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Abstract—In this paper, a novel multi-sensor wearable
device, called MuSA, is introduced. MuSA aims at integrating
in the CARDEA ambient-assisted-living framework: on the one
hand, MuSA provides CARDEA with useful ambient-
intelligence features, such as localization and identification; on
the other hand, it may borrow from the environmental control
system many infrastructural and communication components,
resulting in a less expensive implementation. MuSA exploits on-
board sensors and signal processing units for fall detection,
heartbeat and breathing rates detection. At this level too,
sharing of part of the circuitry enables power and cost savings.
Ubiquitous computing paradigm is followed, carrying out all of
the signal processing and decision processes at the wearable
node: this makes communication toward supervision levels
much less demanding and independent on the actual physical
features of the sensors themselves. Test have been carried out,
confirming that the low-cost approach which has been followed
still allows for adequate quality of responses. Field test is
starting, to evaluate psychological and ergonomic aspect as
well.

INTRODUCTION

OPULATION ageing is putting to severe proof current

health- and social-care models: the relative number of

people experiencing frailty and disability conditions due
to old age is increasing, so that conventional caregiving
schemes are becoming hardly sustainable. In particular,
institutionalization is frequently exploited to provide care to
lone elderly. This practice, however, implies high costs
(besides potentially threatening quality of life), and cannot
be easily scaled to the increasing number of older people
needing assistance: hence, home care and home assisted
living strategies are an essential component of present and
future care policies. Tools based on information and
communication technologies may play an enabling role,
allowing for the implementation of many assistive functions
in the home environment, aimed at autonomy and
independent life. To this purpose, basic needs to be
accounted for are related to ambient safety and security, as
well as personal and health monitoring. In this paper, an
integrated approach to such issues is described. The
CARDEA system [1] encompasses within the same
framework many functions which are customarily carried
out by independent entities: CARDEA relies on standard IP
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communication techniques (even at the field level) and is
inherently based on distributed intelligence techniques. On-
board processing is extensively exploited by ambient sensors
and wearable sensors, aiming at reducing communication
overheads, increasing reliability and reducing costs. An open
and flexible architecture is implemented, allowing for
reconfigurability and interoperability. Remote access and
control of every device is enabled through web-based tools.
In the following section, the CARDEA framework is
introduced, emphasizing the adoption of distributed-
intelligence ambient control modules. Then, MuSA
wearable wireless sensor platform is described. Conclusions
and ongoing work are eventually discussed in last section.

CARDEA

CARDEA[1] is a powerful and versatile Ambient Assisted
Living (AAL) system, developed at University of Parma.
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Fig. 1 CARDEA system view

The system is inherently based on standard IP
communication, and has a hierarchical structure, easily
scalable from the single apartment to large residential
complexes. An intelligent module, called FEIM (Field
Ethernet Interface Module) has been designed and
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implemented to cope with a wide variety of sensor devices:
FEIM module allows for connecting low-cost sensors, even
if not conceived for network connectivity.

FEIM is based on an embedded microcomputer, and can be
programmed to control analog and digital multiple field
devices (up to 25 per module). Local processing power is
also exploited to implement low-level decision strategies
(light or appliance control, for instance) or safety-critical
tasks (alarm messaging) making them independent on actual
availability of network connection. FEIMs communicate
among them on a peer-to-peer basis, requiring no external
supervision, allowing for establishing operating rules
involving different device clusters.

Fig. 2 FEIM module

Also, dynamic reconfiguration is exploited to implement
fault-tolerant policies and graceful degradation strategies, by
accounting for redundant configurations and module hot-
swapping. At a higher hierarchical level, supervisor
processes, running on any networked machine, are exploited
for the implementation of more complex operating rules and
to deal with user’s interfaces and external network gateways.
CARDEA includes a number of user interfaces, easily
accessible and suitable for elderly people and people with
disabilities [2]. It also features a web-extension module,
which enables full control and monitoring functions from
any remote location, by means of dynamic web applications
[3].

A wireless sensor network (WSN) contribute to the system
architecture as well, dealing with mobile devices. Here, we
shall refer to a WSN based on the IEEE-082.15.4 (ZigBee)
standard protocol, exploited for the implementation of
wearable sensors described in the following.

CARDEA-MUSA

Wearable devices are exploited to monitor personal activities
and vital signs. They are conceived to provide continuous
monitoring, so they need to be small and lightweight, and
minimally intrusive. Also, battery power should last as long
as possible, this calling for accurate management of the
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power budget. Finally, being such devices exploited for
security and health purposes, high reliability, as well as ease
of use and reconfigurability [4], are mandatory. Of course,
inexpensiveness is needed to allow for large-scale
deployment.

CARDEA MuSA (MUIti Sensor Assistant) is a wearable
multisensor platform, specifically designed with assistive
purposes, compliant with ZigBee/IEEE802.15.4 standard
protocol. MuSA is designed to be worn at belt or at chest: it
is quite small (78x48x20 mm), and lightweight (about 70
grams, Li-Ion battery included). Different functions can be
implemented on the same platform: basic configuration of
MuSA includes a call button, automatic fall detection and an
indoor localization function. The latter function can be
exploited in large residential complexes, allowing CARDEA
to make caregivers aware of the actual position of a person
needing assistance, or to detect wandering behaviors of
cognitive-impaired people [5]. CARDEA MuSA can be
extended with further functions, hosted by the same
hardware platform: a basic ECG system is implemented,
used to evaluate heart rate. A breath rate detector is included
as well, based on chest expansion measurement. All of the
signal acquisition and processing is carried out by MuSA on-
board circuitry: detection of abnormal behaviors or deviation
of vital signs from their “normal” range is carried out by
MuSA. Radio communication is hence kept at a bare
minimum (alarm messages and network management),
saving battery energy.

MuSA board is based on CC2531 system-on-chip [6] by
Texas Instruments. Two basic building blocks can be
identified: a IEEE 802.15.4 radio transceiver, and a

microcontroller taking care of ZigBee stack management.
The same microcontroller is exploited for digital signal
processing. The board also include sensors and analog front-
end circuitry needed to acquire vital signs.

Fig. 3 MuSA wearable device

MuSA is fully integrated in the CARDEA framework: a
network of ZigBee fixed-position nodes is deployed into the
environment, and managed by CARDEA. Such nodes
exchange information with MuSA mobile devices, and make
them available to CARDEA, either by exploiting a FEIM
interface channel (i.e., similarly to environmental sensors) or
directly at the supervision level, communicating with
supervising processes through a TCP/IP socket. Then, all of
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the communication features of CARDEA (web-based remote
management, phone or SMS messaging, etc.) are
straightforwardly available to MuSA, with no need of
replicating such features in a stand-alone MuSA base-
station.

A. Fall-Detection

The fear of falling is a major issue, threatening elderly
self-confidence and independence. Falls are one of the first
causes of death or serious injury in older adults [7]: the use
of automatic fall detection systems could both speed up the
assistance of the people in need and give a security feeling to
the person using it. Perspectively, behavioral analysis of
people’s motion (gait quality, for instance, based on the
same accelerometric patterns exploited for fall detection) can
be exploited for possibly preventing fall conditions.

There are several ways to fall: the fall movement can be
quite different, depending heavily on the actual situation. In
[8] a fall classification attempt is presented; the author
identifies three different kinds of most common falls for an
older adult: fall during sleep, from the seated position and
from standing up to lying on the floor. Whereas the first two
can be somehow monitored by means of bed- or chair-
occupancy sensors managed by CARDEA, the last one (also
being the most frequent kind) calls for smarter automatic
detectors [9]. Fall detectors may exploit artificial vision
algorithm, environmental sensors and wearable sensors.
Wearable sensors provides a fair trade-off among cost,
performance and intrusiveness: the adoption of a wearable
device, moreover, also provides CARDEA with identity
information, enabling management of personalized settings
and behaviors.

At the heart of fall detector, the low-power LIS331DLH
[10] triaxial MEMS accelerometer manufactured by ST
Microelectronics is used for algorithm implementation.

Basic fall detection algorithms exploit threshold
comparison [11]: since falls are often associated to
acceleration peaks, current acceleration (the Euclidean norm
of the acceleration vector, actually) is checked against a
given threshold, which depends on personal physical
features (height, weight, ...). However, tuning such a
threshold is critical, with respect to false-positive and false-
negative conditions: many daily-living activities may result
indeed in accelerations comparable with those involved in a
fall (stumbling, sitting down or standing up, bending down,
...). Hence, a more reliable detection strategy is needed: to
this purpose, MuSA correlates acceleration pattern with
postural information. Body orientation can be easily inferred
by exploiting further sensors such as gyros or protractors,
introducing however additional costs, size and power
constraints. We therefore exploited digital signal processing
to extract relative orientation information from the same
stream of accelerometric data. The MEMS accelerometer, in
fact, is subject to the gravity acceleration G, which can be
regarded as a “static” component of the sensed acceleration.
Static acceleration can be extracted from the sensor output
stream by proper filtering, thus providing a reference that

can be used to calculate the angle shift between subsequent
estimations [20].

A differential approach is followed, which makes the
algorithm independent on the actual sensor-wearing fashion.
Whenever an acceleration peak exceeding the threshold is
observed, a comparison between the orientation before and
after the peak occurrence is carried out.

The algorithm is illustrated in Fig. 4: acceleration
components (A, 4, A,) are acquired from the MEMS every
16 ms. Then, the acceleration norm is computed, and
acceleration components are stored for subsequent
processing. When the norm exceeds the given threshold,
comparison of static accelerations starts, looking for the tilt
angle computed just before and after the acceleration peak.
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Fig. 4 Fall detection algorithm flowchart

Apyre i static acceleration (i.e., steady state) component,
averaged on a 1 sec time interval prior to the acceleration
trigger, while A, refers to the same average component,
computed after the trigger. Averaging allows for noise
reduction, and the dot product between pre- and post-peak
average accelerations can be computed:

T = Apre ’ Apost = ZiApre_i Apost_i (1)

Since the intensity of A in both cases should be equal to
G, the tilt angle 8 can be readily worked out:

T = |Apre||Apost| cos 8 = G cos 6 2)

and compared with a suitable threshold, in order to infer an
actual fall.

So doing, data coming from a single accelerometer
provide both acceleration and (relative) tilt-angle estimate.

The algorithm reliability has been verified through some
tests, following the methodology introduced in [12]. We
tested MuSA on a set of twelve volunteers (20-30 years old,
51-78 kg weight, 163-192 cm height), who were asked to
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simulate different kind of falls from the standing position
(backwards to sitting position, backwards to lying position,
forward to knees, laterally to right side, laterally to the left
side). Then, the volunteers were asked to perform daily
living activities, suitable for being mistaken for falls
(recovering standing position from previously described
falls, sit down on a chair, stand up from a chair, sit down on
a stool, stand up from a stool). Every test was repeated five
times by each volunteer, summing up to 840 records in the
database.

By considering the number of True Positives (TPs) and the
number of False Negatives (FNs) we may evaluate the
sensor sensitivity, i.e., the ability of recognizing actual falls:

TPs
TPS+FNs

Sensitivity = 3

For the given test set, a 99 % sensitivity figure was
achieved. Similarly, taking True Negatives (TNs) and False
Positives (FPs), we may evaluate sensor effectiveness in
discriminating misleading events:

TNs
TNs+FPs

Specificity = %)

A 97.8 % specificity figure was estimated on the given set.

The algorithm, although relying on limited computational
power available, is hence quite accurate; data processing and
interpretation is carried out by MuSA on-board processor,
which hence can be seen by CARDEA as a simple binary
sensor, signaling falls by means of a Boolean variable.

A low-power operating mode has also been implemented,
exploiting LIS331DLH features to reduce MEMS sampling
frequencies. In fact, acceleration threshold and orientation
can be monitored by the MEMS device itself, relieving the
microprocessor from continuously checking the data stream.
The CPU is awaken by the accelerometer (through an
interrupt line) whenever an over-threshold acceleration is
detected. In normal conditions, CPU activity is hence limited
to coarse sampling of accelerometer registers (acceleration
and orientation). This allows for better exploitation of sleep
modes, at the expense of a less detailed recording of motion
data: by tuning time intervals, we were able to attain a 50%
reduction in the processor power consumption, with a
negligible degradation in sensitivity and specificity.

B. Heartbeat Detection

CARDEA MuSA is also capable of estimating the
heartbeat rate. This can be exploited to promptly notify
abnormal heart rhythms (i.e., arrhythmias, tachycardia or
bradycardia), or, when combined with motion data, to
provide a more accurate picture of the energy expenditure. A
simple electrocardiogram (ECG) section is exploited to this
purpose. Diagnostic systems usually rely on a variable
number of body electrodes, placed at specific configuration
patterns (leads) [13]: of course, ECG definition and accuracy
increases with the number of electrodes and leads acquired,
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providing more physiological insight. MuSA, however, aims
at continuous monitoring and is not conceived as a
diagnostic tool: then, in order to limit sensor intrusiveness
and to cope with circuit size and power consumption, we
adopted a simple, two-electrode scheme [14], which enables,
depending on the actual body placement of electrodes,
exploitation of three fundamental Einthoven leads. On-board
circuitry include an analog front-end, consisting of an
instrumentation amplifier and a low-pass analog filter
(106 Hz cutoff frequency). Digital processing is then carried
out by the CC2531 CPU: just after first A/D conversion,
digital filtering of mains (50 Hz) frequency noise is carried
out. Then the input signal is numerically derived, in order to
emphasize Q-wave peaks, the frequency of which is
subsequently identified by means of a threshold comparator.

ECG Signal

200 : - . . - . -

ECG Derivative

Time (s)

Fig. 5 MuSA embedded ECG subsystem

In order to deal with individual diversity, the algorithm
thresholds are automatically calibrated, on the basis of the
signal acquired in the early monitoring stages.

TABLEI
HEARTBEAT RATE ESTIMATION

Average relative error
Einthoven I lead 4.1955%
Einthoven II lead 2.8221%
Einthoven III lead 2,0008%
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The estimated heartbeat rate is then checked against (user-
defined) normal range boundaries: should such boundaries
be exceeded, an alarm is issued to CARDEA, which, in turn,
activates messaging strategies aimed at relatives, medical
doctors, neighbors, caregivers, etc., according to the current
profile. Since the estimate on moving subject can be quite
noisy, the alarm is issued on average estimation. Such an
approach is compatible with available computing resources
and accurate enough for the given purpose: by computing
heartbeat frequency on-board, no ECG tracing needs to be
transmitted on the radio-link, thus greatly reducing radio
power consumption.

Tests have been conducted on a set of volunteers, under
different activity conditions, and exploiting different
Einthoven leads: estimated frequencies were then compared
with those extracted from a reference instrument. Results are
summarized in Table I above, and demonstrate the
achievement of fairly reliable detection in all cases.

C. Breathing Rate Detection

Estimation of breathing rate exploits a piezoelectric
sensor (Measurement Specialties LDT0-028K) inserted into
the elastic chest strap. The sensor detects variations in the
strap strain due to inhaling and exhaling movements, and
produce a charge variation at the piezo-polymeric film. The
signal is hence acquired through a charge preamplifier,
having a narrow, low-frequency bandwidth (0.007 Hz -
16 Hz), so to filter out components due to movements
different from breathing.
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Fig. 6 MuSA embedded breathing-rate estimation subsystem

Similarly to the ECG section, after a further analog
amplification stage, the signal (shown in Fig. 6) is acquired
by the TI-CC2531 chip, which looks for amplitude peaks. In
this case too, the time-domain sensor signal (an example of
which is shown in Fig. 4) does not need to be transmitted to
CARDEA: MuSA compares breathing frequencies worked
out with the assigned “normal” range, and issues anomaly
warnings when needed. By exploiting CARDEA
cooperation, careful partition of tasks between the wearable
device and the environmental infrastructure was made
possible, allowing for effective management of the available
power and computational budgets. At the base station side,
most functions (alarm dispatching and notifications) can be
borrowed from environmental control modules, thus
resulting in an inexpensive and versatile device. Moreover,

data coming from MuSA can be correlated with
environmental information sources, to increase, through data
fusion, the overall reliability of the monitoring system.
Finally, sharing the same CARDEA information space,
makes MuSA outcomes readily available on the web, thanks
to the CARDEAweb extension.

CONCLUSIONS AND ONGOING WORK

The concept of multi-sensor, multi-functional wearable
platform is being currently expanded, accounting for further
functionalities: in particular, MuSA prototypes are being
developed including body temperature and microphonic
sensors. Body temperature is acquired through a low-cost
NTC thermistor, embedded in the chest strap as well. Analog
signal treatment is carried out through an instrumentation
amplifier (TI-INA330, [6]), whereas digital processing is
carried out, as usual, by the CC2531 chip. First tests show
that such a low-cost approach still allows for accuracy in the
0.1°C, which is adequate for long-term monitoring
purposes.

Including a microphone will also allow MuSA user to
communicate verbally with remote caregivers, when seeking
for assistance or in case of fall. Integration with CARDEA
avoids the need of accounting for a bi-directional voice-
channel: incoming voice message can be managed by the
environmental control system, thus not requiring to embed
speakers or audio amplifiers info MuSA. A tiny MEMS
microphone (Analog Devices ADMPA401- 4-5) easily fits the
MuSA board. Sampling and digital encoding of the audio
stream is carried out by the digital processor, which
subsequently send it over the radio link.

CARDEA-MuSA is currently undertaking a field-test
campaign, being deployed at some assisted-living facilities
already running long-term CARDEA trials [3]. Besides
technical performance and reliability, assessed by lab test,
this will allow to check its ergonomic and psychological
impact on elderly users and on their caregivers, allowing for
optimizing the service and to evaluate potential benefit of
the adoption of wearable multifunctional devices in actual
care policies.
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