figure 2 displays the performance of recognition when the

acoustic models were trained with different size of audio data.

The word error rate for speaker A after training the acoustic

model with 114 CORPORA sentences (i.e. 7 minutes of

recording) was almost 4%, what is considered high, taking into

account that it is a small-vocabulary task-oriented recognition.

After adding 4 minutes more, containing the same sentences,

but uttered faster, WER became slightly below 3% and the

sentence accuracy increased from 88.2% to 90.6%. When

adding recordings containing numerals and control commands,

the performance continued to improve until the training set

contained 15 minutes of recordings, where WER equaled

0.7%. Sentence accuracy at this moment reached 97.6%, what

was considered a satisfactory result. Further enlargement of

audio data resulted in worsening of WER up to 2.1%, due to

slight increase of substitutions and deletions. Training using

25 minutes of recordings yielded again a low value of WER

- 0.9%.

It is noteworthy that not every word deletion, substitution or

insertion resulted in a wrong command. E.g. omitting w (here

meaning ’to’) in a sentence skrec w prawo (’turn to the right’)

caused the command change into ’turn right’, being actually

the same. So the semantic accuracy was even higher than the

sentence accuracy.

Table II gives information about the recognition perfor-

mance both for speakers A and B. When challenging the

system with the voice of speaker B, who was not used

to create the acoustic model, the ASR system was able to

recognize correctly 72.9% sentences at the WER rate of 8.3%.

After adapting the models with 10 CORPORA sentences of

the speaker B, WER even slightly increased, but adaptation

using 20 sentences decreased WER down to 6.62%. Further

enlargement of the adaptation session was steadily improving

the recognition performance, but 80 sentences were required

to make WER as low as 1.42%, with sentence accuracy of

almost 93%.

Fig. 2. Word error rate against the duration of audio signal used in the
training process.

TABLE II
RECOGNITION RESULTS FOR SPEAKERS A AND B WITH VARIOUS

NUMBERS OF SENTENCES USED FOR ACOUSTIC MODEL ADAPTATION

speaker
/ adaptation

WER WA SA Sub Ins Del

A 0.9% 99.29% 96.5% 2 1 1
B, no adapt. 8.3% 92.91% 72.9% 20 5 10

B, 10 sentences 9.69% 90.78% 69.4% 28 2 11
B, 20 sentences 6.62% 94.09% 77.6% 18 3 7
B, 30 sentences 5.44% 95.27% 81.2% 13 3 7
B, 40 sentences 4.49% 95.98% 82.4% 9 2 8
B, 60 sentences 3.55% 96.93% 84.7% 6 2 7
B, 80 sentences 1.42% 98.58% 92.9% 3 0 3

V. CONCLUSION AND FUTURE WORKS

This paper described the process of designing a task-

oriented continuous speech recognition system for Polish,

based on CMU Sphinx4, to be used in a computer game called

Rally Navigator. We presented the steps undertaken to create

the acoustic model and the language model, using both the

grammar and the statistic N -gram model.

As for the language model, we showed that the best results

were achieved if the statistic trigram model was used. We

improved it by adding negative trigrams, what decreased the

number of misrecognized words.

Initial experiments showed that the audio material as short

as 15 minutes is enough to produce a highly effective single-

speaker command-and-control ASR system, providing the sen-

tence recognition accuracy of 97.6%. What was expected, such

a model required adaptation for another speaker. 20 sentences

of the new speaker enabled partial adaptation of ASR, so that

it reached word accuracy of 94.09%, but better results (WER

below 4%) were obtained if the model was adapted with 60

or 80 sentences. Obviously using such a long audio material

for adaptation of each new user would be impractical, so the

acoustic model needs to be improved. Training the acoustic

model on a large multi-speaker speech corpus of the Polish

language is planned as the next step.
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