
Modeling Agent Behavior Through Online
Evolutionary and Reinforcement Learning

Robert Junges and Franziska Klügl
Modeling and Simulation Research Center

Örebro University, Sweden

Email: {robert.junges,franziska.klugl}@oru.se

Abstract—The process of creation and validation of an agent-
based simulation model requires the modeler to undergo a
number of prototyping, testing, analyzing and re-designing
rounds. The aim is to specify and calibrate the proper low-
level agent behavior that truly produces the intended macro-
level phenomena. We assume that this development can be
supported by agent learning techniques, specially by generating
inspiration about behaviors as starting points for the modeler.
In this contribution we address this learning-driven modeling
task and compare two methods that are producing decision
trees: reinforcement learning with a post-processing step for
generalization and Genetic Programming.

I. MOTIVATION

A
GENT-BASED simulation as an innovative paradigm is

particularly apt for the modeling and analysis of complex

systems. Based on (mostly) local, low-level interactions, the

agents together produce some higher level phenomenon. This

bottom-up approach (see [1] coining the notion of social

science from the bottom-up) supports the understanding of

why and when a phenomenon emerges. It goes beyond only

describing macro-level behavior or pattern and requires a

highly expertise-based development process for the model. It is

basically exploratory as – specially with emergent phenomena

– the explicit link between the agent and the system level is

missing. Thus, the success of a modeling process is highly

depending on the experience of the modeler about what

low level behavior might generate the desired macro-level

phenomenon.

However, if we want to make agent-based simulation acces-

sible to more people – specially to people without experience

in modeling and simulating complex systems –, new ways

of systematically developing agent-based simulation models

have to be tackled. Our idea is to use adaptive agent archi-

tectures for enabling the modeler to develop the model on

a higher abstraction level, assuming that this approach will

make modeling easier. That means the modeler focuses on the

characterization of the phenomenon he/she is interested in,

and based on given functionality of effectors and sensors, the

behavior model of the agents is developed in a self-adaptive

way. Finally, we hope to establish a learning-driven analysis

and design approach using self-adaptive agents.

Our main objective for this contribution is to explore the

suitability of different learning techniques for a particular mod-

eling problem. Thus our idea is not to evolve or learn a perfect

behavior control, but a behavior model for which the source

code can be understood by a human modeler. Decision trees

form an obvious behavior representation candidate for this

task: they are an intuitive representation for decision-making

processes and there are a number of learning techniques

that can operate on them. However, supervised decision tree

learners such as C4.5[2] or other classification techniques[3]

have requirements for a sufficient number of appropriate cases

– in our case good situation-action assignments – that cannot

be applied directly.

In the following, we first give a short survey on related

work concerning modeling for simulated agents and learning

technology. Then we will shortly describe the two techniques

that we want to analyze here: a combination of Q-Learning

with a Decision Tree learning for generalization, and Genetic

Programming. After a short introduction of our simple test

scenario, we will provide a set of experiments and results.

The paper ends with a conclusion and next steps.

II. SELF-ADAPTIVE AGENTS MODELING

We propose a learning-driven analysis and design approach

for using self-adaptive agents in the behavior modeling task.

This approach is based on the following core idea: an appropri-

ate conceptual model of the overall system can be developed

by setting up a simulation model of the environment allowing

to evaluate agent performance and integrating agents that may

learn their decision making behavior.

The design strategy starts with the definition of an en-

vironmental model together with a function that evaluates

agent performance in this environment. After that, the modeler

determines what an individual agent shall be able to perceive

and to manipulate. In the next step, the designer selects an

appropriate combination of agent learning procedures, used by

the agents to determine a behavior program that generates the

intended overall outcome in the given environment. At the end

of this process, ideally a decision tree representing the agent

behavior is available in a way that it fits the environmental

model and the reward given and thus produces the aggregate

behavior intended.

The basic assumption is that the learned decision tree then

is sufficiently elaborated that it can serve as a starting point for

further steps in a development methodology, such as technical

design or implementation. Thus, we transfer the initial agent

behavior design from the human modeler to a simulation

system. This strategy could be also described as a variant

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 643–650

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 643

of an environment-driven strategy for developing multiagent

simulation models[4].

Specially in complex systems, a higher number of degrees

of freedom have to be handled. This could make a manual

modeling process cumbersome, particularly when knowledge

about the requirements for the overall system or experience

for bridging the micro-macro gap are missing. We assume that

using agents that learn at least parts or initial versions of their

behavior is a good idea for supporting the modeler in finding

an appropriate low level behavior model.

III. MODELING AND LEARNING

Adaptive agents and multiagent learning have been one of

the major focuses within Distributed Artificial Intelligence

since its very beginning [5]. The following paragraphs shall

give a few general pointers and then a short glance on directly

related work on agent learning for behavior design, not for

optimizing. It is important to keep in mind that the objective

of our work is not addressing mere learning performance but

suitability for the usage in a modeling and analysis support

context.

Reinforcement learning [6] and evolutionary computing [7]

are recurrent examples for categories of learning techniques

applied in multiagent scenarios.

A reinforcement learning approach for automatically pro-

gramming a behavior-based robot is described in [8]. Using

Q-Learning algorithm, new behaviors are learned by trial

and error, based on a performance feedback function as

reinforcement. In [9], also using reinforcement learning, agents

share their experiences and most frequently simulated behav-

iors are adopted as a group behavior strategy. The authors

conclude that both learning techniques are able to learn the

individual behaviors, sometimes outperforming a hand coded

program, and behavior-based architectures speed up reinforce-

ment learning. However, these approaches are for learning

“controllers”. The actual behavior program is secondary as

long as the given tasks are fulfilled.

Evolutionary Computing (EC) has also been applied for

behavior generation in multiagent systems. In [10], Genetic

Programming (GP) is used to evolve agent behavior in a

Predator and Pray scenario. Agents derive their decision-

making process from a decision tree model, that is built

throughout the execution. Agent performance is the focus.

Additionally, [11] and [12] discuss the performance of

evolutionary generated behavior in multiagent systems. The

former presents optimization problems solved by single agent

and multiagent approaches. The latter presents a robotic soccer

scenario and the concept of layered learning, as a form of

problem decomposition.

In [13], Denzinger and Kordt propose a technique for

generating cooperative agent behavior using evolutionary on-

line learning. An experiment is developed for this multiagent

scenario applied to a pursuit game, where agents are guided

by situation-action pairs, or SApairs. The authors compare the

proposed online approach with an offline approach for the

same problem. In addition to their own SApairs, the agents

have in their memory SApairs that model the other agents’

behaviors. These pairs can be added by observing other agents

or by communicating from one agent to another. The results

show that incorporating this online learning phase improves

the agents’ performance in more complex variants of the sce-

nario and when randomness is introduced, when compared to

the offline approach. In the proposed online learning strategy

the agents are not required to learn a complete strategy, but

only how to perform well in the next steps, after the learning.

Some differences can be pointed out between the work of

this paper and the work presented in the last paragraph: in

their case, although the results of the learning phase are used

in an online way, the learning itself is offline, it does not

take place in the “real” scenario where all agent are adapting

at the same time; they use Genetic Algorithms (GA), where

the individuals are composed of a number of SApairs and

genetic operators act on SApairs – not changing its content,

but exchanging them among individuals. This way, the GA

only operates on creating new programs (individuals with their

rules) and not on creating new rules, as it happens in our GP

approach, presented in section IV-B; they focus on learning

parts of the problem as the execution evolves, and not to learn

a complete model of the agent for the problem, as in our case;

they assume the agents have knowledge about all the scenario,

which can be unrealistic in certain scenarios. Since their focus

is on cooperative behavior, a model of other agents is crucial

for the success of the learning.

To extend the work presented in [13] and improve the per-

formance of the GA: in [14], the authors include a mechanism

to collect data about the usage of the SApairs – such as number

of times used and how it changed the fitness – and use this

information for applying the genetic operators during the evo-

lutionary learn phase; in [15], the authors present several case

studies encoding application specific features into the fitness

function. The conclusion is that there is not much difference

in terms of performance by refining knowledge already avail-

able in the fitness function, however adding new application

knowledge improves the performance significantly; in [16], the

authors address the problem of modeling other agents’ behav-

ior. The authors point that a model of other agent generated

out of few observations often results in inaccurate predictions,

while a model comprised of many observations decreases the

efficiency of the modeling process. To address the first issue it

is proposed to use a method with stereotypes, where the agent,

based on current observations can classify the other agent in

one of these stereotypes – which in their turn are composed

of a set of SApairs – and therefore have a model of the other

agent behavior. The second problem is addressed by building

trees that branch at each level according to a different feature.

The idea is to create a tree-like compact representation,

reducing the model to only the relevant observations. The con-

clusions indicate that when a correct matching of stereotypes is

made, there is a significantly increase of performance, and the

compactness of representation through trees is a promising ap-

proach, but deserves more analysis, specially to minimize the

risk of building a model that ignores important observations.

644 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Although there is a wealth of publications dealing with the

performance of particular learning techniques, there are not

many works focusing on the resulting behavioral model aiming

at understandability by a human interpreter. In our learning-

driven design approach we transfer the initial agent behavior

design from the human modeler to a simulation system. We

assume that using agents that learn at least parts or initial

versions of their behavior is a good idea for supporting the

modeler in finding an appropriate agent-level behavior model.

Nevertheless, the basic question on a way to such a learning-

driven analysis methodology is about the availability of ap-

propriate learning techniques, for this form of application,

for a particular domain, or maybe just for a particular sys-

tem. In a previous work we evaluated the applicability of

reinforcement learning techniques for this purpose [17]. One

of the main problems is the interpretability of the resulting

behavior program of the agents. To overcome this problem,

in [18] we proposed to use a decision tree learner for post-

processing the situation-action pairs with the highest fitness

values. However, we reported issues with convergence in RL

affecting the generated decision tree, when evaluating its size

and quality. In the present work we start our investigation with

Genetic Programming. The aim is to overcome the search-

space exploration problem – present in reinforcement learning

techniques – and include compactness and generalization in

the behavior representation by directly working with a decision

tree model.

IV. APPROACHING AGENT-LEARNING

In this section we describe the learning techniques chosen

for evaluation in this contribution. Their implementation, as

well as the experiments conducted – presented in section V –

used the multiagent simulation tool SeSAm (www.simsesam.

org).

A. Q-Learning plus C4.5: RL+

Reinforcement Learning is a well-known machine learning

technique. It works by developing an action-value function

that gives the expected utility of taking a specific action

in a specific state. We selected Q-Learning [19] for our

investigation. In this technique, the agents keep track of the

experienced situation-action pairs by managing the so-called

Q-Table, that consists of situation descriptions, the actions

taken and the corresponding expected prediction, called Q-

Value. Nevertheless, the use of the Q-Learning algorithm is

constrained to a finite number of possible states and actions.

As a reinforcement learning algorithm, it is also based on

modeling the overall problem as Markov Decision Processes

(MDP). Thus, it needs sufficient information about the current

state of the agent for being able to assign discriminating

reward. The Q-Learning algorithm could be implemented by

means of the standard high-level behavior language in SeSAm.

However, Q-Learning only gives us rules, mapping the

agents perceptions to possible actions and their expected

utility, and we need to generate a decision tree representation

of the implicit behavior of these rules. Since the number

of generated rules can be large, we suggest to use a post-

processing step for improving the analysis of the rule set on

a detailed level. In this contribution we focus on using the

C4.5 algorithm [2] to generate decision trees, using the rules

generated by Q-Learning as the input. For a better description

of the requirements and implementation of Q-Learning and

C4.5 please refer to [18].

The decision tree, returned at the end of the simulation

process for a given agent, is generated by selecting the best

rules from the Q-Table (the ones with higher Q-Value) and

applying them in the C4.5 algorithm. To do that, we map

the individual components of the situation description as the

features of the algorithm, and the action corresponding to that

situation as the correct classification.

B. Genetic Programming

Genetic Programming (GP) is an Evolutionary Computation

(EC) technique that aims at solving problems by evolving a

population of computer programs. New populations of, hope-

fully better, programs are created in each generation using the

previous generation as the input for transformation operators

[20]. Evolution is processed on the basis of the Darwinian

principle of natural selection (survival of the fittest) and

variations of natural processes, such as sexual recombination

(crossover), mutation and duplication.

In our approach, we integrate a standard implementation

of the genetic programming functionalities into SeSAm, as

described in [21]. Agent behavior programs are represented

as decision trees, coded as strings. This way of representing

behavior requires the mapping of the agents’ perceptions and

actions, to the functions (nodes) and terminals (leaves) sets

of decision tree. To cope with this, the simulations needs

components for: using a decision tree encoded in the string

format to determine the actions of an agent; managing the

population of behavior programs and evolving the strings.

The GP component provides the set of primitives necessary

to handle the decision trees. The central primitive is the

Evaluation primitive. It receives a decision tree string and the

description of a situation from the simulation, and outputs a

terminal, that the agent may map to a sequence of action calls.

Other primitives implement the creation of new individuals and

the genetic operators for crossover and mutation.

We define a unique pool of strings, that are used and

evaluated collectively by all agents in the simulation. The

finally returned decision tree is the tree with the highest fitness

overall generations.

V. SCENARIO AND PERFORMANCE

For this contribution we selected a pedestrian evacuation

scenario. Although it is a simple problem, it provides a way

of evaluating the requirements of the learning techniques and

point out the challenges.

A. Scenario Description

The scenario, depicted in Figure 1(a) consists of a room (20

x 30m) surrounded by walls with one exit and 10 column-type

ROBERT JUNGES, FRANZISKA KLUEGL: MODELING AGENT BEHAVIOR THROUGH ONLINE EVOLUTIONARY AND REINFORCEMENT LEARNING 645

obstacles (with a diameter of 2m). In this room a number of

pedestrians are placed randomly at the upper half part and shall

leave as fast as possible without hurting during collisions. We

assume that each pedestrian agent is represented by a circle

with 50cm diameter and moves with a speed of 1.5m/sec.

One time-step corresponds to 0.5sec. Space is continuous, yet

actions allow only discrete directions. We tested this scenario

using 2 and 4 agents.

Agents can perceive obstacles and the exit when within a

field range of 2m. These perceptions are divided in five areas,

as depicted in Figure 1(b). Additionally, the agents hold a

binary perception telling them whether the exit is to their left

or right side.

(a) Pedestrian evacuation scenario

(b) Agent perception sectors

Fig. 1. Scenario and perception sectors

In the reinforcement learning case, all possible perceptions

are converted into a string that represents the situation, in the

situation-action pairs, or rules, developed by Q-Learning. For

the genetic programming case, the perceptions are used as

functions, representing the nodes of the decision tree, and are

used in combination with the possible actions of the agents,

that correspond to the terminals or leaves of the decision tree.

The action set consists of: A = {MoveLeft, MoveDiago-

nalLeft, MoveStraight, MoveDiagonalRight, MoveRight, Noop,

StepBack}. We assume that the agents are per default oriented

towards the exit.

For any of these actions, the agent turns by the given

direction (e.g., +36 degrees for MoveDiagonalRight), makes

an atomic step and orients itself towards the exit again.

B. Learning Evaluation

We evaluate the learning using experiments composed by

a series of trials, with 100 iteration steps each, representing

the number of steps that the agents have to evacuate the

room before a new trial begins. With reinforcement learning,

these trials are sequenced as explore and exploit trials. During

explore, agents execute random actions and build their Q-

Table with the situations experienced and the actions executed.

During exploit the agents select only the best action for each

situation, again based on the Q-Table. We used a total of 3000

explore-exploit trial pairs. At the end of the simulation, the Q-

Values are used to select the best rules from the Q-Table that

will form the training set used to build the decision tree with

the C4.5 algorithm.
For the genetic programming case, each trial represents the

use of one of the decision trees in the population. When all

decision trees in the population are tested, a new generation

is created. We experimented with 3000 generations.
The fitness value is assigned as the result of the agents

acting in the environment, for both learning techniques. In the

reinforcement learning case, this value is given on an action

level, feeding the evaluation of the rule, and as a consequence

developing the Q-Table. In the genetic programming case, the

fitness of the decision tree is given at the end of the trial, as

the sum of the fitness collected from all actions performed in

that trial.
The rewards are given to the agent a for executing an action

at time-step t:

reward(a, t) =

rewardexit(a, t) + rewarddist(a, t) + penaltycoll(a, t)

Where:

• rewardexit(a, t) = 1000, if agent a has reached the exit

in time t, and 0 otherwise;

• rewarddist(a, t) = β × [dt−1(exit, a) − dt(exit, a)]
where β = 10 and dt(exit, a) represents the distance

between the exit and agent a at time t;

• penaltycoll(a, t) was set to 100 if a collision free actual

movement had been made, to 0 if no movement happened,

and to −1000 if a collision occurred.

Together, the different components of the feedback function

stress goal-directed collision-free movements.
All agents perceive the environment in parallel, so their

perception is based on the same overall situation at the time-

step t.

C. Learning Configuration

Q-Learning was set with a linear learning rate function

(from 1 to 0.2) and a discount factor of 0, which means the

agents consider only the immediate best action. We also used

a balanced exploration feature for selecting random action in

the explore trials, in a way that all possible actions are tested

equally and therefore we have a better confidence on the Q-

Value. In the post-processing case, the decision tree must be

tested for correspondence to the original situation-action pairs

that were used to produce it. This is basically a matter of

convergence which is not trivial in our scenario [18]. At the

end of the simulation, the best rules – the ones with higher

Q-Values – are selected as input for generating the decision

tree in C4.5. Additionally, we exclude the rules that have not

been tested sufficiently, according to an experience threshold.

646 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

For the Genetic Programming case, we defined the popula-

tion with a size of 30 individuals. That means each generation

consisted of 30 trials of 100 steps each. One trial for each

individual. The initial population was generated using the

ramped half and half method. Each individual was represented

by a decision tree with a maximum depth of 5 levels. We set

the probability for reproduction (copy the individual in the

next generation) to 0.5, the probability of crossover to 0.4 and

the probability of mutation to 0.1. Tournament selection was

used to select the best fitted from 5 random individuals in the

population for any of the before mentioned genetic operations.

D. A Glance on Results

The first result to be analyzed from the simulations concerns

the performance of the learning technique: the number of col-

lisions throughout the simulations. Table I shows the average

number of collision: over all the 3000 explore-exploit trials for

reinforcement learning (considering only data collected from

exploit trials); over all the 3000 generations for the genetic

programming approach (considering only the best individual

in each generation). We average the number of collisions

recorded by all the agents in the simulation. Reinforcement

learning requires more time to develop a good set of rules

to accomplish the task, while the high level representation in

genetic programming is able to cope well with this simple

scenario.

TABLE I
AVERAGE COLLISIONS

RL GP
2 agents 0.62 ±1.04 0.002 ±0.05
4 agents 1.28 ±1.18 0.18 ±0.30

Additionally, it is important to see how the agents behave in

the scenario. To do that, we consider example trajectories of an

exemplary agent from the 2 agents scenario, at a) 500, b)1000,

c)2000 and d) 3000 explore-exploit trials in the reinforcement

learning case, and generations in the genetic programming

case. In the genetic programming case we consider the best

decision tree, according to the fitness evaluation, in those

specific generations. This is depicted in Figures 2 and 3. One

can see how the decision trees perform and how they are

converging to a good solution.

The evolution of the fitness value is also considered. The

Figure 4 shows the fitness distribution – represented by the

Q-Value – over all the rules for one exemplary agent in the

simulation, in the RL+ case. A low number of rules with high

Q-Value reflect the situations where the agent perceives the

exit, and by reaching that, the reward gets increased. There is

also a number of rules with a Q-Value of 0, meaning the rules

have not been tested during the simulation, mainly because

the agents did not experienced those situations.

The Figure 5 show the evolution of fitness for the decision

trees population in GP, considering the best individuals in each

generation. After a number of generations the value stabilizes,

however a big variance can be verified, meaning that there is a

Fig. 2. Agent example trajectories for RL+ with 2 agents, over exploit trials

Fig. 3. Agent example trajectories for GP with 2 agents, over generations

need for improvement on the GP settings, mainly the genetic

operators probabilities.

E. Evaluation of the Decision Tree

As our objective is not to develop a black box behavior

controller for this simple scenario, but to generate advice for

the modeler about potential behavior models for the individual

agents, it is central to have a look onto the decision trees

themselves. That means, we have to analyze the resulting

decision trees not just according to their performance in the

given scenario, but also their value as a source of inspiration

for the modeler.

Clearly, the size and compactness of a decision tree is a

relevant descriptor for how good a modeler can analyze its

contents. In the RL+ case the size and compactness of the

tree is correlated to the number and diversity of situation-

action pairs that are used for its generation. This is influenced

by the experience threshold, stating how often a situation

action pair has to be tested. Actually, this filtered all rules

with observations of the exit and just left over situation that

the agents more often perceive resulting in trees that are not

appropriate for all situations. The internal nodes of the trees

refer to single perceptions, thus the compactness in scenarios

with only a few agents is reduced as the most frequent

ROBERT JUNGES, FRANZISKA KLUEGL: MODELING AGENT BEHAVIOR THROUGH ONLINE EVOLUTIONARY AND REINFORCEMENT LEARNING 647

(a) RL 2 agents

(b) RL 4 agents

Fig. 4. Q-Value evolution

perceptions only contain at most one other obstacle. This is

even the case in the scenarios with 4 agents.

For being readable, the trees learned by the GP approach

have to be pruned as well. In all trees that we analyzed,

there are many branches that will never be used as they

represent conditions that have been excluded before. Thus,

the resulting effective size of the tree is much smaller than

initially observed. Again, not all situations that an agent can

perceive are handled appropriately.

Figures 6, 7 and 8 allow a direct comparison between a

hand-made decision tree and examples generated from RL+

and GP.

However, size and compactness are only weak indicators

of how well a learned behavior model can serve as a basis

for modeling. Only the modeler can finally state whether

the learned decision tree contains something “interesting”

for the particular modeling problem. In Figure 6 a decision

tree is depicted that was created by a human modeler who

supposed that this is a good behavior model for the scenario.

(a) GP 2 agents

(b) GP 4 agents

Fig. 5. Fitness over generations for best individuals

It does not just avoid collisions but even considers the coarse

direction toward the exit when deciding about the avoidance

direction. However, potential problems with other simulated

pedestrian, moving to positions where the agent following this

tree decided to go in the next step are not regarded. An analysis

of the learned trees immediately shows that they are not of

the same complexity than the manual tree, but can indeed

point to alternative, better solutions. Specially the RL+ tree

shows that it is not sufficient to just avoid the obstacle, but

the turning behavior must be larger for avoiding immediate

collisions coming from movement to colliding sectors. That

means an analysis of the learned behavior actually has the

potential to help improving the manually developed tree.

648 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Fig. 6. Hand-made decision tree

(a) RL+ tree, 4 agents scenario, experience threshold = 150

(b) Visualization of the content of the RL+ tree

Fig. 7. RL+ decision tree

Analyzing their contents, both learned trees are far from

being optimal and are suspect to assumptions that cannot hold

in any case. They both contain movements into sectors that

are not tested whether there is an obstacle or not. This shows

that learned behavior models may play an important role for

detecting bugs in the environmental model, scenario or the

functions describing the validity, i.e. fitness of an agent. The

example GP tree only considers obstacles on the right side of

the agent – a next step must be to test whether there is an

inherent bias in the scenario that is responsible for that. The

basis for this depicted tree was the best tree found during

(a) GP tree, 4 agents scenario

(b) Visualization of the content of the GP tree

Fig. 8. GP decision tree

3000 generations. Maybe, more generations are needed to

evolve a more complete tree. Moreover, we intend to include a

check after each genetic recombination operation, preventing

the creation of trees with redundant checks in the same branch.

This way, evolution can focus on finding relevant relations

among the perceptions, considering that redundancies in the

original representation are only partially helpful for that.

VI. CONCLUSION AND FUTURE WORK

In this contribution we compared decision tree based be-

havior models learned from the results of a Reinforcement

Learning approach or directly evolved using a Genetic Pro-

gramming approach. We not just considered performance as

a controller, but also had a look onto the resulting behavior

models - going a step further to our original goal of modeling

support by generating suggestions for a modeler when he is

getting stuck with developing a multiagent simulation model.

Clearly, we are just at the beginning of our endeavor trying

to find out the appropriate learning techniques for our goal in

general and for simulation problems with particular structures.

The next steps are related to further improvements of

the learning algorithms. Whereas for RL+ we already did

extensive tests concerning effects of different configurations

and alternative setups, this has still to be done for the

GP approach. A systematic analysis of the influence of

the many different parameter configurations and scenario

setups should be conducted, deepening the comparison of

the two learning techniques. We want to avoid integrating

components into the objective function that intentionally in-

fluence the shape of the tree. This would involve meta-

level considerations, making the development of the fitness

function even more complex and would confuse a modeler

ROBERT JUNGES, FRANZISKA KLUEGL: MODELING AGENT BEHAVIOR THROUGH ONLINE EVOLUTIONARY AND REINFORCEMENT LEARNING 649

as performance and modeling concerns would not be sepa-

rated.
An important question in our setup concerns the robustness

of the learning approach with respect to small changes in the

objective function that contains the characterization of valid

behavior. It is clear that developing this function is the most

difficult task when using a learning-based modeling approach.

Therefore it is essential to know how sensitive the learning

algorithm is to slight changes in this objective function.
Additionally, we want to test variations of the learning

techniques that focus on the modeling support goal. Having

in mind the design strategy, starting from the definition of

sensors and actuators, and going to a decision tree behavior

representation, the learning techniques differ on how they

evolve such a model. RL essentially works on developing a

set of rules, evaluated individually, that need to be translated

to a tree representation. In this translation process we lose

information about which were the original rules and what

was their assessment. In case the modeler wants to further

develop this model by modifying branches of the tree, it

becomes difficult to integrate this knowledge back in the

learning process. On the other hand, GP evolves directly a tree

representation. There is no need for converting information.

The human modeler can alter parts of the program and use

it back in the simulation for validation. However, the fitness

assessment is done in a program level. There is no information

about the influence of a particular branch of the tree on the

final value. We intend to modify our GP approach to include

individual action fitness evaluation – on a similar level as it’s

done with RL+ – in order to develop an editable tree program

that can be interpreted not only on the global performance

level. This would represent an important step towards the

development of a systematic way to analyze the learned tree

and identify elements that should be integrated into the final

model. How to present a tree that the modeler is able to

evaluate, which are the problems in the manual behavior model

and which elements of the learned tree are responsible that

the learned tree does not face these problems. Up to now we

were mostly focusing on finding the most appropriate learning

techniques, supporting the modeler in using the learned results

cannot be neglected.
Finally, we will peruse further experiments in more complex

scenarios. Complexity, at first, can be increased by: having

more agents in the simulation; broadening the perception range

of the agents, to include more perception variables; adding

more elements to the objective/fitness evaluation; and also by

including heterogeneous agents, that are required to perform

different roles and are subject to different objective/fitness

functions.
GP seems to be more appropriate to the space exploration

problem, yet additional processing may be required depending

on how the complexity increase will impact the size of the

decision tree. A possible solution would be to split the search

space, providing different program trees for different sub-

problems. However, this division depends on the problem

domain and additional steps would have to be included in the
design strategy.

REFERENCES

[1] J. M. Epstein and R. L. Axtrell, Growing Artificial Societies: Social

Science from the Bottom Up. MIT Press, 1996.
[2] R. S. Quinlan, C4.5: programs for machine learning. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 1993.
[3] S. B. Kotsiantis, “Supervised machine learning : A review of classifica-

tion techniques,” Informatica, vol. 31, pp. 249–268, 2007.
[4] F. Klügl, “Multiagent simulation model design strategies,” in MAS&S

Workshop at MALLOW 2009, Turin, Italy, Sept. 2009, ser. CEUR
Workshop Proceedings, vol. 494. CEUR-WS.org, 2009.

[5] G. Weiß, “Adaptation and learning in multi-agent systems: Some re-
marks and a bibliography,” in IJCAI ’95: Proceedings of the Workshop

on Adaption and Learning in Multi-Agent Systems. London, UK:
Springer-Verlag, 1996, pp. 1–21.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[7] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
ser. Natural Computing Series. Springer, 2003.

[8] S. Mahadevan and J. Connell, “Automatic programming of behavior-
based robots using reinforcement learning,” Artificial Intelligence,
vol. 55, no. 2-3, pp. 311 – 365, 1992.

[9] M. R. Lee and E.-K. Kang, “Learning enabled cooperative agent behav-
ior in an evolutionary and competitive environment,” Neural Computing

& Applications, vol. 15, pp. 124–135, 2006.
[10] T. Francisco and G. M. Jorge dos Reis, “Evolving predator and prey

behaviours with co-evolution using genetic programming and decision
trees,” in Proceedings of the 2008 GECCO conference companion on

Genetic and evolutionary computation, ser. GECCO ’08. New York,
NY, USA: ACM, 2008, pp. 1893–1900.

[11] L. Hanna and J. Cagan, “Evolutionary multi-agent systems: An adaptive
and dynamic approach to optimization,” Journal of Mechanical Design,
vol. 131, no. 1, p. 011010, 2009.

[12] W. H. Hsu and S. M. Gustafson, “Genetic programming and multi-agent
layered learning by reinforcements,” in In Genetic and Evolutionary

Computation Conference. Morgan Kaufmann, 2002, pp. 764–771.
[13] J. Denzinger and M. Kordt, “Evolutionary online learning of cooperative

behavior with situation-action pairs,” in MultiAgent Systems, 2000.

Proceedings. Fourth International Conference on, 2000, pp. 103 –110.
[14] J. Denzinger and S. Ennis, “Improving evolutionary learning of coop-

erative behavior by including accountability of strategy components,”
in Multiagent System Technologies, ser. Lecture Notes in Computer
Science, M. Schillo, M. Klusch, J. Müller, and H. Tianfield, Eds.
Springer Berlin / Heidelberg, 2003, vol. 2831, pp. 205–216.

[15] J. Denzinger and A. Schur, “On customizing evolutionary learning of
agent behavior,” in Advances in Artificial Intelligence, ser. Lecture Notes
in Computer Science, A. Tawfik and S. Goodwin, Eds. Springer Berlin
/ Heidelberg, 2004, vol. 3060, pp. 146–160.

[16] J. Denzinger and J. Hamdan, “Improving modeling of other agents using
tentative stereotypes and compactification of observations,” in Intelligent

Agent Technology, 2004. (IAT 2004). Proceedings. IEEE/WIC/ACM

International Conference on, sept. 2004, pp. 106 – 112.
[17] R. Junges and F. Klügl, “Evaluation of techniques for a learning-driven

modeling methodology in multiagent simulation,” in MATES, 2010, pp.
185–196.

[18] ——, “Learning convergence and agent behavior interpretation for de-
signing agent-based simulations,” in Proceedings of the Eighth European

Workshop on Multi-Agent Systems EUMAS 2010, 2010.
[19] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,

vol. 8, no. 3, pp. 279–292, 1992.
[20] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection (Complex Adaptive Systems), 1st ed. The
MIT Press, Dec. 1992.

[21] R. Junges and F. Klügl, “Evolution for modeling - a genetic program-
ming framework for sesam,” in Proceedings of ECoMASS@GECCO

2011. Evolutionary computation and multi-agent systems and simulation

(ECoMASS), 2011.

650 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

