
NotX

Service Oriented Multi-platform Notification System

Filip Nguyen, Jaroslav Škrabálek

Faculty of Informatics

Masaryk University

Brno, Czech Republic

Email: nguyen.filip@mail.muni.cz,skrabalek@fi.muni.cz

Abstract—This report describes NotX—service oriented sys-
tem, that applies ideas of CEP and SOA to build highly reusable,
flexible, both platform and protocol independent solution. Service
oriented system NotX is capable of notifying users of external
information system via various engines; currently: SMS engine,
voice synthesizer (call engine) and mail engine. Adaptable design
decision makes it possible to easily extend NotX with interesting
capabilities. The engines are added as plug-ins written in Java.
There are plans to further extend NotX with following engines:
Facebook engine, Twitter engine, content management system
engine. Also the design of NotX allows to notify users in theirs
own language with full localization support which is necessary
to bring value in today’s market. Most importantly, the core
design of NotX allows to run under heavy load comprising
thousands of requests for notification per second via various
protocols (currently Thrift, Web Services, Java Client). Thus
NotX is designed to be used by state of the art Enterprise
Applications that require by default certain properties of theirs
external systems as scalability, reliability and fail-over.

Index Terms—information system, soa, notx, cep, sms, voice,
phone, mail, notification, enterprise, java, active mq, jms, jee,
j2ee

I. INTRODUCTION

NOTIFICATIONS have been studied as valuable tool in

context of ubiquitous computing [3] and little more

simplistic version of them (email notifications) are present in

almost every information system as a standard approach to

notify (and prompt) user in the case of password change, regis-

tration approval or account state change. But the real power of

notifications come when there is more sophisticated business

logic associated with generation of these events such as in [4].

Other useful applications of such a notification service are ar-

eas where traditional paper based communication/notification

means are used [5]. Consider simple example—in information

system dedicated to organize academic conferences important

criterion for usability would be for user to receive notifications

about paper submission and paper approval or rejection. They

would also expect to be notified about other more real-

time events like reschedule of certain presentation. This kind

of business logic is usually system-specific but means of

delivering these notifications are usually the same: email or

SMS (short message service for cellular network). There is one

additional channel that we find very useful (also indicated in

[1]) and that is voice channel, namely text to speech synthesis

delivered into cellular network. Because of repetitive use of

this notification infrastructure (e.g. [6]) it would be beneficial

to create service that would provide all these notification

means.

In this report we describe service that complies to above

description—NotX. In the first part of the paper we describe

business requirements that are relevant for such service. Then

the actual architecture and technological details of NotX are

presented. The last part of paper is dedicated to discussing

the development process used to drive NotX development and

possible directions of further work on NotX.

II. BUSINESS REQUIREMENTS

NotX’s first deployment hence first real use case is to serve

as a notification service to Takeplace [11] information system

to send various notifications including:

• emails with password change/registration

• rescheduling of presentation (this is typically delivered

by SMS or voice)

Notification is sent dynamically via appropriate engine accord-

ing to user settings and global NotX settings. Voice and SMS

engines are a very fast way to notify the user but uses of

these engines are charged so their use is limited and must be

controlled.

Voice notifications can be delivered into cellular network

or to SIP (Session Initiation Protocol - signalization protocol

for internet phone communication). Motivation for SIP can be

found in [7].

Because it is anticipated that the use of notifications will be

massive and certain groups of users will be repetitively notified

(for example attendees of certain conference) we demand

tagging of users. Information system developer (IS developer)

should be able to send notifications to either specific user or

to specific tag.

Required operations to be performed via NotX are:

• tag (userid, tag)

• unTag (userid, tag)

• sendNotification (dest, msgType, templateName, place-

holderVals)

The tag parameter in tag and unTag is text with ’.’ characters

permitted, e.g. ConfernceA.attendee or ConferenceA.speaker.

The first part of tag parameter up to ’.’ is called domain.

The tag does not have to include the domain, the domain is

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 313–316

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 313

used only for billing and statistical purposes. The userid is

unique identifier of user to be tagged. The sendNotification

operation is used to send notification itself. The parameter

dest is used to specify to which entity the message should be

sent. It can be either userid prefixed with ’:’ or it can be tag.

When tag is used in this parameter the message will be sent

to all tagged users. Parameter msgType is used to add more

semantic to message, e.g.: important. Administrator of NotX

can use this semantic parameter to configure NotX to send all

important messages via predefined engine, e.g for TTS (text

to speech synthesis). Next parameter templateName is used to

specify which message should be sent, for example template

for registration approval registration approval is template of

message that is sent when registration process is successful.

Lastly placeholderVals is associative array that is used to inject

values into template.

Takeplace itself is a distributed web application, and has

many different developers that are experienced in various

technologies (ranging from PHP to Servlets) hence every one

of these developers is used to a different way of accessing

services. NotX should take this into account and make it as

easy as possible to access NotX service.

Next important requirement is concerned with international-

ization. Because academical conferences are usually attended

by participants from various countries it is convenient for them

to receive notifications in their own language. This is important

equally for voice, sms and email notifications.

Because NotX uses charged services like cellular network

the NotX has to keep track of sent notifications with informa-

tion about domain to which they were sent.

Regarding nonfunctional requirements, the most important

is to handle peaks of notifications with persistent fail-over.

Usually if there is one big notification for all participants of

major conference there can be thousands of various messages

sent via email, SMS or voice synthesizer (TTS). It’s not

necessary to deliver all notifications at once but system should

not render unresponsive or shouldn’t crash and all messages

should be delivered.

III. ARCHITECTURE

NotX is developed to be a scalable platform and protocol

independent Service. Currently the NotX is deployed to serve

as a service for Takeplace so thousands of messages can arrive

per second at peak hours.

Necessary attribute of reusable software service is its plat-

form independence. That’s why NotX and its components are

built using Java programming language. NotX itself is web

application that is built using build tool Maven [2].

The main output of the build process are two WAR (Web

Application Archive) files: Notx.war and Communication.war

which is web application that exposes protocols used as an

interface into NotX. These main components are depicted in

Figure 1. These WAR archives correspond to main compo-

nents of NotX architecture - the core logic itself (NotX) and

communication module (the Communication.war).

Communication NotX

MailEngine

SMSEngine

VoiceEngine

Plugins

Fig. 1. Components of NotX

JMS (JSR 914) is specification for messaging API between

loosely coupled components of information system. We are

using Apache Active MQ implementation which supports

persistent fail-over. Considering fail-over there are several fails

that can happen during NotX’s lifecycle:

1) Problem with external engine provider (SMS or voice)

2) Problem with connectivity to communication module

with NotX

3) Bug in NotX logic

4) Any fail of hardware while processing notification

To address all of these problems our architecture is queue cen-

tric as seen in overall design in figure 2. After receiving request

for notification the communication module immediately sends

the request into persistent queue.

Communication

NotX core logic and engines

JMS Provider

Cassandra NoSQL Data Store

Takeplace information system

Fig. 2. Overall design

The most important operation of NotX is sendNotification.

We will describe core logic behind this operation in more

detail. As noted in business requirements this operation takes

four parameters: dest, msgType, templateName, placeholder-

Vals. Important logic takes place when sendNotification is

called and destination is set to some specific tag, for exam-

ple ConferenceA.attendees. Following steps take place after

request has arrived to communication module:

1) Communication module recognizes the request as notifi-

cation request and puts new notification request message

A into message queue

2) NotX logic starts processing A by looking up N users

which are to be notified by notification in A. Then NotX

generatesN messages {A1, ..., AN} and puts them back

into message queue.

314 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

3) Note that up to this point there was no interaction with

any engine. Now NotX will be continuously receiving

messages Ax ∈ {A1, ..., AN} from message queue and

each such message is processed as follows:

a) Find language L of user for whom Ax is dedicated.

b) Look up template for Ax according to L

c) Now NotX injects placeholderVals into template

and uses selected engine to notify the user. If

this whole process is successful then notification

statistic is saved into data store.

If there would be any kind of problem with data store or

connectivity the messages are kept in message queue for

administrator to manually decide how to deal with them.

Step number two is very important. The generation of

A1, .., AN messages helps to more evenly distribute load on

the system and also helps traceability of the system. For

example when notification request is to be processed for

ConferenceA.attendees that can mean notification of 1000

users. When even 1 notification fails it is beneficial to know

which one failed and why. After bug fixing it’s important to

be able to swiftly retry sending exactly the same notification

as failed previously.

A. Protocol access

Requirement for protocol access may occur in many con-

texts. NotX provides following interfaces (as depicted in

Figure 3):

• JSON (JavaScript Object Notation) interface via HTTP

POST for simple notification sending

• Thrift interface for higher level languages (framework for

cross-language service development)

• native Java libraries

• web services

WebService

Thrift

JSON over HTTP

Java

Communication

Java

JMS Provider

Takeplace information system

Fig. 3. Protocols

Adding new communication protocol is fairly easy. It means

modifying Communication module, which resides in direc-

tory src/notx-communication. When adding new protocol, it

is necessary to implement all NotX methods. Each method

implementation usually just creates standard JMS message and

puts it into MQ. Then only modification of Communication-

Main class will make sure that after launch of communication

module the interface into NotX will be functional.

B. Data storage

NotX uses data store for:

• information about users - contacts and tags

• statistics

• fail-over

Each user has his contacts stored in data store. This way NotX

is able to send notifications by any engine for this particular

user.

Statistics are saved mainly to charge users of paid services

and performance tinkering.

Data storage is also used as a fail-over mechanism. When-

ever a notification message is not sent successfully it is saved

into data store and can be viewed via web interface with

exception that caused the failure. It’s possible to send specific

failed notifications back to the message queue to retry the

sending.

The data store itself is implemented using Cassandra

NoSQL database. Decision to choose this storage type was

led by need for multi-platform and highly scalable data store.

IV. DEVELOPMENT PROCESS

The development process of NotX was driven by SCRUM

methodology. This agile process introduced by Schwaber and

Shuterland [8] suits development of the NotX best because

requirements were from start more about searching of possi-

bilities instead of launching repeatable processes.

SCRUM itself is being used with two week sprints (sprint

is one iteration in SCRUM). Each sprint starts with sprint

planning, where spring goal is presented (major functionality,

or tangible goal that is to be produced by this sprint) and

product backlog items for this sprint are presented (product

backlog item is high level business requirement). SCRUM

itself doesn’t give many hints how to specify backlog items,

but there are publications addressing this issue e. g. [9] which

introduce user stories into SCRUM.

Then development proceeds and at the end of the sprint

sprint review takes place where output of an iteration is pre-

sented. In NotX settings the sprint review and sprint planning

took place same day, usually on Wednesday.

Product backlog as well as sprint backlog are kept in Open

Office spreadsheet. This low tech approach always yields less

administration and more focus on actual work. From backlog it

can be derived how much work was spent on specific product

backlog item each day and how well estimated the task was.

To our knowledge there are no major modifications of

SCRUM methodology for web development (also in [10] no

consistent difference was reported in decision making for web

projects). There are however some subtle differences when

developing system such as NotX in general (not just with agile

practices):

• External tools spike first

• Sprint review should contain technological details

• Sprints to refactor code has to be more explicitly specified

• More focus on automatized integration testing

It’s essential that each external tool like TTS system or SMS

gateway that are used to carry out notifications are spiked first

before adding any product backlog items that are dependent

on this TTS. We recommend to have a sprint in which external

tools are examined. Such a sprint helps in planning next

FILIP NGUYEN, JAROSLAV SKRABALEK: NOTX SERVICE ORIENTED MULTI-PLATFORM NOTIFICATION SYSTEM 315

sprints because developers of NotX can help product owner to

prioritize and estimate product backlog items that will include

external tool usage.

Sprint review should include technological details because

product owner represents technologically experienced users

(developers of information system).

Sprints to refactor code has to be specified very explicitly

with carefully formulated sprint goal. Sprint goals of these

sprints shouldn’t be vague or not measurable like: create more

readable code. But there should be measurable goals e. g.:

• write automated test that will fire up in-memory database

and perform CRUD (Create Read Update Delete) opera-

tions

• rewrite logic of configuration loading and present this

new design using class diagram and sequence diagram at

sprint review

Focus on integration testing comes from the fact that NotX

itself uses several external systems and lot of logic is simple

orchestration between JMS provider and external engines. This

makes unit testing less effective.

All points above can be addressed with SCRUM by man-

aging content of product backlog and sprint reviews.

V. FURTHER WORK

In future, we plan to extend NotX to be publicly available

service to be used by any IS developer. Technically it is

possible right now because NotX supports lot of protocols

for communication. There are, however, some missing func-

tionalities like IS developer registration or billing reports.

Last important way to add more functionality to NotX is

extending its communication module. There are many possi-

bilities:

• Facebook engine—engine that notifies directly into ac-

counts wall or private message

• Twitter engine—sends the notification to twitter

• FTP/SCP engine—puts the notification on FTP server or

via SCP on some server

• IRC engine

• Skype engine—calling by skype. We didn’t tested feasi-

bility of this option yet.

The design of NotX, especially fact that it stores user

information is preparation of NotX to become fully publicly

available service that won’t disclose users contacts. By manag-

ing contacts NotX is also single point where user can change

his contacts and single point in which user can cut off potential

notifications from various sources.

VI. CONCLUSION

In this paper we reported state of NotX - Service with

capability of sending notifications via various engines. NotX

gives value added to information system developers by taking

burden of setting up infrastructure to send SMS, voice and

email notifications. Additionally NotX helps with contacts

management as it stores the contact information about users

and doesn’t reveal those contacts to IS developer.
NotX reduces time to integrate interesting functionality

for any new information system with low development time

and bring out of the box governance capabilities like fail-

over, statistics and large scale notification sending in various

languages. While doing all this NotX doesn’t disclose any

information about the user except his identifier that will be

used to send notification.

ACKNOWLEDGMENT

The authors would like to thank Pavol Grešša for refining

architecture of NotX and also to Lukáš Rychnovský for ideas

from CEP and experience with building large scale distributed

application that he shared.

REFERENCES

[1] Kyuchang Kang, Jeunwoo Lee and Hoon Choi, ”Instant Notification
Service for Ubiquitous Personal Care in Healthcare Application” in
International Conference on Convergence Information Technology 2007
pp. 1500-1503

[2] Apache Maven Project
http://maven.apache.org/

[3] Schmandt, C. and Marmasse, N. and Marti, S. and Sawhney, N. and
Wheeler, S. ”Everywhere Messaging” in IBM Syst. J., vol. 39, issue 3-4,
July 2000, p. 660-670

[4] J. Jeng and Y. Drissi, ”PENS: A Predictive Event Notification System for
e-Commerce Environment” in The Twenty-Fourth Annual International

Computer Software and Applications Conference, October 2000.
[5] Chi Po Cheong; Chatwin, C.; Young, R.; ”An SOA-based diseases noti-

fication system” in Information, Communications and Signal Processing,

2009. ICICS 2009. 7th International Conference on, vol., no., pp.1-4,
8-10 Dec. 2009 doi: 10.1109/ICICS.2009.5397519

[6] Mohamed, Nader Al-Jaroodi, Jameela Jawhar, Imad A generic notification
system for Internet information in Information Reuse and Integration,

2008. IRI 2008. IEEE International

[7] A. Sadat, G. Sorwar, M. U. Chowdhury, ”Session Initiation Protocol (SIP)
based Event Notification System Architecture for Telemedicine Applica-
tions” in 1st IEEE/ACIS International Workshop on Component- Based

Software Engineering, Software Architecture and Reuse (ICISCOMSAR’
06), pp. 214-218, July 2006.

[8] Ken Schwaber, Mike Beedle Agile Software Development with Scrum

Prentice Hall, 2001
[9] Mike Cohn User Stories Applied For Agile Software Development

Addison-Wesley, 2010 ISBN:0-321-20568-5
[10] Carmen Zannier and Frank Maurer Foundations of Agile Decision

Making from Agile Mentors and Developers in Extreme Programming
and Agile Processes in Software Engineering, June 2006, LNCS 4044,
p. 11–20

[11] http://www.takeplace.eu/en

316 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

