
Configuring services regarding service environment

and productivity indicators

Michael Becker, Stephan Klingner, Martin Böttcher

Department of Business Information Systems

Leipzig University, Germany

Email: {mbecker|klingner|boettcher}@informatik.uni-leipzig.de

Abstract—In course of the extensive changes in the service
sector, methods and tools for modelling services, managing
service-portfolios and optimising service-offers are required. This
paper proposes an extension of a basic metamodel as described
in various previous publications to be able to describe non-
functional properties, global variables and the definition of
configuration constraints.

I. INTRODUCTION

DUE TO the widely acknowledged shift from the second

to the third economic sector, services are of increas-

ing importance. A growing market, driven, inter alia, by

internationalisation, results in higher volumes of delivered

services. At the same time complexity of provided services

is increasing. This change in the quantitative as well as the

qualitative dimension leads to the need for concepts, methods

and models to conduct the engineering of services in a well-

structured way [17]. Furthermore, both aspects in combination

with a growing competitive environment require a stronger

focus on productivity aspects of services.

This paper mainly presents an extension of various foun-

dational concepts of a holistic metamodel for modelling,

evaluating and optimising services, as described in multiple

publications, such as [14]–[16]. Section II gives an aggregated

overview of the different aspects of the metamodel described

in the papers. Using a prototype, the scientific results were

evaluated during several workshops. Subsequently this basic

model was extended in accordance to the feedback of our

industry partners. The extension comprises concepts that are

required in real world applications but were not implemented

in our service model so far. These include non-functional prop-

erties (attributes), global, system-wide definitions (variables)

as well as the definition of rules as part of configuration queries

(constraints).

In this work we present formalisations of these concepts

and show their integration into the existing metamodel. Fur-

thermore, we extend our metamodel to the ability of querying

service components. To do so the remainder of this paper

is structured as follows. Our method describes a two-step

procedure, which consists firstly of modelling the service

respectively the service portfolio (section II) and secondly

of configuring the customised service offers based on that

previously modelled portfolio (section III). These sections

will recall necessary concepts for the formalisation of service

components and extend our existing metamodel with attributes,

variables, and constraints. In section IV we present initial

ideas and applications of querying services. Finally, sections V

and VI give an overview about related work in this field and

conclude the paper.

II. MODELLING SERVICES

As mentioned in the introduction we presented initial ideas

[15] and a formal approach [13] for modelling services based

on components. Rather than recapitulating all concepts in

detail we will briefly describe fundamental concepts that are

necessary to understand the new concepts we introduce in

this work. They are namely attributes to specify nonfunctional

characteristics of components, external variables to detail the

service environment, and constraints to refine valid service

components during configuration. Using these extensions con-

figurations can adapt customer wishes on specific aspects of

components. Furthermore, they facilitate querying services.

In the course of this work we present the new modelling el-

ements within the context of a small example portfolio shown

in figure 1. In this example – based on a real world example

of one of our industry partners – the described services are

the provision of a call centre and the realisation of billing

tasks. For this purpose, we define a component CallCentre

encapsulating the general call centre provision process. This

component is detailed by the subcomponents CallCentre A,

CallCentre B, and CallCentre C defining specific steps for

different call centre contractors. Due to comprehensibility

reasons, the component Billing is not shown in full detail

but only sketched. In the following section we describe the

particular modelling concepts.

A. Foundations

To comprehend the newly introduced concepts for service

modelling it is necessary to recall some of the existing foun-

dations we lay in past work. In [15] we have defined service

components as an offering of a well-defined functionality via

precisely described interfaces. Thus, a component represents a

part of a service provision process. The relationship between

the so-called configuration graph containing the components

and its processual representation can be seen in figure 2.

This figure shows the general call centre provision process

consisting of the common activities apply call numbers and

train products encapsulated in component CallCentre. Further-

more, it has three subprocesses CallCentre A, CallCentre B,

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 505–512

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 505

CallCentre

KPIs

 price = SUM(price)

 risk = MAX(risk)

Billing

KPIs

 price = SUM(price)

 risk = MAX(risk)

CallCentre A

KPIs

 price = 500

 risk = 0.8

CallCentre B

KPIs

 price = 200

 risk = 0.9

CallCentre C

KPIs

 price = 500

 risk = 0.8

OR+

OR+

Figure 1. Example portfolio: of call centre provision and billing

Figure 2. Call centre components represented as BPMN model

and CallCentre C containing specific activities for the three

options.

Components can be used for composition (by combining

components with other components) and decomposition (by

separating existing components into distinct components). One

application for composition is the creation of costumer spe-

cific combinations by choosing components from a portfolio.

Decomposition can be used to structure and detail existing

services. These two possibilities are mapped to a process

model representation using e.g. BPMN subprocesses.

Basically, a portfolio consists of a set of service compo-

nents. We relate components with each other using connec-

tors. Based on these concepts the definition of hierarchical

dependencies between components is possible, e.g. component

A consists of components C and B. These dependencies

can be extended by cardinalities enabling statements about

the required amount of subcomponents. For example, in the

call centre use case the specific call centre components are

connected using a disjunctive-obligatory connector (OR+)

meaning that at least one of the child components must

be selected. Since components represent processes, there are

usually temporal dependencies between them. It is possible

to integrate these dependencies using linear temporal logic

enabling restrictions such as component A must be succeeded

by component B. Furthermore, non-hierarchic dependencies

between components are integrated using propositional logic.

These dependencies are necessary to define additional con-

straints on service composition that cannot be displayed in

the graph hierarchy, e.g. about mutually exclusive components.

Additional details about connector semantics and both tempo-

ral and logical dependencies are presented in [16].

One goal of composition is to increase the productivity of

services. Therefore, it is necessary to measure productivity in

Figure 3. KPI inheritance strategies

some way. This is achieved using key performance indicators

(KPIs) in components. In the call centre example we use the

price (interpreted as costs to execute a component) and the

risk (a lower number indicates a more mature process) as

KPIs. Traditionally, productivity is defined as the fraction of

output produced to inputs used. This approach is difficult for

services since not only the input is hard to calculate but also

the output [24]. However, this discussion is not in the focus of

this work. In the component model, it is possible to use KPIs

based on generic formulae.

KPIs are inherited through the service model in threefold

manner. First, Descendent Propagation propagates a KPI to

the parent component. Thus, the KPI characterises the par-

ent component, too. Second, Descendent Calculation enables

using KPIs of child components to calculate KPIs in parent

components. Thus, in the use case in figure 1 the KPIs price

and risk from the specific call centres can be accessed in

the general call centre component. It is usually necessary to

combine KPIs using arithmetic operators, e.g. the price of the

general call centre provision is the sum of the specific prices.

Another way to inherit KPIs is using Cross-Tree Calculation

allowing to calculate KPIs based on KPIs from components

that are not in hierarchical dependencies with each other.

This allows for the representation of non-hierarchic component

combinations on productivity. The different strategies for KPI

inheritance are shown in figure 3.

B. External Variables

Service provision cannot be seen in isolation from the

environment where services are to be provided. For example,

in the call centre use case the amount of expected incoming

calls per day plays an important role both for the price of the

overall service and the calculation of the risk of the service.

Since they depend on customer characteristics and preferences,

the values for these environmental impact factors are not

known during modelling. In our model we use variables to

represent characteristics of specific service environments.

External variables affect the whole modelled service system.

While we only show the application for call centre components

in our example, the amount of incoming calls might also

influence other components, e.g. the processing of reshipment

(since every 10th call may be a reshipment enquiry). Figure 4

shows the integration of variables to calculate specific KPIs. To

506 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

CallCentre

KPIs

 price = SUM(price)

 risk = MAX(risk)

Billing

KPIs

 price = SUM(price)

 risk = MAX(risk)

CallCentre A

KPIs

 price = 500 * $caller

 risk = 100 / $caller

CallCentre B

KPIs

 price = 200 * $caller

 risk = 140 / $caller

CallCentre C

KPIs

 price = 500

 risk = 0.8

OR+

OR+

Figure 4. Example portfolio with variables

distinguish between variables and KPIs, variables are preceded

by a dollar symbol. In the example the price and risk is

calculated depending on the variable caller. Using variables

facilitates the reusability of service components since KPIs

do not need to be static and can also reference the service

environment.

All used variables are formally represented in the set

VariableNames. To allow greatest possible flexibility, variables

are not restricted to specific data types. Since they represent

the service environment, variables affect all components in

the portfolio and have a global namespace. Thus, the variable

caller in figure 4 has the same meaning both in component

CallCentre A and in component CallCentre B. The values of

variables are defined during configuration of customer specific

services as shown in section III-B.

C. Attributes

Nonfunctional properties of services are of great importance

to define service prospects and limitations. For example, a call

centre might have a capacity limit of manageable calls per day.

Though no restriction on the functionality itself, this is an

important information about the capabilities of a component.

Therefore, to enable meaningful configurations, it is necessary

to specify nonfunctional properties in a consistent and formal

way.

Especially in the domain of web services there exist a

variety of different approaches to represent nonfunctional

properties, e.g. [1], [36], [40]. However, for the sake of brevity

we omit formal attribute definition and represent nonfunc-

tional properties using simple free text attributes of service

components. Based on these attributes, further constraints can

be formulated to allow and disallow specific components, c.f.

III-C. An extensive discussion about possible non-functional

properties is conducted in [32]. Amongst others, the proper-

ties temporal and local availability, price, payment methods,

penalties, right, and obligations are presented. Based on a

given set of nonfunctional properties the restrictions of service

components can be described very detailed.

The formal representation of attributes is similar to the rep-

resentation of KPIs. They are determined by the sets Attribute-

Names and AttributeValues containing the names and values

of used attributes. To connect a component with attributes we

CallCentre

KPIs

 price = SUM(price)

 risk = MAX(risk)

Billing

KPIs

 price = SUM(price)

 risk = MAX(risk)

CallCentre A

KPIs

 price = 500 * $caller

 risk = 100 / $caller

CallCentre B

KPIs

 price = 200 * $caller

 risk = 140 / $caller

CallCentre C

KPIs

 price = 500

 risk = 0.8

OR+

OR+

Attributes

 capacity = 4'000

 reactionTime = 5

 languages = {de, en}

Attributes

 capacity = 14'000

 reactionTime = 0.5

 languages = {de}

Figure 5. Example portfolio with variables and attributes

use the mapping AttributeMapping defined as follows.

AttributeMapping :

Components → P (AttributeNames×AttributeV alues)
(1)

To simplify attribute access during configuration we addi-

tionally define the mapping AttributeValue.

AttributeV alue :

Components×AttributeNames → AttributeV alues

(2)

Attributes describe a specific component (and thereby char-

acteristics of the underlying process). An attribute itself is

represented by an arbitrary data type. The visualisation of

attributes in the service model as well as its formal representa-

tion according to the definition of the mapping AttributeMap-

ping is shown in figure 5. Both call centres are enriched

with the attributes capacity and reaction time represented by

numerical values and the attribute languages represented by

a set of values. To clarify the difference between KPIs and

attributes, we added a visual distinction between them in the

components.

The formal representation of the attributes used in the call

centre use case is as follows.

AttributeNames =

{capacity, reactionT ime, languages}

AttributeV alues =

{4′000, 14′000, 5, 0.5, de, en}

AttributeMapping(CallCentreA) =

{(capacity, 4′000), (reactionT ime, 4),

(languages, {de, en})}

AttributeMapping(CallCentreB) =

{(capacity, 14′000), (reactionT ime, 0.5),

(languages, {de})}

In contrast to KPIs, attributes have a fixed value defined

during modelling phase. Furthermore, they are not automati-

cally inherited through the service model. This restriction is

MICHAEL BECKER ET AL.: CONFIGURING SERVICES REGARDING SERVICE ENVIRONMENT 507

necessary because during modelling time it is not clear how

attributes will be combined during configuration. Depending

on customer preferences, different combinations are possible.

In the call centre example, one customer might be able to

combine different call centres to increase the capacity where

other customers do not allow this combination. However, it is

possible to use attributes in the calculation of KPIs, e.g. the

monthly costs of a call centre may depend on the dimensions

of a rented office space. Thus, attributes can be used in

descendent and in cross-tree calculations as shown in figure 3

for KPIs but are not propagated.

It is not necessary to define attributes for every component

in the model. For example, in figure 5 CallCentre C has no

attributes. Missing attributes can occur when additional details

about a specific service offer are not (yet) known. Therefore,

missing attributes can be (but do not have to be) an indicator

for underspecified and not well-known components in the

portfolio.

III. CONFIGURING SERVICES

Until now we have shown the integration of external

variables representing the service environment and the de-

scription of nonfunctional properties of service components

using attributes. Based on these concepts in this section we

move on from modelling service portfolios to configuration of

customer specific service offers considering KPIs of services.

For comprehensibility we will recall configuration foundations

in the next section.

A. Foundations

During service modelling, components and their dependen-

cies between each other are defined. The formal definition of

components can be used in twofold manner. First, it is possible

to generate predefined service bundles consisting of different

components. However, real benefit is achieved when customer

specific configurations are generated. During configuration,

components are selected and combined. Due to the formal

representation of dependencies it is possible to verify the

validity of service offers. The configuration is one approach

to tackle the opposition between standardisation to reduce

costs and customisation to offer a flexible portfolio. Due to

aggregation of KPIs the performance of combined services

can be assessed. We presented a formal definition of the

configuration in [9].

If external variables are used during modelling it is neces-

sary to define their values for a specific configuration. This

is shown in section III-B. Furthermore, in section III-C we

present a way to automatically constraint the selection of

service components. Constraints can be used as restrictions

on configurations.

B. Variable value definition

In section II-B, we stated that external variables have a

global namespace. Therefore, the definition of their values is

straightforward using the mapping VariableValue as follows.

V ariableV alue :

V ariableName → V ariableV alues
(3)

The call centre example consists of only one external

variable caller representing the expected amount of incoming

calls per day. Using V ariableV alue(caller) = 7000 we set

its value to 7000. After referenced variables have been set to

a fixed value the calculation of KPIs for components using

these variables is possible. Therefore, the price of component

CallCentre A is set to 3’500’000 and its risk is set to 1/70.

Analogously, CallCentre B has a price of 1’400’000 and a risk

of 1/50.

C. Constraints

Using the above mentioned concepts of component at-

tributes and environment variables as well as the already

known performance indicators we are now able to formulate

detailed constraints on service components. We consider con-

straints as a filter to choose only suitable components. For

example, in the call centre scenario a typical constraint states

that the capacity of a call centre must be greater or equal to

the amount of incoming calls. This is an essential requirement

for successful service provision.

During configuration it is possible to distinguish between

hard and soft constraints. While members of the first one

have to be satisfied because otherwise service provision is

impossible, the latter ones should be satisfied because they

are a potential risk during provision. However, we cannot

define the type of a constraint in advance. For example, for a

call centre provider it is of utmost importance to satisfy the

capacity constraints mentioned above. In contrast to this, for a

service provider offering but not focusing on call centre provi-

sion this constraints may not be as equally important. Finally,

one service provider may have different clients emphasising

service aspects in different ways. To overcome this challenge,

all possible constraints on service models are specified in one

set Constraints and during configuration it is possible to define

which constraints are hard and which are soft by assigning

them to the sets HardConstraints and SoftConstraints where

unassigned constraints are automatically considered as being

soft. In the next paragraphs, we show the definition and

evaluation of constraints.

1) Definition of constraints: To allow for greatest possible

freedom in constraint formulation the constraints are based

on predicate logic. This is similar to the concepts used in

feature models in software product lines, c.f. [29]. Constraints

can be defined over values of attributes or KPIs. We use the

mappings AttributeValue defined in section II-C and KPIValue

analogously defined in [9] to access values of attributes

and KPIs. The capacity constraint for components mentioned

above combined with a price constraint is specified with the

508 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

following formula using the generic identifier Components.

∀c ∈ Components :

AttributeV alue(c, capacity) ≥ 7000∧

KPIV alue(c, price) ≤ 1′100

(4)

To increase reusability of constraints, in addition to using

fixed values it is also possible to use variables. This results in a

simplified configuration since variables have to be entered only

once and can be used both for constraint and KPI definition.

The capacity constraint referencing the variable caller can be

formulated as follows.

∀c ∈ Components :

AttributeV alue(c, capacity) ≥ $caller
(5)

More often than not, it will be the case that different

unrelated components are characterised by attributes with

equal names. However, these attributes may not have the

same meaning, e.g. the attribute capacity might also be used

in different components that are not relating it to the ex-

pected amount of incoming calls. Therefore, developers need

techniques to distinguish between these model parts. This is

achieved by using a specific component name in the quantifier

of a constraint. For example, the constraint

∀c ∈ CallCentre :

AttributeV alue(c, capacity) ≥ $caller∧

KPIV alue(c, price) ≤ 1′100 ∗ $caller

(6)

will only be evaluated for components that are in the transi-

tive closure of child components of the component with the

identifier CallCentre. The transitive closure of a component

contains all its direct and indirect child components. As the

service configuration graph is a tree and thus a specialisation of

a directed graph, existing algorithms to calculate the transitive

closure for graphs can be applied. A selection is, for example,

shown in [26].

2) Evaluation of constraints: During constraint evaluation

it is necessary to distinguish between constraints over at-

tributes and constraints over KPIs. The former constraints

are checked against the set of components contained in the

transitive closure as defined above. The latter ones are checked

against the complete configuration. Thus, different evaluation

strategies are applied. In the course of this section we refer

to the capacity constraint defined in equation 6 and set the

variable caller to 7’000.

Constraints over attributes affect single components. For

every component that is referenced in the constraint it is

a) checked, whether the component contains the mentioned

attribute and b) verified, whether the component fulfils the

constraint. Therefore, it is possible to clearly identify com-

ponents that violate attribute constraints. For example, the

capacity constraint is violated in component CallCentre A

since its capacity is only 4’000. On the other hand, it is

fulfilled in CallCentre B because the capacity is more than

7’000 and in CallCentre C because this component does not

have an attribute capacity and accordingly the constraints is

not checked against this components. If an attribute constraint

is violated it is violated throughout the whole configuration

process regardless of what other components are selected. The

only ways to fix a violated attribute constraint is to deselect the

respective component. Depending on the type of constraint the

configuration will either be invalid (hard constraint) or have

warnings (soft constraints).

On the contrary, constraints over KPIs are evaluated at the

topmost occurrence of the KPI. The KPIs are identified by a

breadth-first search and comparison is based on their name.

Thus, the capacity constraint is evaluated at the component

CallCentre. Since KPIs are usually a combination of underly-

ing KPIs it is not possible to clearly identify components that

violate KPI constraints. The capacity constraint states that the

price in the component CallCentre has to be less than or equal

to 1’100 per caller. Selecting CallCentre A and CallCentre

B this constraint is still fulfilled, while adding CallCentre C

violated the constraint. However, it is not possible to determine

the violating component since deselecting CallCentre A would

fulfil the constraint. In summary, a violated KPI constraint can

be fixed by different configurations even containing the last

selected component that lead to the violation.

IV. QUERYING SERVICES

Based on the previously developed formalisations for ser-

vice modelling it is possible to structure extensive service

portfolios. This is to a great extend focused on the viewpoint

of service providers. However, from a customer point of view

different considerations have to be taken into account. In

provider-driven configuration of customer specific configura-

tions, customers can only select from services of one provider.

The configuration process is usually guided by the provider

to support the component selection. But on electronic service

markets customer are not aware what services exist and what

services meet their specific requirements. Therefore, they need

ways to identify suitable service components.

Finding suitable components is a problem with a long

history in software engineering when existing software has

to be reused. On this account, [28] has introduced four

general techniques for reusing software artefacts that can be

transferred to service engineering, too. First, abstraction is the

basic reuse technique and enables developers to comprehend

different artefacts. Because we only reuse service components,

abstraction is inherently present in our model. Second, by

selection developers are supported in the process of select-

ing different artefacts. Heretofore, we support selection by

customer specific configuration. However, for the selection

process itself there is no support since customers need to

find suitable services on their own. By using queries over

service components we are looking forward to improve the

selection process. The two remaining techniques are speciali-

sation to represent similar artefacts in a consolidated way and

integration to support developers during assembling of reused

artefacts to complete systems. While the latter one can be

achieved using the formal metamodel of our service model,

MICHAEL BECKER ET AL.: CONFIGURING SERVICES REGARDING SERVICE ENVIRONMENT 509

the first one is possible by integrating predefined component

types into the model.

Queries over service components are used to search through

a collection of components and automatically identify compo-

nents that match specific customer requirements. As stated in

section III-C constraints are one approach to capture require-

ments and validate the adherence of components against re-

quirements. A challenge to keep in mind is the often occurring

gap between query formulation and component description

identified in [25]. Generally, component descriptions focus on

the functionality by answering the question how a component

works. In our model this fact is typically represented by

underlying process models. On the other hand, queries usually

focus on the problem itself and ask what components are

capable of solving a problem. It is possible to close (or

at least reduce) this gap by making extensive use of the

above presented concept of component attributes. Though it

increases initial modelling effort, the detailed description of

component prospects and limitations supports efficient and

accurate component search.

The definition of queries focuses the ability of customers to

find service components they can use. Therefore, it is neces-

sary that query formulation is simple and not too complex. The

structure of queries has to adhere to our underlying service

component metamodel. Similar as in constraint definition

based on predicate logic the query language must provide

selectors to select the components that are affected by a query.

Furthermore, it must be possible to define constraints that

are matched against components. A source of inspiration for

queries might be the well-known database query language

SQL, e.g presented in [18].

V. RELATED WORK

In response to a growing complexity, a more individualised

market and an economically motivated stronger focus on pro-

ductivity aspects, the division of monolithic tasks in manage-

able components is being utilised in various areas. Although in

other scientific disciplines this process is called modularisation

we refer to components as a synonym for modules. Particularly

in the field of industrial engineering the concepts of modelling

complex structures with the use of smaller components is

quite established [5]. Similarly in software engineering the use

of components is employed on a broad base [37]. A hybrid

form of software and classical services are IT-services, where

modularisation is applied likewise [10].

Based on the modularisation, service configuration is en-

abled. Configuration is well known in industrial engineering

[38] and in software engineering [20]. In service engineering,

configuration gains importance as well [3]. However, existing

approaches like [2] do not focus dependencies between service

components and customer-driven configuration but rather on

formalising overall service systems.

In the course of this work we presented one approach to

define constraints on service components. Boustil et al. stated

that existing approaches for service selection do not integrate

user requirements [12]. In the domain of web services, Tosic

et al. present an approach to define constraints [39]. In order

to so, they introduce an XML-based constraint language called

Web Service Offerings Language. Yu et al. use a graph

based approach to select web services adhering to specific

QoS constraints [41]. The academic literature has produced

a variety of approaches to formulate queries for services.

However, most of them are tailored to web services and do

not take the specialities of complex business services into

account. We tackle this problem by using the underlying

formal metamodel for the specification of service components.

Most existing query approaches focus on one specific aspect of

services. For example, Baraka developed a query language for

mathematical services [6], [7]. It works in conjunction with

a description language for mathematical services presented

in [8]. The approach also uses SQL-like query statements.

Another stream of researches focus on the query for resources

[23], quality of service aspects [21], [30], and service mash-

up [22]. The integration of different service aspects is in the

focus of the work of Pantazoglou et al. They present a query

language [33], a matching algorithm [35], and an associated

engine [34]. Though this approach targets more than one

aspect its application is limited to web services. To facilitate

optimal service selection, Bonatti and Festa have examined

different approaches in [11].

Components in our service model represent process mod-

els. Therefore, query languages and constraint definition for

process models can be an interesting object of study, too.

Awad has presented a visual query language for BPMN models

[4] and Jin et al. query process repositories using graph

isomorphisms [27]. To specify requirements (e.g. constraints)

on process models, Momotko et al. developed an integrated

methodology. Therefore, they developed a metamodel for a

process description language [31].

VI. CONCLUSION

In this research paper we presented the extension of a

previously defined service component model with variables

and attributes. These concepts can be used to formulate

constraints on the customer specific configuration of com-

ponents. Based on these constraints it is possible to create

more meaningful configurations. We are currently applying

the concepts contained in the extended service component

metamodel together with our industry partner in a real world

scenario. It has shown that proper tool support is of utmost

importance to manage complex service portfolios. Therefore,

we have developed a prototype supporting the modelling and

configuration of service components.

Furthermore, we investigated challenges that arise when the

service selection process is customer-driven without guidance

by service providers. A great obstacle for realising service

component markets is the existing gap between service de-

scriptions and the representation of customer needs. In our

approach this gap is reduced by the extensive use of attributes

and the ability to query for service components based on

constraints.

510 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Using attributes and variables in constraints and queries

depends to a great extent on a homogeneous taxonomy. Till

now integration of existing components in a portfolio needs a

careful check of used attributes and variables. This problem is

aggravated when customers query marketplaces with compo-

nents from different providers. Generally, different providers

use different taxonomies what results in poor component

recalls. One approach to tackle this problem is the Unified

Service Description Language (USDL), presented in [19]. This

would allow for a consistent definition of service components.

Another approach might be predefining service characteristics

for specific components and establish service types based on

these characteristics. Selection of components can then be

based on predefined service types.

In addition, increasing query capabilities requires integrat-

ing a holistic approach using various modelling concepts. In

this work we presented queries based on attributes and KPIs.

As components are based on processes, existing approaches

from this domain can be examined for their applicability.

Furthermore, integration of resources is an important point

to keep in mind. More often than not it will be the case that

components need specific inputs—querying for components

producing this input as output will be challenging.

REFERENCES

[1] Stephan Aier, Philipp Offermann, Marten Schönherr, and Christian
Schröpfer. Implementing non-functional service descriptions in soas.
In Dirk Draheim and Gerald Weber, editors, Trends in Enterprise

Application Architecture, volume 4473 of Lecture Notes in Computer

Science, pages 40–53. Springer Berlin / Heidelberg, 2007.
[2] Hans Akkermans, Ziv Baida, Jaap Gordijn, Nieves Pena, Ander Altuna,

and Inaki Laresgoiti. Value webs: Using ontologies to bundle real-world
services. IEEE Intelligent Systems, 19:57–66, 2004.

[3] Luis Araujo and Martin Spring. Complex performance, process mod-
ularity and the spatial configuration of production. In N. Caldwell
and M. Howard, editors, Procuring Complex Performance: Studies in

Innovation in Product-Service Management. Routledge, London, 2010.
[4] Ahmed Awad. Bpmn-q: A language to query business processes. In

Enterprise Modelling and Information Systems Architectures - Concepts

and Applications , Proceedings of the 2nd International Workshop

on Enterprise Modelling and Information Systems Architectures, pages
115–128, 2007.

[5] Carliss Y. Baldwin and Kim B. Clark. Managing in an age of modularity.
Harvard Business Review, 1997.

[6] Rebhi Baraka. Mathematical services query language: Design, for-
malization, and implementation. Technical report, Johannes Kepler
University, Linz, Linz, Austria, September 2005.

[7] Rebhi Baraka and Wolfgang Schreiner. Querying registry-published
mathematical web services. Advanced Information Networking and

Applications, International Conference on, 1:767–772, 2006.
[8] Rebhi S. Baraka. A Framework for Publishing and Discovering

Mathematical Web Services. Dissertation, Johannes Kepler Universität
Linz, Linz, August 2006.

[9] Michael Becker. Formales metamodell für dienstleistungskomponenten.
Technical report, Universität Leipzig, 2011. to appear.

[10] Tilo Böhmann, Richard Gottwald, and Helmut Krcmar. Towards mass
customized it services: Assessing a method for identifying reusable
service modules and its implication for it service management. In AMCIS

2005 Proceedings, 2005.
[11] P. A. Bonatti and P. Festa. On optimal service selection. In Proceedings

of the 14th international conference on World Wide Web, WWW ’05,
pages 530–538, New York, NY, USA, 2005. ACM.

[12] Amel Boustil, Nicolas Sabouret, and Ramdane Maamri. Web services
composition handling user constraints: towards a semantic approach.
In Proceedings of the 12th International Conference on Information
Integration and Web-based Applications & Services, iiWAS ’10,
pages 913–916, New York, NY, USA, 2010. ACM.

[13] Martin Böttcher and Klaus-Peter Fähnrich. Service systems modeling:
Concepts, formalized meta-model and technical concretion. In Haluk
Demirkan, James C. Spohrer, and Vikas Krishna, editors, The Science

of Service Systems. Springer, New York et al., 2011.
[14] Martin Böttcher and Stephan Klingner. Der Komponentenbegriff der

Dienstleistungsdomäne. In K.-P. Fähnrich and B. Franczyk, editors,
Informatik 2010—GI Jahrestagung, volume 1, pages 59–66, Leipzig,
2010. Lecture Notes in Informatics (LNI).

[15] Martin Böttcher and Stephan Klingner. The basics and applications of
service modeling. In SRII Global Conference 2011, 2011. to appear.

[16] Martin Böttcher and Stephan Klingner. Providing a method for compos-
ing modular b2b-services. Journal of Business & Industrial Marketing,
2011. To appear.

[17] Hans-Jörg Bullinger, Klaus-Peter Fähnrich, and Thomas Meiren. Ser-
vice engineering - methodical development of new service products.
International Journal of Production Economics, 85:275–287, 2003.

[18] S. Cannan and G. Otten. SQL–The standard handbook: based on the

new SQL standard. McGraw-Hill, 1993.
[19] Jorge Cardoso, Alistair Barros, Norman May, and Uwe Kylau. Towards a

unified service description language for the internet of services: Require-
ments and first developments. Services Computing, IEEE International

Conference on, 0:602–609, 2010.
[20] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged

configuration using feature models, 2004.
[21] Giuseppe Damiano, Ester Giallonardo, and Eugenio Zimeo. onqos-ql: A

query language for qos-based service selection and ranking. In Elisabetta
Di Nitto and Matei Ripeanu, editors, Service-Oriented Computing -

ICSOC 2007 Workshops, volume 4907 of Lecture Notes in Computer

Science, pages 115–127. Springer Berlin / Heidelberg, 2009.
[22] Weilong Ding, Jing Cheng, Kaiyuan Qi, Yan Li, Zhuofeng Zhao, and

Jun Fang. A domain-specific query language for information services
mash-up. Services, IEEE Congress on, 0:113–119, 2008.

[23] Sebastian Günther, Claus Rautenstrauch, and Niko Zenker. Service-
oriented architecture: Introducing a query language. In Martin Bichler,
Thomas Hess, Helmut Krcmar, Ulrike Lechner, Florian Matthes, Arnold
Picot, Benjamin Speitkamp, and Petra Wolf, editors, Multikonferenz

Wirtschaftsinformatik. GITO-Verlag, Berlin, 2008.
[24] Christian Grönroos and Katri Ojasalo. Service productivity: Towards a

conceptualization of the transformation of inputs into economic results in
services. Journal of Business Research, 57(4):414–423, 2004. European
Research in service marketing.

[25] Scott Henninger. Using iterative refinement to find reusable software.
IEEE Software, 11:48–59, 1994.

[26] Yannis Ioannidis, Raghu Ramakrishnan, and Linda Winger. Transitive
closure algorithms based on graph traversal. ACM Trans. Database Syst.,
18:512–576, September 1993.

[27] Tao Jin, Jianmin Wang, Marcello La Rosa, Arthur H.M. ter Hofstede,
and Lijie Wen. Efficient querying of large process model repositories.
Report 39060, Queensland University of Technology, December 2010.

[28] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24:131–183,
June 1992.

[29] Marcilio Mendonca, Andrzej Wasowski, and Krzysztof Czarnecki. Sat-
based analysis of feature models is easy. In Proceedings of the 13th

International Software Product Line Conference, SPLC ’09, pages 231–
240, Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

[30] Delnavaz Mobedpour, Chen Ding, and Chi-Hung Chi. A qos query
language for user-centric web service selection. Services Computing,

IEEE International Conference on, 0:273–280, 2010.
[31] Mariusz Momotko and Kazimierz Subieta. Process query language: A

way to make workflow processes more flexible. In András Benczúr,
János Demetrovics, and Georg Gottlob, editors, Advances in Databases

and Information Systems, volume 3255 of Lecture Notes in Computer

Science, pages 306–321. Springer Berlin / Heidelberg, 2004.
[32] Justin James O’Sullivan. Towards a precise understanding of service

properties. PhD thesis, Queensland University of Technology, Faculty
of Information Technology, 2008.

[33] Michael Pantazoglou and Aphrodite Tsalgatidou. The unified service
query language. Technicel report, National and Kapdistrian University
of Athens, Athens, Greece, July 2009.

[34] Michael Pantazoglou, Aphrodite Tsalgatidou, and George Athanasopou-
los. Discovering web services and jxta peer-to-peer services in a unified
manner. In Asit Dan and Winfried Lamersdorf, editors, Service-Oriented
Computing—ICSOC 2006, volume 4294 of Lecture Notes in Computer

Science, pages 104–115. Springer Berlin / Heidelberg, 2006.

MICHAEL BECKER ET AL.: CONFIGURING SERVICES REGARDING SERVICE ENVIRONMENT 511

[35] Michael Pantazoglou, Aphrodite Tsalgatidou, and George Athanasopou-
los. Quantified matchmaking of heterogeneous services. In Karl
Aberer, Zhiyong Peng, Elke Rundensteiner, Yanchun Zhang, and Xuhui
Li, editors, Web Information Systems—WISE 2006, volume 4255 of
Lecture Notes in Computer Science, pages 144–155. Springer Berlin
/ Heidelberg, 2006.

[36] Stephan Reiff-Marganiec, Hong Yu, and Marcel Tilly. Service selection
based on non-functional properties. In Elisabetta Di Nitto and Matei Ri-
peanu, editors, Service-Oriented Computing - ICSOC 2007 Workshops,
volume 4907 of Lecture Notes in Computer Science, pages 128–138.
Springer Berlin / Heidelberg, 2009.

[37] Clemens Szyperski. Component software - beyond object-oriented

programming. Addison-Wesley, London et al., 2002.
[38] J. Tiihonen and T. Soininen. Product configurators—inforamtion system

support for configurable products. In T. Richardson, editor, Using Infor-

mation Technology During the Sales Visit. Hewson Group, Cambridge,
1997.

[39] Vladimir Tosic, Kruti Patel, and Bernard Pagurek. Wsol—web service
offerings language. In Christoph Bussler, Richard Hull, Sheila McIlraith,
Maria Orlowska, Barbara Pernici, and Jian Yang, editors, Web Services,

E-Business, and the Semantic Web, volume 2512 of Lecture Notes in

Computer Science, pages 57–67. Springer Berlin / Heidelberg, 2002.
[40] Hiroshi Wada, Junichi Suzuki, and Katsuya Oba. Modeling non-

functional aspects in service oriented architecture. Services Computing,

IEEE International Conference on, 0:222–229, 2006.
[41] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web

services selection with end-to-end qos constraints. ACM Trans. Web, 1,
May 2007.

512 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

