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the communication features of CARDEA (web-based remote 

management, phone or SMS messaging, etc.) are 

straightforwardly available to MuSA, with no need of 

replicating such features in a stand-alone MuSA base-

station.  

A. Fall-Detection 

The fear of falling is a major issue, threatening elderly 

self-confidence and independence. Falls are one of the first 

causes of death or serious injury in older adults [7]: the use 

of automatic fall detection systems could both speed up the 

assistance of the people in need and give a security feeling to 

the person using it. Perspectively, behavioral analysis of 

SHRSOH¶V� PRWLRQ� BJDLW� TXDOLW\F� IRU� LQVWDQFHF� EDVHG� RQ� WKH�

same accelerometric patterns exploited for fall detection) can 

be exploited for possibly preventing fall conditions.  

There are several ways to fall: the fall movement can be 

quite different, depending heavily on the actual situation. In 

[8] a fall classification attempt is presented; the author 

identifies three different kinds of most common falls for an 

older adult: fall during sleep, from the seated position and 

from standing up to lying on the floor. Whereas the first two 

can be somehow monitored by means of bed- or chair-

occupancy sensors managed by CARDEA, the last one (also 

being the most frequent kind) calls for smarter automatic 

detectors [9]. Fall detectors may exploit artificial vision 

algorithm, environmental sensors and wearable sensors. 

Wearable sensors provides a fair trade-off among cost, 

performance and intrusiveness: the adoption of a wearable 

device, moreover, also provides CARDEA with identity 

information, enabling management of personalized settings 

and behaviors.  

At the heart of fall detector, the low-power LIS331DLH 

[10] triaxial MEMS accelerometer manufactured by ST 

Microelectronics is used for algorithm implementation. 

 Basic fall detection algorithms exploit threshold 

comparison [11]: since falls are often associated to 

acceleration peaks, current acceleration (the Euclidean norm 

of the acceleration vector, actually) is checked against a 

given threshold, which depends on personal physical 

IHDWXUHV� BKHLJKWF� ZHLJKWF� «). However, tuning such a 

threshold is critical, with respect to false-positive and false-

negative conditions: many daily-living activities may result 

indeed in accelerations comparable with those involved in a 

fall (stumbling, sitting down or standing up, bending down, 

«C��+HQFHF�D�PRUH� UHOLDEOH�GHWHFWLRQ�VWrategy is needed: to 

this purpose, MuSA correlates acceleration pattern with 

postural information. Body orientation can be easily inferred 

by exploiting further sensors such as gyros or protractors, 

introducing however additional costs, size and power 

constraints. We therefore exploited digital signal processing 

to extract relative orientation information from the same 

stream of accelerometric data. The MEMS accelerometer, in 

fact, is subject to the gravity acceleration G, which can be 

regarded as D�³VWDWLF´�component of the sensed acceleration. 

Static acceleration can be extracted from the sensor output 

stream by proper filtering, thus providing a reference that 

can be used to calculate the angle shift between subsequent 

estimations [20].  

A differential approach is followed, which makes the 

algorithm independent on the actual sensor-wearing fashion.  

Whenever an acceleration peak exceeding the threshold is 

observed, a comparison between the orientation before and 

after the peak occurrence is carried out. 

The algorithm is illustrated in Fig. 4: acceleration 

components (#ë á#ìá#í) are acquired from the MEMS every 

16 ms. Then, the acceleration norm is computed, and 

acceleration components are stored for subsequent 

processing. When the norm exceeds the given threshold, 

comparison of static accelerations starts, looking for the tilt 

angle computed just before and after the acceleration peak.  

 

 

Fig.  4 Fall detection algorithm flowchart 

 

#ãåØ is static acceleration (i.e., steady state) component, 

averaged on a 1 sec time interval prior to the acceleration 

trigger, while #ãâæç refers to the same average component, 

computed after the trigger. Averaging allows for noise 

reduction, and the dot product between pre- and post-peak 

average accelerations can be computed: 

6 L #ãåØ Æ #ãâæç �L Ã #ãåØ4ÜÜ #ãâæç4Ü               (1) 

Since the intensity of  # in both cases should be equal to 

), the tilt angle à can be readily worked out:  

6 L � +#ãåØ++#ãâæç+ ���à L )
6
��� à                (2) 

and compared with a suitable threshold, in order to infer an 

actual fall.  

So doing, data coming from a single accelerometer 

provide both acceleration and (relative) tilt-angle estimate.  

The algorithm reliability has been verified through some 

tests, following the methodology introduced in [12]. We 

tested MuSA on a set of twelve volunteers (20-30 years old, 

51-78 kg weight, 163-192 cm height), who were asked to 
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