
Visualizing Agent-Based Simulation Dynamics in a
CAVE - Issues and Architectures

Athanasia Louloudi
Modelling and Simulation Research Center

Örebro University, Sweden

Email: athanasia.louloudi@oru.se

Franziska Klügl
Modelling and Simulation Research Center

Örebro University, Sweden

Email: franziska.klugl@oru.se

Abstract—Displaying an agent-based simulation on an immer-
sive virtual environment called CAVE (Cave Automatic Virtual
Environment), a human expert is enabled to evaluate the sim-
ulation’s dynamics from the same point of view as in real life
- from a within perspective instead of a birds eye view. As this
form of face validation is useful for many multiagent simulations,
it should be possible to setup such a system with as little effort
as possible. In this context, we systematically analyse the critical
issues that a realization of such a system raises. Addressing these
problems, we finally discuss design aspects of basic framework
architectures.

I. INTRODUCTION

PERFORMANCE evaluation is important for agent-based

simulations [1]. In order to ensure that the model used

is able to produce reliable and plausible results, significant

oversight from the human expert is required. However, this

could easily become a source of great expense, especially

in cases involving agent behaviour in explicit metric space

such as in pedestrian simulations. To reduce this cost, an

immersive visualization, based on multiple interlinked views

with different levels of detail, could be considered as a useful

tool for evaluating the plausibility of simulation models at

the agent level. Due to the high degree of immersion, face

validation [2] can be very much facilitated. In this form of

validation, one or more human experts assess the model based

on animations, simulation output or from a within perspective

(e.g., agent’s view). Debugging and model evaluation is then

clearly benefited by zooming into the system, even into the

agents for observing the ongoing dynamics or monitoring the

interaction between agents.
While immersive visualization has advanced significantly

[3], the creation of a complex and dynamic virtual environment

in the form of a multiagent system is not a trivial task as it

combines technologies that are not equivalent. It is important

for the modeller of a multiagent simulation to be able to focus

on the model development and avoid the complexity of how

to deal with setting up an immersive visualization. The ideal

case would be to establish a connection between the simulation

and the visualization interface using minor configurations.

The connected systems would then automatically generate the

3D representation of the virtual world from the simulation

output, while they would enable an immersive movement of

the human observer in the simulation without the need for

further adaptation. However, such a combination of systems

introduce technical and conceptual issues which have to be

tackled in a profound way, starting from a theoretical analysis.

In this contribution we discuss challenges and their solutions

for visualizing the dynamics of a multiagent simulation in a

CAVE-based virtual environment [4].

The remainder of this work is organised as follows. Initially,

in Section 2, we describe the system and its basic require-

ments. Then Section 3 analyses the particular challenges which

may occur when realizing such a system which enables the

immersive visualization of an agent-based simulation in a

CAVE. Section 4 sketches alternative architectures for the

coupled system while the involved challenges are elaborated.

In section 5, we discuss our first attempt to create a prototype.

In the remainder of this work we discuss the work related to

our approach and finally we give a short conclusion.

II. SYSTEM DESCRIPTION AND REQUIREMENTS

The overall goal of this work concerns the creation of a

framework that will be able to visualize the dynamics of a

multiagent simulation within the CAVE. Two are the main

concerns towards the achievement of this goal:

1) The representation alignment of a 2D multiagent simu-

lation with a fine grain 3D visualization platform.

2) Human immersion in one representation.

The idea behind this approach is depicted in Fig. 1. It is

clear that in order to achieve these tasks it is important to suc-

cessfully align non identical representations before enabling a

human to join the simulation.

Our initial task deals with the coupling of two dynamic

representations of the same multiagent system, on differ-

ent levels of temporal and representational granularity. We

consider that simulation and visualization are two different

systems-platforms representing the same multiagent model.

The simulation is not embedded into the visualization system,

but rather represented separately. This coupled system should

communicate explicitly the information related to any given

state of the simulated situation, while consistency between the

two representations has to be assured.

Simulation is a more qualified representation, with refined

object structures. Contrarily, the visualization refers to the 3D

representation of the multiagent system using detailed object

models and complex animations. It is of great interest to note

that the two systems have different characteristics and a clear

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 651–658

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 651

Figure 1. Graphical illustration of the components involved in the system and their relation. Multiagent simulation representation (left), 3D visualization
of the same representation; enables better insight for the human modeller (middle), human inside CAVE and participatory multiagent simulation (right. The
human has a direct representative in the simulation which he controls (avatar).

Table I
COMPARISON OF VISUAL ASPECTS BETWEEN MULTIAGENT SIMULATION AND VIRTUAL WORLD

Simulation Virtual World

Role of visualization Add on for illustration Raison d’etre
Spatial Dimensions 2D/3D, discrete/continuous 3D continuous
Temporal Resolution Arbitrary Real-time
Viewpoint Bird-eye view Camera entities
Representation Detail Coarse Observer-camera distance
Object Models Points, polygons Detailed 3d models
Behaviour Models Complex behaviour Complex animations
Interaction Parameter adaptation Directly with characters

separation of concerns. To indicate an example, one could

think of a large scale pedestrian simulation [5] against the

virtual world crowd simulation [6]. The simulation aims to

represent the behavioural aspects of the modelled system in the

simplest but still valid way, whereas in visualization the focus

lies on the realistic representation of the 3D object models and

their animated behaviour. Table I, gives a brief comparison

of the two types of representations based on visualization

features.

It is also worth mentioning that both systems should run in

a both coupled and decoupled way, on the same or even on

different computers. Consequently modularization and online

data generation should be placed among the tasks that the

final system should accomplish. Based on these functional

requirements it is clear that the solution must be more than

just connecting agents and environments to a number of

specialized default object models and animations, using default

infrastructure feeding a preconfigured virtual environment. A

generic solution should be developed, that means it should

work for different models in several domains.

In the next phase, the focus lies on the immersion of a

human in the system. The modeller can join the simulation

for instance as an observer, looking through the eyes of a

particular agent. In this way the human can see what the

agent perceives and how it reacts as a unit. In addition, if the

simulation enables participation (i.e., participatory simulation

[7]), then the human can interact with the individual agents

in the environment and access information related to their

behaviour. The variety of possible interactions is much higher

than in macro simulations where only one observation point

is possible.

It is evident that developing a framework capable of incor-

porating such functionalities would offer better insight and it

could lead to concrete assessments over the plausibility of the

simulation model. However, despite the fact that the change

of perspective is a central idea for face validation, there are

still several technical as well as conceptual challenges beyond

the mere motivation.

III. CHALLENGES

A. Representation Alignment Issues

Focusing on the technical level of this task that is to

map abstract concepts in simulation to graphical assets in

visualization, one can clearly identify the difference in the

level of abstraction. The exact representation of the simulated

multiagent model in both systems is clearly inefficient. It is

necessary to define a formal way to communicate specific

information that is related to the entities and their actions

between the two platforms. Communication in that sense is

not only the generation and transmission of data but also

652 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

the interpretation of it (eg. Agent generation: Female/ Male,

Activity: Walk/Run/Idle etc.).

An additional complexity comes from the different temporal

resolutions of the two representations. Synchronisation and

consistency during runtime are important in the efficiency of

the overall result. We organize the issues involved according to

the following two dimensions: Modelling phase and Runtime

phase.

1) Modelling Phase:

a) Mapping agents and entities to object models: Multi-

agent simulations with a spatial environmental model, with a

few exceptions, are based on 2D representations. In contrary,

characters in the virtual world are presented at a higher level

of detail, involving realistic object models. Fig. 2 illustrates

such an example. This gap has to be bridged, thus it is

important to establish a method to efficiently associate agents

to their corresponding object models. This entails an amount of

information about the object model such as shape, size, scale

in order to plausibly visualize the simulated objects/entities.

The measures must be corresponding. For example, if a 2D

shape is used in collision avoidance, the bounding box of

the 3D object model in the virtual world should not be

much larger in order to maintain the effects of the collision

avoidance behaviour. Hereby, the visualization of entities

(i.e., environmental resources) in the virtual world may be

more problematic and time consuming for the modeller than

expected. That is because the virtual world may involve a rich

environment with a large number of heterogeneous passive

entities such as obstacles with different shapes, materials and

textures, which in simulation may be visualized by the exact

same 2D shape.

b) Mapping agent behaviour to animation: The be-

haviour of the agents should also be depicted. In order to

have a concrete visual representation, not only the geometries

of the object models are necessary but appropriate animations

as well. Detailed animations have to be configured (e.g., move-

ment speed, frame rate of display, etc.) and to be connected to

the relevant information in the simulation model which may

correspond to abstract notions. Additionally, if the internal

state of the agent is changing during the simulation run, the

animations and geometries should also follow. For instance,

assume that we want to visualize the life cycle of a human

agent. Morphing operators should be used in order to enable

changes in the shape of the object model. A problem rises

when internal states that are present in the simulation, do not

have any corresponding visual representation in the virtual

world. To indicate an example, consider the case in which

an agent turns red when a value is below a specific threshold

(eg., when the agent is hungry).

Apart from the dynamics driven by the individual behaviour

of the characters, the interactions between the agents have

to be considered as well. This means that dynamics led by

the full process of agents’ interaction become a critical issue

for visualization (e.g., characters that talk, wave to each other

etc.). Additionally, on the simulation side, only aspects of an

agent that affect the other agents’ behaviour need to be visible

to the modeller, whereas in the virtual world only what is

within the observer’s field of view is supposed to be visualized.

In this case, the level of detail (LOD)[8] plays an important

role in the representation of dynamics.

In the same context, the global environmental properties

have also to be dealt. A multiagent simulation may involve

dynamics that are triggered by special environmental entities

which effect globally the overall visualization (e.g., evacuation

signal). Then the question of what should be visualized, where

and how seems critical.

c) Rendering and configuration: The virtual world needs

additional configuration in order to provide a rendered scene

that preserves realism. Infrastructure such as cameras and

lighting has to be adapted according to the demands of each

scenario.

2) Runtime Phase: Visualization in the visualization system

is real-time, measured in frames per second (fps) whereas

in simulation the update is arbitrary. This is a problem that

has to be tackled. In many applications, simulated time is

intentionally different from real time so as to facilitate the

testing procedure. Essentially, the simulation time is as fast as

it can be (i.e., faster or slower when compared to real-time).

Assuming that the visualization is following the more qual-

ified simulation, we can identify two problematic cases:

• The visualization system is slower than the simulation

• The simulation is slower than the visualization system

a) The visualization is slower than the simulation: This

means that the visualization cannot afford the information flow.

If we consider that the update difference is not that large, then

a possible reason for this problematic situation to occur is that

the characters have more elaborated object models whereas

their corresponding agents have simple reasoning structures.

b) The simulation is slower than the visualization: In this

case, the simulation is not able to feed the visualization with

data in a timely manner. Depending on the update difference, it

is possible that the visualization may have to stop and wait for

new incoming data and eventually no real-time visualization

is possible. A reason behind this problem could be that the

agents hold costly reasoning structures while the characters

in the visualization have simple object models. Additionally,

in the simulation, there is not stable need for coordination or

planning in every reasoning cycle. This may lead to quadratic

or even exponential agent update whereas in pure rendering is

linear in the number of characters.

B. Human Immersion Issues

The idea of involving a human in one representation can

influence in a significant way the overall system’s operation

as this immersion will have an effect on the behaviour of the

rest of the agents. In a simple case, the immersed human-

avatar should be perceived as an obstacle for the other agents-

characters walking around its position. However, if from being

simply an observer, the avatar is interacting with other agents,

then both its actions and their results have to be transferred

back to the qualified representation and to be integrated to the

running simulation so that the corresponding agent actually

ATHANASIA LOULOUDI, FRANZISKA KLÜGL: VISUALIZING AGENT-BASED SIMULATION DYNAMICS IN A CAVE 653

(a) 2D simulation model (b) 3D virtual model

Figure 2. Illustration of a simulation model in contrast to its visualization in virtual space

executes the actions induced by the human. As a consequence

the system appears with mixed qualifications resulting to

a significant increase of complexity. This type of coupling

that is bidirectional, can cause an evident problem for the

synchronisation; simulation and visualization time must be in

line. One of the two platforms has to take over the control

with respect to the time advance so as to assure consistency

during the simulation run.
After analysing a number of key issues, the remaining

question is how such a system could be efficiently realised

so as to ensure that the focus will not be shifted from the

multiagent simulation and without adding any significant effort

to the modeller. These challenges need to receive full attention

in our work. In the following section, we are elaborating the

problems and discuss potential solutions for coupling the two

representations through conceptual architectures of the overall

system.

IV. ARCHITECTURE ALTERNATIVES

A. Architecture A

Simply sending information from the simulation about (dy-

namic) positioning of the agents to the visualization platform

is not sufficient. Due to the different resolution and granularity,

such a direct one way connection wouldn’t solve the overall

task, as information about the current state of the simulated

situation (agents, entities, global properties etc.) has to be

transferred and processed on the visualization side as well.

Moreover, if we assume that the visualization engine is power-

ful enough to render the scene, an information overflow or lack

of data (depending on the simulation time) is very probable

to occur and there is no automatic way to avoid it. The most

critical problem lies on the fact that this approach does not

provide full functionality. The human can only be an observer

when connected to the visualization platform. Therefore, we

propose an architecture that is capable to handle the transfer

of all information between the two systems. Fig. 3 depicts

schematically the framework architecture. The basic elements

in this conceptual view are:

• Simulation layer

• Visualization layer

• Networking component

• Simulation Visualizer component

• Control layer

• Human in CAVE

1) Simulation Layer: This is the layer in which the multi-

agent simulation model runs. Apart from the responsibility to

drive the system’s dynamics, in this side the generation of the

scene takes place too. The starting situation of the simulation

is stored and managed here. The situation scene should be

exported in a format that can be (automatically) imported to

the visualization platform.

2) Visualization Layer: In the visualization side, the scene

has to be configured. Every agent in the simulation and every

entity, should correspond to the relevant object model in the

virtual world. Additionally the rendering features have to be

configured as well. Lights, cameras have to be set up in a

way that the scene can be rendered properly. The questions

of how many lights are necessary, or where should they be

positioned so that the scene is appropriately illuminated, rise.

There are a number of algorithms from graph theory that can

be used for automatically solve this problem [9]. The camera’s

configuration can be set to a standard parameter while the

speed of the camera movement can be adapted to a reasonable

value considering the size of the overall scene.

3) Networking Component: The simulation and visualiza-

tion platforms, are coupled using a client/server communi-

cation bus in order to send messages containing respective

information from one system to the other.

4) Simulation Visualizer Component: Assuming that the

basic visualization information shall only be handled within

the visualization system keeping the actual multiagent simu-

lation model clean from such information is important. Con-

sequently, the question how to import the information to the

visualization platform where no ontological information about

the original model might be available arises. To cope with

654 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Figure 3. Schematic illustration of the framework architecture A

this problem, we consider the implementation of a component

that keeps track of the simulation dynamics in an abstract, yet

sufficiently detailed way.

This component is responsible for establishing a connection

on the (abstracted) context between simulation and visual-

ization. To be more specific, in every update cycle of the

simulation, for every agent, information about its current

state (e.g., position, orientation, activity etc.) is sent to the

visualization platform. This information can contain the agents

id, position, rotation, activity etc.

Each activity token corresponds to an animation that is

displayed until a different token for the agent with the given

id is received. The character connected to the given id is

moving to the new position and orients itself according to

the given rotation information. Accordingly, a reserved token

could generate or delete agents from the visualization.

Finally, regarding the global properties, a specific message

from the simulation may be connected to a particular sequence

of changes in the visualization, as for example a signal ”fire”

might be interpreted as the trigger coming from the global

simulation entity world for visualizing smoke in the virtual

world.

5) Control Layer: Until now we have dealt with the visual

representation problems but the synchronization problems still

remain. In the case where the visualization system is slower

than the simulation, there are several possibilities for dealing

with this situation. Clearly, the easiest solution is to reduce the

simulation time advance and slow down the simulation. As we

assume no inherent connection to the real-time, the simulation

time can be reduced. Another alternative could be that the

visualization system saves all the incoming information for

each character and then renders the events in the correct

sequence. Yet, if the buffer of activities is restricted then

problems might occur. Information has to be skipped causing

gaps in the visualized information. Of course such a solution

should be avoided as it wouldn’t support the validation of the

multiagent simulation model. In the second situation where

the simulation is slower than the visualization, the problems

are more critical. As the simulation is unable to feed the

visualization in a timely way, one solution could be that

the simulation data are being recorded and visualized offline

otherwise the visualization has to stop and wait for new data

to arrive before proceeding to any action, which is clearly

confusing for a human observer.

Another issue to be taken into account, is the granularity

of control. We have a qualified representation and a following

one. However, the more realistic the visualization shall be,

the more the visualization engine will need to take over the

control of the details of the interacting characters. Detailed

animations with different configurations, morphing, sound, etc.

are concepts that are not available in a simulation engine,

the question is whether the information for planning and

configuring their usage is handled on the simulation side or the

underlying reasoning is done in the intermediate components

on the visualization side. The information from the simulation

has priority, but if there is not sufficient detail, then the

visualization engine has to compensate. Therefore, which of

the two platforms takes care of which details?

Due to these problems, we introduce in this layer a module

that is capable of managing the flow of information between

the two systems with a certain degree of reasoning while

taking into account the problem of having different tempo-

ral resolution. When information arrives arbitrarily from the

simulation, the particular data is stored so as to be used

when necessary in the visualization engine. Then, if there is a

conflict identified, it is the control layer responsible to find an

intelligent way to resolve it. For instance simplifying the path

of the characters when a number of positions has been received

from the simulation that could not yet be visualized, deciding

which agents are displayed on which level of detail. When the

simulation is slower than the visualization, the representation

component may extrapolate the behaviour of the agents based

on an estimation where the next steps of the agents may be

oriented towards.

6) Human in CAVE: Taking into consideration the architec-

ture proposed, an asynchronous operation of the two systems

would imply the need to have a roll-back function in the

simulation side. Imagine a case in which the simulation is

ATHANASIA LOULOUDI, FRANZISKA KLÜGL: VISUALIZING AGENT-BASED SIMULATION DYNAMICS IN A CAVE 655

Figure 4. Schematic illustration of the framework architecture B

processing the agents state in tS = 100 while in the user

connected in the visualization platform, is changing the flow

of actions in tV = 10. The simulation has to adapt to this

change and continue from tS = tV = 10. Nevertheless, despite

the increase of complexity, the active human immersion in the

system appears very attractive and with great potential in the

process of evaluating the plausibility of a model and thus such

prospect has to be considered in future work.

B. Architecture B

The second alternative is depicted in Fig. 4 and proposes a

completely different architecture. Main characteristic in this

schema is the involvement of a human user in the more

qualified representation; the simulation layer. In this case the

human controls one agent, perceives what the agent may

perceive and manipulates the simulation through the agent’s

effectors.

The simulation layer is enhanced by the use of a Special

Avatar Input Component. This component enables the human

immersion in the agent-based simulation. Information is sent

via the sensors in the CAVE affecting the models with primi-

tive calls.

In this schema, we still have to deal with all the problems

of configuring the simulated scene in both platforms (visual

representation issues) similarly to the previous architecture.

The Simulation Visualizer Component similarly to architecture

A, receives the information from the simulation platform and

visualizes it an appropriate way.

Central to this approach is that the simulation has to be

adjusted so that it runs in real-time. The time resolution issue

between the two platforms is hence eliminated and there is

no need for a Control Layer as in the previous architecture.

In a technical level, a time advance that is similar to real-

time is advisable for validation purposes as this is what is

the least confusing or distracting the human observer from the

dynamics.

An important parameter that should be taken into consider-

ation in the proposed architecture is that the visualization is

depending on the simulation in order to start. This means that

the visualization system is not treated as an active platform but

it rather plays the role of an external visualization component

upon the simulation which doesn’t need to hold any status.

In addition to that, the functionality of the overall system, is

totally based on the simulator used and the generic character

of the framework is totally depending on the protocols used.

V. PROTOTYPE

In an initial attempt, we tried to realize the generic coupling

of two such systems in a prototype. Our work was grounded

by the use of SeSAm1; a modelling and simulation platform

and the Horde3D2 GameEngine.

It uses client-server communication for transmitting in-

formation about the visible effects of agent actions from

the simulation to visualization. As depicted in Fig. V the

server maintains the overall scene and updates are sent by

the simulation client. The scene is originally created within

the simulation and then transformed into the game engine

scene format. To do so, we developed an export function that

generates a description of the visualization scene out of the

simulated situation. Tokens replace object models, that means

pointers to the object models have to be inserted manually.

However, as long as there is no automatic generation of

geometries from the simulation engine, this export is restricted

as it assumes that appropriate object models are existing. A

future version must either generate appropriate object models

or must be able to scale object models based on the precise

information from the simulation situation. In the latter case,

simulation entities might have to be augmented with a height

value describing the scaling. The protocol used here includes

each relevant entity’s position, orientation and animation in

each update. It also contains events that are sent only once,

such as changes in the environment or the generation or

removal of agents from the world scene.

The next step was to bring the Horde3D GameEngine to an

immersive virtual environment where a human can observe

the simulation model from a very close point of view. To

accomplish this task, a pre-existing multiplayer architecture

1SeSAm: http://www.simsesam.de
2Horde3D GameEngine: http://hcm-lab.de/projects/GameEngine

656 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Figure 5. Prototype aspects. (a) Initial architecture; SeSAm-Horde3D GameEngine coupling, (b) Observation of dynamics through agent’s perspective, (c)
Visual representations of the same multiagent model as seen from bird’s eye view, (d) Horde3D GameEngine in the CAVE, (d)The four ”spectator’s view”,
(e) CAVE (upper) and scene projected in the CAVE (down).

within the GameEngine was utilised in order to project the

simulated situation to the CAVE. The protocol in this multi-

player architecture is state-based, i.e. the updates are sent at

regular intervals, each containing the status of every relevant

agent or entity in the scene. We use one server and five

clients. The server hosts the virtual scene and is responsible

for distributing changes happening in that scene to the clients.

Four of them simply render the scene provided by the server in

each frame without providing input on their own. This mirrors

the concept of ”spectators” in multiplayer games and these

four clients are used to provide the data for each of the CAVE’s

projectors. The fifth client is connected to the CAVE’s sensors

and provides the sensor input for the human to navigate in the

scene.

VI. RELATED WORK

A. Multiagent systems, visualization and 3D virtual worlds

Multiagent models in physically simulated 3D worlds are

popular since the seminal evolving creatures of Karl Sims

[10]. Later developments in microscopic pedestrian simulation

produced an increasing need to provide 3D spatial repre-

sentations as a visualization method on generic multiagent

simulation platforms such as Repast3 or MASON4 which

3Repast: http://repast.sourceforge.net/
4MASON: http://cs.gmu.edu/eclab/projects/mason/

embedded Java3D into their simulation platforms. Similarly,

game engines where used but mostly as a mean to model

the environment of the agents, while sensor data and action

commands are communicated between the agent and the game

engine [11]. Contrarily, in our case, the game engine is

responsible only for visualizing the dynamics of the simulated

situation that is apparently modelled in an external simulation

platform. The combination of virtual worlds and simulation

is prominent in crowd simulation as well [6],[12]. Main

consideration in our approach is the generic character of the

solutions thus our system should not just be applicable for

crowd simulations.

Korhauser et al. [13], give design guidelines for multiagent

simulation visualizations, adapting general design principles

about shapes and colours of the agents, grouping the entities

for giving advice when visualizing agent system simulation

dynamics. Our research is also related to early works on user

interfaces for multiagent systems. Avouris [14] classify dif-

ferent multiagent system architectures for identifying special

challenges in designing interfaces to multiagent systems -

including multiagent simulations focusing on the bird’s eye

view.

Consistency plays a major role in our work. Thereby, a

relation exists between the proposed problem and solutions

from the area of distributed interactive systems such as mul-

ATHANASIA LOULOUDI, FRANZISKA KLÜGL: VISUALIZING AGENT-BASED SIMULATION DYNAMICS IN A CAVE 657

tiplayer network games, where consistency has to be assured

for presenting the same situation to different users. Several

techniques have been developed for avoiding or dealing with

inconsistencies coming from latency and jitter [15],[16]. In

our case, we identify the major problems to be the different

resolutions and synchronization problems between two full

representation of the same system, not a distributed represen-

tation. Nevertheless, the synchronization problem has similar-

ities with the consistency problem of distributed interactive

systems. Clearly we will have a closer look onto techniques

of dead reckoning, etc.

The idea underlying our work is relevant to some degree

with the principles of the Model View Controller (MVC)

paradigm [17]. MVC design pattern have been widely used

in Web applications which promoting the separation of visual

presentation from logic. However our work has a core differ-

ence. The simulation platform is already separated from the

visualization.

B. User involvement in agent-based simulation

Our vision is similar to Repenning and Ionannidou [18] who

aim at enabling an end-user to create complex visualizations.

They are proposing a tool that facilitates the distortion of

existing object models for creating process visualizations in

an accessible way. They are apparently addressing the same

step in a simulation visualization process that is directed by

professional in animation programs such as Maya or 3D Studio

Max5.

Moreover, several methodologies on how to incorporate

human actors in large scale simulations with autonomous

agents are present in literature [19],[20]. In most of the

cases, the agents are controlled by a human sitting in front

of a computer. However, we consider a full immersion of a

human in a CAVE. Nevertheless, in our approaches the main

consideration is the model validation and the evaluation of the

plausibility.

VII. DISCUSSION AND FUTURE WORK

In this work we analysed the challenges which have to

be solved when the dynamics of an agent-based simulation

are visualized in a CAVE. An immersive face validation

complements the usual data-driven validation on the macro

level due to the fact that it allows to check the plausibility of

individual behaviour trajectories. Several architectures were

also discussed with the main goal to frame the design process

towards the realization of the intended system.

Our future work is oriented towards the collection of the

building blocks for a modelling language that supports the

generic connection to animations. The testing and evaluation

of the deployed system is also an important aspect of the com-

ing work. Tests are going to be performed in a simple scenario

(eg. evacuation or flocking model) with different numbers of

agents/characters ranging from 5 to 100 individuals.

5Autodesk: www.autodesk.com

VIII. ACKNOWLEDGEMENTS

This research work is part of the ”Human-in-the-Loop

Modeling and Simulation” project funded by MINNOVA

and whose support the authors gratefully acknowledge. We

also thank Augsburg University for offering their Horde3D

GameEngine used in this work and particularly Michael

Wißner for his valuable help.

REFERENCES

[1] O. Balci, “Validation, verification, and testing techniques throughout the
life cycle of a simulation study,” in Simulation Conference Proceedings,

1994. Winter, dec. 1994, pp. 215 – 220.
[2] F. Klügl, “A validation methodology for agentbased simulations,” in

Proceedings of the 2008 ACM Symposium on Applied Computing, R. L.
Wainwright and H. Haddad, Eds. ACM, 2008, pp. 39–43.

[3] T. Yapo, Y. Sheng, J. Nasman, A. Dolce, E. Li, and B. Cutler,
“Dynamic projection environments for immersive visualization,” in
Computer Vision and Pattern Recognition Workshops (CVPRW), 2010

IEEE Computer Society Conference on, june 2010, pp. 1 –8.
[4] H. Lee, Y. Tateyama, and T. Ogi, “Realistic visual environment for

immersive projection display system,” in Virtual Systems and Multimedia

(VSMM), 2010 16th International Conference on, oct. 2010, pp. 128 –
132.

[5] F. Klügl and G. Rindsfüser, “Large scale pedestrian simulation,” in
Proceedings of MATES 2007, ser. LNAI, J. Müller, P. Petta, M. Klusch,
and M. Georgeff, Eds., vol. 4687. Springer, 2007.

[6] N. Pelechano, J. Allbeck, and N. I. Badler, Virtual Crowds: Methods,

Simulation, and Control. Morgan and Claypool Publishers, 2008.
[7] M. Berland and W. Rand, “Participatory simulation as a tool for agent-

based simulation,” Setubal, Portugal, 2009, pp. 553–7.
[8] M. Wißner, F. Kistler, and E. André, “Level of detail ai for virtual

characters in games and simulation,” in Proceedings of the Third

international conference on Motion in games, 2010, pp. 206–217.
[9] 3D Game Engine Design, Second Edition: A Practical Approach to Real-

Time Computer Graphics. The Morgan Kaufmann Series in Interactive
3D Technology.

[10] K. Sims, “Evolving 3d morphology and behavior by competition,” in
Artificial Life IV Proceedings, R. A. Brooks and P. Maes, Eds., 1994,
pp. 28–39.

[11] E. Norling, “Capturing the quake player: using a bdi agent to model
human behaviour,” in Proc. of AAMAS’03. New York, NY, USA: ACM,
2003, pp. 1080–1081.

[12] D. Thalmann and S. R. Musse, Crowd Simulation. Springer, 2007.
[13] D. Kornhauser, U. Wilensky, and W. Rand, “Design guidelines for agent

based model visualization,” Journal of Artificial Societies and Social

Simulation, vol. 12, no. 2, 2009.
[14] N. M. Avouris, “User interface design for DAI applications,” in Dis-

tributed Artificial Intelligence: Theory and Practice, N. M. Avouris and
L. Gasser, Eds. Kluwer Academic Publisher, 1992, pp. 141–162.

[15] C. Diot and L. Gautier, “A distributed architecture for multiplayer
interactive applications on the internet,” Network, IEEE, vol. 13, no. 4,
pp. 6 –15, jul/aug 1999.

[16] D. Delaney, T. Ward, and S. McLoone, “On consistency and network
latency in distributed interactive applications: a survey–part i,” Presence:

Teleoper. Virtual Environ., vol. 15, pp. 218–234, 2006.
[17] A. Doray, “The mvc design pattern,” in Beginning Apache Struts.

Apress, 2006, pp. 37–51.
[18] A. Repenning and A. Ioannidou, “End-user visualizations,” in 2008 Int.

Conf. on Advanced Visual Interfaces (AVI 2008), Napoli, Italy. ACM
Press, 2008.

[19] P. Guyot and A. Drogoul, “Multi-agent based participatory simulations
on various scales,” vol. 3446 LNAI, Kyoto, Japan, 2005, pp. 149 – 160.

[20] T. Ishida, Y. Nakajima, Y. Murakami, and H. Nakanishi, “Augmented
experiment: Participatory design with multiagent simulation,” in Int.

Joint Conf. on Artificial Intelligence (IJCAI-07), 2007.

658 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

