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Abstract—Formal development of agent systems with inherent
high complexity is not a trivial task, especially if a formal method
used is not accompanied by an appropriate methodology. X-
machines is a formal method that resembles Finite State Ma-
chines but has two important extensions, namely internal memory
structure and functions. In this paper, we present a disciplined
methodology for developing agent systems using communicating
X-machine agents and we demonstrate its applicability through
an example. In practice, the development of a communicating
system model can be based on a number of well-defined distinct
steps, i.e. development of types of X-machine models, agents
as instances of those types, communication between agents,
and testing as well as model checking each of these agents
individually. To each of the steps a set of appropriate tools
is employed. Therefore the proposed methodology utilises a
priori techniques to avoid any flaws in the early stages of the
development together with a posteriori techniques to discover
any undiscovered flaws in later stages. This way it makes the
best use of the development effort to achieve highest confidence
in the quality of the developed agents. We use this methodology
for modelling naturally distributed systems, such as multi-agent
systems. We use a generalized example in order to demonstrate
the methodology and explain in detail how each activity is carried
out. We briefly present the theory behind communicating X-
machine agents and then we describe in detail the practical issues
related using the same example throughout.

I. INTRODUCTION

A
GENT oriented software engineering aims to manage

the inherent complexity of distributed systems [1]. The

developing process should be accompanied by methodologies

and tools that can lead towards the implementation of “cor-

rect” systems: system models that match the requirements

and satisfy any necessary properties in order to meet the

design objectives, and system implementation that passes all

tests constructed using a complete functional test generation

method. All the above criteria are closely related to three

stages of system development, namely modelling, verification

and testing. It is argued that the use of formal methods can

achieve this goal to some extend [2].

Formal modelling has centred on the use of models of

data types, either functional or relational. Although these

have led to some considerable advances in software design,

they lack the ability to express the dynamics of the system.

Some other methods, such as Finite State Machines (FSM)

or Petri Nets capture the dynamics, but fail to describe the

system completely, since there is little or no reference at

all to the internal data and how this data is affected by

system operations. Finally, methods like Statecharts, capture

the requirements of dynamic behaviour and modelling of data

but are rather informal with respect to clarity and semantics. So

far, little attention has been paid in formal methods that could

facilitate all crucial stages of “correct” system development,

modelling, verification and testing.

In this paper we use a formal method, namely X-machines

and its extension Communicating X-machines, which closely

suits the needs of agent-based development [3], while at the

same time being practical. We present a disciplined method-

ology for the incremental development of simple reactive

agent-based systems and we present in a formal way all the

required extensions of the model which will optimize towards

agent systems. The proposed methodology utilises a priori

techniques (formal modelling and verification) to avoid any

flaws in the early stages of the development together with

a posteriori techniques (a black box formal testing strategy)

to discover any undiscovered flaws in later stages. This way

it makes the best use of the development effort to achieve

highest confidence in the quality of the developed agents,

allowing safer composition of trusted, reusable agents. The

methodology is achieving all these using communicating X-

machine agents as building blocks. X-machines is a formal

method that enhances the class of FSM with two important

characteristics, namely memory and functions. X-machine

model types are defined by an input stream, an output stream,

a set of values that describe their memory structure, a set of

states, a state transition set and a set of functions. Labels in

transitions are functions which are triggered through an input

symbol and a memory instance and produce an output symbol

and a new memory instance (Figure 1).

X-machines can be thought to apply in similar cases

where Statecharts and other similar notations, such as SDL,

do. However, X-machines have other significant advantages.

Firstly, they provide a mathematical modelling formalism for

a system. Consequently, a model checking method for X-

machines is devised [4] that facilitates the verification of safety

properties of a model. Finally, they offer a strategy to test the
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Fig. 1. An abstract X-machine model

implementation against the model [5], [6], which is a gener-

alization of W-method for FSM testing. It is proved that this

testing method is guaranteed to determine correctness if certain

assumptions in the implementation hold [7]. In principle, X-

machines are considered a generalization of models written in

similar formalisms since concepts devised and findings proven

for X-machines form a solid theoretical framework, which

can be adapted to other, more tool-oriented methods, such as

Statecharts or SDL.

In addition, communicating X-machines provide notation

to create agents as instances of X-machine types and define

their interaction and communication [8]. Functions can send

messages to input streams of other X-machine agents which

are consumed by local functions. In practice, it is found

that the development of a communicating system model can

be based on a number of well-defined distinct steps, i.e.

development of types of X-machine models, creation of agents

as instances of those types, construction of communicating

agents, and then testing as well as model checking each

of these agents individually. To each of the steps a set of

appropriate tools, such as an interchange description language,

parser, animator, test set generator etc., is employed in order to

make the methodology applicable in real cases [9]. Such cases

emerge during modelling naturally distributed systems, such

as multi-agent systems. Here, we use a generalized example

of a reactive agent in order to demonstrate the methodology

and explain in detail how each activity, namely modelling,

testing and verification is carried out. In the following, we

present the methodology and in each of the sections of the

paper we briefly present the theory behind each step. We then

demonstrate in detail each proposed activity of the approach

using a generalized example as a vehicle of study. Finally,

we comment on the methodology and discuss further work to

be carried out in order to deal with dynamically configurable

systems as well as testing and verification of these systems as

a whole.

II. METHODOLOGY

Communicating X-machines is viewed as a modelling

method, where a complex system can be decomposed in small

agents (elements) modelled as simple X-machine models. The

communication of all these agents is specified separately in

order to form the complete system as a communicating X-

machine model. This implies a modular bottom-up approach

and supports an iterative gradual development. It also fa-

cilitates the reusability of existing X-machine type models,

making the management of the whole project more flexible

and efficient, achieving its completion with lower cost and

less development time.

A. Steps

The communicating X-machine method supports a dis-

ciplined modular development, allowing the developers to

decompose the system under development into communicating

agents and thus model interacting agent-based systems. We

suggest that the development of a system model can be

mapped into the following well-defined distinct actions:

(a) Develop X-machine type models (X-machine agent types)

independently of the target system, or use existing type

models as they are.

(b) Code the X-machine type model into a language that

facilitates the subsequent steps. Use the animator that

accompanies the language and get early feedback from

the domain experts (informal verification).

(c) Express the desired properties in a suitable formalism

(temporal logic) and use the formal verification technique

(model checking) for X-machine type models in order to

increase the confidence that the proposed model has the

desired characteristics.

(d) Use testing strategies in order to test the implementation

(Unit testing, where the unit is considered to be the agent

type) against the model.

(e) Create X-machine agents and determine the way in which

they communicate and interact.

(f) Extend the communicating system in order to achieve the

desired overall functionality.

A set of appropriate tools has been developed and can be

employed to each of the steps of the above methodology in

order to make it applicable in real cases. Thus, apart from the

mathematical notation used in step (a), all others are supported

as follows:

• Step (b): coding of X-machine type model is carried out

using the XMDL notation which acts as an interchange

language for describing X-machine type models and its

corresponding tools (syntax and type checker, compiler,

animator)[9]. Through the animation, it is possible for

the developers to informally verify that the model corre-

sponds to the actual agent under development, and then

also to demonstrate the model to the domain experts

prompting them to identify any misconceptions regarding

the user requirements between them and the development

team.

• Step (c): formal verification of X-machine models is

achieved with the use of an automated tool, a model

checker. Model checking of X-machine models is sup-

ported by XmCTL . This technique enables the designer

to verify the developed model against temporal logic

XmCTL formulas which express the properties that the

system should have.

• Step (d): test-cases for testing the implementation are

automatically derived using the X-machine test case
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generator. It is possible to use the formal testing strategy

to test the implementation and prove its correctness with

respect to the X-machine model.

• Step (e): the creation, communication and interaction of

the agents are established through the XMDL-c notation

and its corresponding tools. Achieve informal validation

by demonstrating an analysis of the results from the ani-

mator for XMDL-c (simulation study) to domain experts.

• Step (f): all the above mentioned tools may be used to

refine the resulting model.

There are many cases of naturally distributed multi-agent

systems in which we have applied the above methodology [10],

[11]. Here, we devised a generalized example of a reactive

agent in order to demonstrate the methodology and explain in

detail how each activity is carried out.

B. Reactive Agent Case

Reactive agents are simple agents that their responses are

very closely tied to perception and they do not possess any

(or they have limited) knowledge about the environment. Their

behaviour can be modelled with state machines and that is

why the X-machine is a perfect candidate since it can provide

very elegant models of such agents [10]. For reasons of

demonstration our example is an abstract and generalized one.

Assume a simple reactive agent (e.g. a reactive robot, software

agent) (figure 2) which consumes items (e.g. objects of a

physical or artificial environment, inputs, perceptions) of the

environment, processes them, and produces new items (new

physical objects, output, actions/effects). Each item is uniquely

identified by an identification number and its description.

The simplified agent system contains two buffers which are

storage spaces of limited capacity and a single agent which

carries out the processing. In order to control the two buffers,

two control agents are handling the communication with the

processing reactive agent and the buffers. The whole agent

system now can be viewed as a simple reactive agent that

could communicate with other similar agent systems, forming

a more complex system, providing a simple way to scale up.

 

… .... 

   Input Buffer Reactive 
Processing  

Agent 

 Output Buffer Input Controller 
Agent 

Output Controller 
Agent 

Fig. 2. Physical layout of the agent system

The items that are required to be processed by the pro-

cessing agent are placed in the input buffer, while the items

that have been processed by the reactive agent are stored in

the output buffer. Items may be added in any buffer only

if there is available space in it, while items are removed

from a buffer in a specified order (e.g FIFO, LIFO or other

discipline, handled by the input, output controlling agents).

When the reactive agent is idle and there are items stored in

the input buffer, the reactive agent may start the processing

of an item: The first item p placed in the input buffer is

removed from the input buffer and the reactive agent starts

processing it. The processing of the item lasts for t time units.

If at the completion of the item processing, the output buffer

is not full, then item p is placed in the output buffer and

the machines either becomes idle or starts processing another

item depending on whether the input buffer is empty or not.

If, however, the output buffer is full when the reactive agent

completes the processing of an item, the item p may not be

removed from the reactive agent and thus the reactive agent is

blocked. The reactive agent is unblocked when space becomes

available in the output buffer.

III. FORMAL MODELLING X-MACHINE TYPE MODELS

A. Theory of X-machines

A deterministic stream X-machine [6] is an 8-tuple

X = (Σ,Γ, Q,M,Φ, F, q0,m0)

where:

• Σ and Γ are the input and output alphabets respectively.

• Q is the finite set of states.

• M is the (possibly) infinite set called memory.

• Φ, the type of the machine X , is a set of partial functions

ϕ that map an input and a memory state to an output and

a possibly different memory state, ϕ : Σ×M → Γ×M .

• F is the next state partial function, F : Q×Φ → Q, which

given a state and a function from the type Φ determines

the next state. F is often described as a state transition

diagram.

• q0 and m0 are the initial state and initial memory respec-

tively.

The state diagram of an abstract X-machine model is shown

in figure 1. An X-machine type is defined as a deterministic

X-Machine without the initial state and the initial memory.

Types will be used in order to create X-machine agents as

shown later.

B. Mathematical Modelling

Two X-machine types are naturally identified in the man-

ufacturing facility example, i.e. the buffer and the processing

reactive agent. For example, the state transition diagrams of

these two X-machine types are depicted in figure 3.

Using mathematical notation, the definition of the buffer

type is as follows:

• The set of inputs is Σ =ITEMS where ITEMS =

ITEM_TYPE × ID, ITEM_TYPE = { TypeA, TypeB,

... } and the set of outputs Γ =ITEMS × MESSAGES,

where MESSAGES={item_removed_empty,

item_removed, item_ignored,...}.

• The set of states is Q ={ empty, non_empty, full}.

• The memory is M = PITEMS ×N , with N denoting

the capacity of the buffer.

• The type of the X-machine is Φ = { add_item,

remove_item, become_empty, become_full,

ignore_add}.
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Fig. 3. X-machine model types of a processing reactive agent and a buffer

Finally, the functions ϕ ∈ Φ of the X-machine need to be

defined. For example the function add_item is defined as:

add_item ((type, id), (items, c)) =
(item added, (items ∪ {(type, id)}, c))
if (type, id) 6∈ items ∧ card(items) + 1 ≤ capacity

IV. CODING THE TYPE MODELS

A. Modelling with XMDL

X-machine modelling is based on a mathematical notation,

which, however, implies a certain degree of freedom, espe-

cially as far as the definitions of functions are concerned.

In order to make the approach practical and suitable for the

development of tools around X-machines, a standard notation

is devised and its semantics fully defined [9]. The aim is

to use this notation, namely X-machine Definition Language

(XMDL), as an interchange language between developers who

could share models written in XMDL for different purposes.

To avoid complex mathematical notation, the language sym-

bols are completely defined in ASCII. Briefly, an XMDL

model is a list of definitions corresponding to the construct

tuple of the X-machine definition. The language also provides

syntax for (a) use of built-in types such as integers, sets,

sequences, bags, etc., (b) use of operations on these types,

such as arithmetic, logic, set operations etc., (c) definition of

new types, and (d) definition of functions and the conditions

under which they are applicable. In XMDL, the functions take

two parameter tuples, i.e. an input symbol and a memory

value, and return two new parameter tuples, i.e. an output and

a new memory value. A function may be applicable under

conditions (if-then) or unconditionally. Variables are denoted

by a preceding ?. The informative where in combination with

the operator <- is used to describe operations on memory

values. A function has the following general syntax:

#fun <function name> (<input tuple>,<memory tuple>)=

if <condition expression> then

( <output tuple>, <memory tuple> )

where <informative expression>.

The following is a part of the buffer model as coded in

XMDL:

#model buffer.

#basic_types = [ITEM_TYPE].

#type ID = Natural.

#type capacity = Natural.

#type ITEM = (ITEM_TYPE, ID).

#type buffer = set_of ITEM.

#memory (buffer, capacity).

#input (ITEM).

#output (messages, ITEM).

#type messages = {item_added,item_removed,item_ignored,

item_added_full,item_removed_empty}.

#states = {empty, non_empty, full}.

#transition (empty,add_item)=non_empty.

#transition (non_empty,add_item)=non_empty.

...

#fun add_item ( ((?ITEM_TYPE,?ID)), (?items, ?c) ) =

if (?ITEM_TYPE,?ID) not_belongs ?items and ?new_length < ?c

then ( (item_added, (?ITEM_TYPE,?ID)), (?new_items, ?c))

where

?new_items <- (?ITEM_TYPE,?ID) addsetelement ?items and

?temp <- cardinality ?items and

?new_length <- ?temp + 1.

...

B. Animation of Models

X-System is a tool created to support modelling with X-

machines [9]. Using XMDL as the modelling language, X-

System allows the animation of X-Machine models. The parser

of XMDL was built using the DCG (Definite Clause Gram-

mars) notation, which is integrated in the Prolog language and

is responsible for the syntax check of the models as well

as type and logical errors. After the parser has ensured the

correctness and completeness of a model, X-System allows

its compilation into Prolog executable code. The Prolog code

may then be used by X-System’s animator, a program which

implements an algorithm that simulates the computation of an

X-machine. Through this simulation it is possible first of all for

the developers to informally verify that the model simulates the

actual system under development, and then also to demonstrate

the model to the domain experts aiding them to identify any

misconceptions regarding the user requirements between them

and the development team.

V. XmCTL MODEL CHECKING

An automatic and formal verification technique for X-

machines based on model checking is provided. This formal

verification technique for X-machine models enables the de-

signer to verify the developed model against temporal logic

formulas that express the properties that the system should

have. For this purpose an extended version of temporal logic

was devised that is appropriate for X-machine models, named

XmCTL [4].
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The version of temporal logic that is usually used to express

the properties in model checking is the Computation Tree

Logic (CTL). In CTL [12] each of the five temporal operators

(X , F , G , U, R) must be preceded by either A (for all

paths) or E (there exists path) path quantifiers. The temporal

operators used in XmCTL are the operators of CTL with the

addition of two new memory quantifiers, namely Mx and mx:

• Mx (for all memory instances) requires that a property

holds at all possible memory instances of an X-machine

state.

• mx (there exists a memory instance) requires that a

property holds at some memory instances of an X-

machine state.

Having developed an X-machine model type it is possible to

verify it for desired properties. The properties are expressed as

XmCTL formulas, which together with the X-machine model

is given as input to the model checker. This tool outputs true

if the model satisfies the property or false together with a

counterexample. If the latter is the outcome the model is

altered accordingly using the debugging information (coun-

terexample) until the model will satisfy the property. When all

formulas have been verified the X-machine model is proved

to have all the desired properties, i.e. the model is “correct”

with respect to the requirements.

For example in the case of the buffer model the property

the number of elements in the sequence will never exceed

buffer’s capacity can be expressed with the following XmCTL

formula: AGMx(card(M(1)) ≤ M(2)). The notation M(i)
is used in XmCTL to denote the i-th variable in the memory.

The formula can be interpreted as: for all computational paths

of the X-machine model and for all states in these paths the

cardinality of the sequence holding the items will be always

less or equal to the capacity of the buffer for all memory

instances of each state.

VI. TESTING

One important advantage that modelling with X-machines

has to offer is the fact that it allows for complete testing of

the models. The devised testing strategy for X-machine models

was proved to find all faults in an implementation [13] and

it is a generalisation of Chow’s W-method for the testing of

FSMs[14]. The method works based on certain assumptions,

and design-for-test conditions, i.e. output distinguishability

and completeness, and can produce a complete test set of input

sequences. In order to check whether the design-for-test con-

ditions are met, the executable model described above is used

by providing a transition cover set (S) and a characterisation

set (W ). Informally, a characterisation set W ⊆ Φ∗ is a set of

processing functions for which any two distinct states of the

machine are distinguishable. The state cover S ⊆ Φ∗ is a set

of processing functions such that all states are reachable by

the initial state.

In the provided example, the modeller can derive

the transition cover set and a characterisation set of

the processing reactive agent model: W = {start,

reset, unblock, end_process}, S = {request,

start, start end_process, start end_process

block,start end_process block unblock }

Consequently, the complete test case set is produced by

applying the test case function [6] and indicatively a test case

is:

test case 1

input sequence: {typeA, 1) (finish, process)

(out_buffer, full) (out_buffer, not_full)

output sequence: process_started processing_finished

agent_block agent_unblock

VII. COMMUNICATION OF AGENTS

A. Theory of Communicating X-machines

A Communicating X-machine System Z as defined in [8]

is a 2-tuple:

Z = ((Ci)i=1,...,n, CR)

where:

• Ci is the i-th Communicating X-machine agent, and

• CR is a relation defining the communication among the

agents, CR ⊆ C × C and C = {C1, . . . , Cn}. A tuple

(Ci, Ck) ∈ CR denotes that the X-machine agent Ci can

output a message to a corresponding input stream of X-

machine agent Ck for any i, k ∈ {1, . . . , n}, i 6= k.

Communicating X-machine model consists of several X-

machine agents that are able to interact by exchanging mes-

sages. The structure CR defines a directed graph which

statically determines the direction of messages between agents.

An X-machine agent is defined as an X-machine, i.e. X-

machine type with initial memory and initial state, in which

the functions do not only read and write from/to their in-

put and output streams respectively but also read and write

from/to streams that are used to communicate with other X-

machine agents. More analytically, functions are of the form:

ϕi ((σ)j ,m) = ((γ)k,m
′) where (σ)j means that input is

provided by machine Cj whereas (γ)k denotes an outgoing

message to machine Ck . If i = j and/or i = k, that means

that machine Ci reads from its standard input stream and/or

writes to its standard output stream.

Graphically on the state transition diagram we denote the

acceptance of input by a stream other than the standard by a

solid circle along with the name Cj of the communicating X-

machine agent that sends it. Similarly, a solid diamond with the

name Ck denotes that output is sent to the Ck communicating

X-machine agent.

B. Creation of Communicating Agents with XMDL-c

XMDL has also been extended (XMDL-c) in order to code

communicating agents. XMDL-c is used to define instances

of models by providing a new initial state and a new initial

memory instance:

#model <model_instance> instance_of <model_type>

with:

#init_state <initial_state>;

#init_memory <initial_memory>.
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In addition, XMDL-c provides syntax that facilitates the

definition of the communicating functions. The general syntax

is the following:

#communication of function <function_name>:

#reads from <model instance>;

#writes <message tuple> to <model_instance>

using <variable> from output <output tuple> and

using <variable> from input <input tuple> and

using <variable> from memory <memory tuple>

where <informative expression>.

A function can either read or write or both from other agents

(model instances). It is not necessary to specify the incoming

message because it is of the same type as the input defined

in the original agent. However, it is necessary to specify the

outgoing message as a tuple which may contain values that

exist in either output or input tuples of the function or even

in the memory tuple of the agent. The informative expression

is used to perform various operations on these values before

they become part of the outgoing message tuple.

C. Compiling X-machine agents

CommX-System is a tool created to support modelling

with Communicating X-machines [8]. To start with, CommX-

System initially uses an XMDL-c description of the com-

munication interface of a system’s agent. The parser ensures

the syntactic and logical correctness of the description, the

compiler performs the semantic analysis and transforms the

description into executable code. The compiler is then respon-

sible for combining the communication code with that of the

actual model code. One unique executable file is produced

corresponding to the communicating agent of the overall

system. After all the above have been performed for each of

the agents of the system, all produced files are combined to

create one that corresponds to the entire system and which

will be used by the tool’s animator.

Indicatively, we present a part of the communicating system.

According to the description of the problem, the input buffer

and the processing reactive agent should communicate in the

sense that an item should be sent from the buffer to the reactive

agent when the reactive agent is ready to process it. The

following XMDL-c code creates a agent for the (input) buffer

and its communication with the reactive agent agent.

#model buf_in instance_of buffer

with:

#init_state {empty};

#init_memory (nil, 5).

#communication of function remove_item:

#writes ((?item,?id)) to (mach)

using ?item from output (?m, (?item,?id)) and

using ?id from output (?m, (?item,?id)).

#communication of function become_empty:

#writes ((?item,?id)) to (mach)

using ?item from output (?m, (?item,?id)) and

using ?id from output (?m, (?item,?id)).

Similarly, the following XMDL-c code defines the reactive

agent model and its communication with the input buffer. The

communication between these two agent X-machine models is

depicted in figure 4. The reactive agent and the output buffer

interact in a similar way.

#model robot1 instance_of reactive agent

with:

#init_state {ready};

#init_memory ((none,0)).

#communication of function start:

#reads from buf_in.

#end.

VIII. THE OVERALL SYSTEM

So far, we have followed steps (a) to (e) of the methodology

and we assume that all agents (the input buffer, the processing

reactive agent and the output buffer) have been developed, an-

imated, verified and tested as well as communication between

them has been established.

The system modelled at this stage is a simple agent system

with one reactive agent that has an input and an output buffer

as depicted in figure 2 without the controller agents. The

input buffer stores the items added in it and communicates

to the reactive agent an item stored in the buffer, whenever

the reactive agent needs one; i.e. the input buffer models a

heap. In a similar fashion, the output buffer, accepts an item

processed by the reactive agent and stores it. In the case that

it is required to employ an input buffer with another discipline

(e.g. FIFO), then it is necessary to create another buffer agent

that has the same transition diagram as the one shown in

figure 4, but different implementation of the transition function

remove_item. It is therefore evident that this approach

is not coping well with changes mainly because it restricts

reusability.

The last step (f) demonstrates the flexibility of the proposed

methodology addressing this issue. Changes in the system

behaviour can be easily handled by the proposed methodology

with the addition of (probably off-the-self) controller agents

that encapsulate the desired behaviour. In the manufacturing

facility case the input controller (ctrl-in) has been added to

control the feeding of the items from the input buffer to

the reactive agent in a FIFO manner. The complete model is

depicted in figure 5 providing a flexible and modular solution.

Any change of the requirements e.g. in the manner the items

are fed to the reactive agent can be dealt with the use of a

different specialised input controller, replacing the old one in

the model.

It has been demonstrated that the proposed methodology

offers an intuitive way to model agent-based systems by

providing the flexibility that each agent identified in the real

system is mapped directly to an X-machine agent model in

the design of the system. By applying this methodology to

agent-based systems it is possible to incrementally model the

complete system and assure that all desired properties of the

agents of the system hold in the final product.
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Fig. 5. The model of the complete system

IX. CONCLUSIONS AND FURTHER WORK

We have presented a methodology for developing simple re-

active agent-based systems using communicating X-machines

formal method. X-machines attracted many researchers inter-

est over the last twenty years [15] mainly because of the

intuitiveness in modelling reactive systems and the additional

features they provide in terms of testing and verification. The

main contribution of this paper is the detailed description of

the methodology that allows to scale up to larger and more

complex systems with a focus on developing correct compo-

nents, the formal introduction of the X-machine type models

and their instances as parts of a more complex system and

the simple but general and complete example to demonstrate

the applicability of the proposed method. The methodology

and its accompanying tools impose an incremental bottom-

up practical development. It is useful in cases where complex

systems can be viewed as an aggregation of simple agents that

can communicate in order to achieve the overall behaviour

of a distributed system. A particular example is the multi-

agent systems [3], in which similar methodologies might be

employed, such as Gaia, AAII, Cassiopeia etc. [1].

With the continuous verification and testing of agents from

the early stages risks are reduced and the developer is confident

of the correctness of the system under development throughout

the whole process. It is worth noticing that the proposed

methodology utilises a priori techniques to avoid any flaws in

the early stages of the development together with a posteriori

techniques to discover any undiscovered flaws in later stages.

This way it makes the best use of the development effort to

achieve highest confidence in the quality of the developed

agents that have been verified and tested therefore they can

be reused as trusted agents. The proposed communicating X-

machine concept is based on the idea of reusability, thus min-

imizing the development time without risking the quality of
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the product. Further works also include modelling of dynamic

systems, models of which the configuration of communicating

agents changes over time. A set of appropriate rules has been

devised [16], [11] and ideas are borrowed from biological

computational paradigms, such as membrane computing [17],

in order to facilitate definition of the appropriate hybrid formal

method [18].

There is a need for the extension of the model checking

technique in order to facilitate the formal verification of

communicating X-machine models. Research is conducted

towards this direction but also towards the establishment of a

successful testing strategy for the communicating X-machine

models [19]. Finally there is a continuous need to evaluate

the proposed methodology with real case studies and with

industrial development teams to prove and not demonstrate

its applicability and to compare with other industrial strength

methodologies.
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