
 

 

 

 

 
 

Abstract—This paper describes the application of an 

autonomic paradigm to manage the complexity of software 

systems such as computational workflows. To demonstrate our 

approach, the workflow and the services comprising it are 

treated as managed resources controlled by hierarchically 

organized autonomic managers. By applying service-oriented 

software engineering principles, in particular enterprise 

integration patterns, we have developed a scalable, agile, self-

healing environment for execution of dynamic, data-driven 

workflows which are capable of assuring scientific fidelity 

despite unavoidable faults and without human intervention. 

I. INTRODUCTION 

Support for scientific workflows is now recognized as a 

crucial element of cyberinfrastructure, facilitating e-Science. 

Typically sitting on top of a middleware layer, scientific 

workflows are means by which scientists can model, design, 

execute, debug, re-configure and re-run their analysis and 

visualization pipelines.   

There are many ways of implementing scientific 

workflows [1, 2]; however, with the advent of Grid and 

Cloud computing, most of the current efforts adopt Service-

Oriented Architectures (SOA). Consequently, research on 

workflow management systems highlights methodologies of 

service composition and orchestration. To that end, this 

paper focuses on particular aspects of service-oriented 

workflow system development, namely, the scientific 

fidelity, fault tolerance, adaptivity, and management of 

complexity. The ideas presented in this paper are illustrated 

by an exemplary implementation of an adaptive 

computational workflow. 

 

Scientific fidelity refers to a software system’s ability to 

deliver reliable, trustworthy computational results; i.e., the 

end user can trust that the output is not distorted by 

erroneous information resulting from unreported failures of 

the workflow and/or its components. To achieve such 

fidelity, the system for executing the computational 

workflows must be capable of detecting faults and 

abnormalities and performing corrective actions, whenever 
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feasible. The system can react to faults and abnormalities 

either by protecting against faults before they occur 

(possible when an abnormality has been detected), or by 

recovering after a fault has happened. In the latter case, the 

detection of a fault may also help detect an abnormality, 

which could then prompt a corrective action to prevent 

future failures of the same type.  

In addition to a direct recovery from a point failure by 

automatic fixing the cause of the problem and retrying, it is 

desirable that the system has a capability to respond to an 

abnormality by adaptation. It may include use of an 

alternative service instance, correction of the request due to 

a change of the service interface, the selection of an 

alternative algorithm to be used by the service (or the code 

submitted by that service), or the modification of the 

workflow specification, i.e., the change of the execution 

path, perhaps using alterative or optional workflow nodes. 

Since the adaptations forced by the failures may be data-

driven and thus unpredictable, enforcing the scientific 

fidelity is of critical importance. 

Unfortunately, the enforcement of scientific fidelity adds 

to the complexity of the system; if not managed properly, 

this added complexity might actually decrease the reliability 

and maintainability of the overall system, thereby defeating 

its ultimate purpose.  The situation is further complicated by 

the fact that the end user, a domain specialist that composes 

and runs the workflow, may not know or care about possible 

failure modes below the application level or the methods for 

remedying them. Conversely, an IT specialist maintaining 

the system typically has very little, if any, knowledge of the 

business logic of the workflow.  

Herein, we address scientific fidelity, fault tolerance, 

adaptivity, and the management of complexity, applying (1) 

the concepts of Autonomic Computing, in particular self-

management and self-healing, and (2) service-oriented 

software engineering, in particular exploiting the capabilities 

of the Enterprise Service Bus for dynamic message routing.  

The remainder of this paper is organized as follows. In 

Section II we describe the concepts of Autonomic 

Computing (AC). In Section III we define dynamic 

computational workflows and explain the benefits of 

applying an AC paradigm to manage the complexity of the 
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system while assuring the scientific fidelity of the results. In 

Section IV we discuss the concepts of the Service-Oriented 

Software Engineering (SOSE), including Enterprise Service 

Bus (ESB) and Enterprise Integration Patterns (EIP) and 

their potential for enabling AC, and in section V we present 

our implementation of an autonomic workflow. Finally, in 

Section VI we offer our conclusions. 

II. AUTONOMIC COMPUTING 

Autonomic Computing (AC) concepts [3, 4] have been 

effectively used to manage enterprise systems and 

applications; now they provide a promising approach to 

address the challenges of complexity management. 

Analogous to the human body, where the autonomic nervous 

system responds to stimuli by adapting the body to its needs 

and to the environment without involving the conscience, 

AC-driven complexity management is achieved by creating 

self-managing environments capable of dynamically 

adapting to unpredictable changes using only high-level 

guidance or intervention from the users. Following this 

concept, each element of a computational system is managed 

by its own autonomic control loop, involving monitoring, 

analysis, planning, and execution (M-A-P-E, cf. [1]), 

realizing a set of predefined system policies. These 

individual control loops will then collaborate, i.e., 

communicate and negotiate with other autonomic managers 

which control other aspects of the computations.  

Furthermore, as Parashar expressed it, “the autonomic 

approach mimics nature’s way of managing the complexity: 

complex patterns emerge from the interaction of millions of 

organisms that organize themselves in an autonomous, 

adaptive way by following relatively simple behavioral 

rules. In order to apply this approach, the organization of 

computations over large complex systems, computations 

must be broken into small, self-contained chunks, each 

capable of expressing autonomous behavior in its 

interactions with other chunks” [4]. The goal of autonomic 

computing, then, is to manage complex computations via 

sets of predefined, simple rules that define the system’s 

responses to failures and unpredictable changes in the 

computational environment, thus providing means for 

recovery from faults and/or adaptation of the system without 

direct human intervention. 

III. COMPUTATIONAL WORKFLOWS 

A computational workflow is a sequence of computational 

and data management tasks in a scientific application. 

Organizing the scientific analysis into a workflow 

significantly reduces the complexity of the application: the 

monolithic and thus difficult to maintain application is 

decomposed into simpler, independent modules (workflow 

nodes) focused on specific aspects of the problem at hand. 

Individual components can be reused for different 

applications (workflows), and the business logic of the 

overall application can be tuned and improved by 

reconfiguring the workflow, i.e., changing the sequence of 

tasks. 

Our goal is to provide a workflow execution environment 

with the capability to recover from faults of the workflow 

components and consequently to prevent erroneous data 

from failed components from entering the final result set 

(“scientific fidelity”) or crippling the business logic of the 

workflow. Furthermore, we envision the workflow execution 

environment as capable of autonomous “self-healing,” that 

is, correcting non-fatal failures without human intervention. 

The autonomic execution of a workflow is even more 

important in the case of dynamic workflows in which the 

sequence of the components changes unpredictably (e.g., is 

data driven), and the same component can be invoked many 

times. The multistep design optimization (MDO) is an 

example of a dynamic workflow. 

A. Multistep Design Optimization 

Many complex engineering systems are more readily 

optimized when they are decomposed into a number of 

subsystems with partitioned design variables and separate 

objective functions and design constraints. Following the 

Analytical Target Cascading (ATC) approach [5, 6], the 

resulting workflow has a layered architecture of  

decomposed systems, as schematically shown in Figure 1. 

The hierarchy can be expanded to include several levels, 

each containing multiple elements. This hierarchical  

architecture, applicable to integrated product-material 

design, offers autonomy to each element to optimize its own 

objective function according to an element-specific set of 

constraints, which are, in turn, based upon either inputs from 

lower-level elements and design targets or demands imposed 

by corresponding upper-level elements. Because the number 

of design variables in each element represents a fraction of 

the total set, the dimensionality of each element optimization 

problem is reduced. Hierarchically decomposed systems are 

naturally suitable for parallel computing and decentralized 

optimization approaches, but they require a careful 

coordination strategy in the ensuing iterative solution 

process to ensure satisfaction of system-level design criteria 

Figure 1: Idealized hierarchical workflow for multistep 

design optimization.  
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and proper convergence to an optimum design. 

B. Idealized dynamic workflow 

The details of ATC and its application for design 

optimization are beyond the scope of this paper. What is of 

interest here is the structure of the resulting dynamic 

workflow. The workflow comprises a number of nodes (cf., 

Figure 1), and each node implements the same pattern:  

given initial values, it performs an optimization of the 

subsystem by submitting a job to minimize its objective 

function. Depending on the results of the subsystem 

optimization, the children nodes are dispatched, or the 

results are returned to the parent node. This dependency on 

the optimization results at each level makes the overall 

computations dynamic: at the beginning of the process, it is 

unknown how many times each node will be invoked, and 

consequently, the sequence of job submissions is 

unpredictable.  

ATC defines the rules for controlling the execution of the 

workflow, that is, the sequence of invoking workflow nodes 

and convergence criteria. However, these rules implicitly 

assume that all submitted jobs complete successfully and 

deliver trustworthy results. A failure of a single job may 

cripple the entire workflow, wasting all the results obtained 

before the fault occurred. Even worse, an unreliable result 

caused by an unreported failure may distort the end results.   

C. Job Execution Service 

Since the core functionality of the workflow node is 

submitting a job, let us examine an example implementation 

of a Globus-based Job Execution Service (JES) [7], as 

shown in Figure 2. Given a job descriptor (a string in 

Resource Specification Language (RSL) [8]) as the service 

request argument, the service selects the target machine 

(e.g., site 1 or 2), performs data staging, and submits the job 

to the Globus Resource Allocation Manager (GRAM) [9] 

server at the selected site. If the submission succeeds, the job 

submission service enters the job id (returned by GRAM) to 

the job monitoring (JM) service, and responds with an 

acknowledgement. Otherwise, it responds with a job 

submission failure message. All changes of the state of the 

job (pending, running, completed) reported by GRAM are 

forwarded to the JM service. The submitting client then polls 

for job status by sending requests to the JM service until the 

job is completed. At that moment, the client retrieves job 

information comprising of the actual location of the job 

stdout, stderr, and any other available output files.     

D. Failure modes 

A job submitted through the JES may fail (i.e., no or 

unreliable results are produced) in many different ways. 

Following the patterns recognized in [10], we can group 

these failures into four categories or levels:  

1. The service may not be responding to or reporting 

an internal error, that is, a service level failure. 

2. The job submission may fail because of expired 

credentials, errors in RSL, shutdown of the target 

machine, or other specific job submission service 

level failure. 

3. The job may crash (non-zero exit value) because of, 

for example, missing input data, insufficient 

memory, time limit, or other system level failure. 

4. The job may complete with exit value=0 but still 

produce unreliable results, such as non-converged 

optimization or other application level failure. 

Although demonstrated here for JES, this categorization is 

generic and can be applied to any type of service. 

Many of these faults can be remedied programmatically. 

For example, in the non-responding service, a peer service 

can be invoked instead. Expired credentials can be refreshed; 

memory requirements or execution time limits can be tuned 

in a re-generated RSL; lack of convergence can be remedied 

by selecting another algorithm, changing the initial values, 

or modification of the constrains on the values of design 

variables.  

Recovering from these failures could be incorporated into 

the workflow specification, but it would add unnecessary 

complexity to an already complex set of ATC rules. 

Furthermore, the domain expert who applies the ATC rules 

may not know or understand the failure modes and the 

remedies than could or should be applied, while the IT 

professional responsible for the deployment and 

maintenance of the services typically has little, if any, 

understanding of the ATC rules. It is thus desirable to 

manage the complexity of the ATC workflow (or any other 

computational workflow) by separating failure recovery 

from the business logic of the workflow, thereby designating 

fault recovery as a property of the execution environment 

and not of the workflow itself. This property, often referred 

to as self-healing, can be achieved by applying AC concepts. 

E. Autonomic execution of jobs 

The complexity of computational workflow management 

due to unpredictable job failures can be addressed by 

treating jobs as managed resources. Following the AC 

approach, the job should be managed by its own autonomic 

control loop that would guarantee that the results generated 

Figure 2: Job Execution Service 
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by the job meet criteria specified in predefined system 

policies. To achieve that, the JES must be augmented with 

additional functionality for assessing the quality of the 

results. To earn the qualification of being autonomic, the 

manger implementing the control loop to enforce the 

scientific fidelity of the results must be independent of the 

business logic defined in the workflow specification.  

The taxonomies of failure modes help design monitors and 

analyzers of M-A-P-E autonomic managers, while the 

taxonomy of remedies allows design of the planners. 

Typically the planners would modify the service request 

(e.g., the job specification) and re-invoke the managed 

service (e.g., resubmit the job). These taxonomies will be 

necessarily open, as it is unreasonable to expect that all 

possible failure modes will be captured at the design time. 

Furthermore, the repertoire of remedies will grow as the 

knowledge of the system increases. Consequently, the design 

of the system must allow for adaptive runtime changes 

(defined by configuration files and/or policies) and learning. 

The autonomic job manager envisioned here acts 

reactively: it responds to faults after they have actually 

happened. Such a manager should be complemented with 

proactive behavior: corrective actions taken before a 

predictable fault occurs (e.g., as in [11]). For example, the 

availability of the disk space could be monitored regularly 

(independently of whether a job is submitted or not), and if 

the available space is less than a predefined threshold value, 

some corrective action is taken so that when a job is 

submitted, it will not crash because of lack of disk space.  

It follows that the AC paradigm requires adding a large 

number of new components: monitors, analyzers, planners, 

and executors. Therefore, if the system is not designed 

carefully, the complexity will move from the workflow’s 

business logic to the execution environment, defeating one 

of our principal goals. 

IV. SERVICE-ORIENTED SOFTWARE ENGINEERING 

The Service-Oriented Computing (SOC) paradigm uses 

services to support the development of rapid, low-cost, 

interoperable, evolvable, and massively distributed 

applications [12]. Services are autonomous, platform 

independent entities that can be described, published, and 

discovered. The visionary promise of SOC is that it is 

possible to easily assemble application components into a 

loosely coupled network of services that can create dynamic 

business processes and agile applications which span 

organizations and computing platforms [13]..         

A. Enterprise Service Bus 

The requirements to provide capable and manageable 

integration of services are coalescing into the concept of the 

Enterprise Service Bus (ESB) [14, 15], implementing Java 

Business Integration (JBI) [16] specification. An ESB is a 

software construct that provides fundamental services for 

complex architectures via an event-driven and standards-

based messaging engine (the bus). With ESB, requestors and 

service providers are no longer interacting directly with each 

other; rather they exchange messages through the bus, and 

the messages can then be processed by mediations (e.g., 

message transformation, routing, monitoring). Mediations 

implement the integration and communication logic, and 

they are the means by which ESB can ensure that services 

interconnect successfully. As a result, the ESB acts as the 

intermediary layer between a portal server and the back-end 

data sources with which the data portal interacts [12]. 

B. Self-managing of Service-Oriented Systems 

During the last few years, the issue of self-management 

and support for adaptivity of service-oriented systems has 

attracted attention of many researchers [17-21]. Most of the 

proposed solutions to support this autonomic behavior place 

the service bus in the center of the architecture, taking 

advantage of dynamic routing features offered by most 

implementations of the bus.  

For example, S-Cube [19] adopts a publisher-subscriber 

[22] pattern to manage the flow of messages in the bus. A 

central Service Adaptation and Monitoring (SAM) module 

subscribes to events fired by monitors of all managed 

resources.  Based on the signature of the received event 

(context and runtime values) and adaptation strategies 

retrieved in real time from the Adaptation Manager, SAM 

automatically selects a suitable adaptation action and 

invokes it by firing an event (a one-way message) to be 

consumed by the adaptation gateway, which in turn, 

dynamically routes the message to a service capable of 

performing the corrective action.  For the purposes of S-

Cube, the adaptation strategy is an XML document 

implementing the router slip pattern [22], that is, it specifies 

the sequence of services to be invoked and message 

transformations needed in between.  

The Ceylon autonomic system [11] exploits the flexibility 

of the publisher-subscriber pattern even further by 

implementing planners (in the M-A-P-E paradigm) capable 

of correlating independent but related events.   

Many authors recognize the arising problem with 

developing such systems: heterogeneity of messages 

traveling through the bus and, associated with it, the 

increasing complexity of the dynamic routing. Multifactor-

driven hierarchical routing (MDHR) [20] distinguishes three 

layers for message routing on an ESB: the message layer for 

standard ESB mechanisms for message delivery (content-

based routing, itinerary-based routing, or static routing); the 

application layer that encapsulates legacy applications; and 

the business layer allowing for external mechanisms for 

message routing as defined by domain specific language of a 

business process. The virtualization of services supported by 

ESB is also exploited by the DRESR framework [21] to 

allow for dynamic changes in business and service 

processes.  

The heterogeneity of messages and the resulting 

complexity of routers comes from different “types of service 

variability” [10] that require an adaptation of the system at 

one of four levels: (1) workflow composition (e.g., using 
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optional or alternative steps); (2) composition (e.g., 

alternative implementations to be bound at runtime); (3) 

interface variability (mismatch between actual and published 

service interfaces); and (4) logic variability (alternative 

business logic of a service). Handling the messages, which 

are carrying information about a system state change, an 

abnormality, or a failure at one of these levels, requires 

identifying a “signature” from a message and using it to 

select alternative services as defined in a registry and which 

are capable of modifying the workflow or service endpoints, 

applying a transformation, or changing a service 

configuration as needed. 

The complexity of recognizing the message content 

needed to apply content-based routing seems to originate 

from the design feature that is common for the above-

described implementations: the centralization of the 

adaptation control, leading to an unnecessary complexity of 

the autonomic environment. In this paper we propose an 

alternative approach, based on the foundations of AC. We 

propose a decomposition of the central complex decision 

maker, such as S-Cube’s SAM, into a large number of small 

components implementing simple behavioral patterns, and 

use of the full power of a rich set of Enterprise Integration 

Patterns (EIP) [22] offered by ESB to integrate them into a 

dynamic, autonomic system. By mimicking biological 

systems, the inherent complexity of an autonomic system 

can be thereby reduced to a collection of easy to maintain 

and configure services, each following simple rules.      

V. COMPUTATIONAL WORKFLOW AS A MANAGED RESOURCE 

Within the SOA paradigm, a workflow is a composite 

service, that is, a service that combines other services, where 

the ‘constituent’ services interact with each other through an 

exchange of messages.  

A message traveling in the ESB is a Java object 

implementing javax.jbi.messaging.NormalizedMessage 

interface. This interface mandates, among other things, the 

message properties (“headers”) and message content 

(“body”).  A special case is a Fault message 

(javax.jbi.messaging.Fault interface that extends Normalized 

Message interface). A Fault message is created when the 

service cannot complete the processing of a request. It may 

happen for many reasons, such as missing or invalid data, 

insufficient resources, a bug in the implementation, or other 

unpredicted circumstances. This mechanism can be further 

exploited by introducing exceptions at the business level: if 

the result to be returned by the service does not satisfy 

requirements specified by a predefined policy, an exception 

is thrown. The content of the Fault message provides the 

details of the exception that triggered the service failure. 

The Java objects representing the messages within the bus 

are converted to “wire-ready” messages (e.g., SOAP over 

HTTP) by ESB binding components when communicating 

with the external service requestor and provider (cf. Figure 

4). 

A. Service as a managed resource 

Catching exceptions by the service implementation itself 

is a form of service monitoring. The clear distinction 

between successful and fault messages can be used as a 

simple rule for content-based routing: unless the event 

message is of type Fault, the message is routed to the service 

specified in the routing slip (Routing Slip [22] pattern); 

otherwise, it is routed to an alternative endpoint (Detour [22] 

pattern). As a consequence, this simple router acts also as an 

analyzer, the second element of an autonomic manager.  

The intention here is straightforward: should a fault happen, 

the system makes an attempt to recover from it by applying a 

detour and, when the problem is resolved, the requestor gets 

a successful, trustworthy response without knowing that a 

corrective action has been autonomically performed. The 

detour results in forwarding the Fault message to a planner, 

that is, a dedicated service, which is capable of identifying 

the cause of the failure and of selecting one of a set of 

predefined but configurable corrective actions. The 

corrective actions are driven by a policy (e.g., articulated as 

XML documents) so that the planner service can translate 

the signature of the failure encoded in the content of the 

Fault message into a sequence of actions to be taken 

following the routing slip pattern. Since the planner must 

understand the signatures of failures, the functionality of the 

managed service and the planner are tightly correlated, and 

therefore each managed service should be associated with a 

corresponding planner. Should the planner fail to recognize 

the fault or devise a plan for corrective action (e.g., no 

policy defined), it throws an exception. In general, there is 

no reason to define a planner for the planner service; 

therefore, the router sends an “unrecoverable fault” message 

to the requestor: at this point, there is nothing that can be 

done to recover from the failure. 

The planner should be a separate service because the 

monitor (i.e., the managed service itself) is capable of only 

identifying what is wrong, but, in general, does not have 

enough information to determine why the exception 

happened.  For example, the service can easily recognize 

that the input data is invalid, but it is outside the service’s 

scope to determine what steps need to be taken to correct the 

data. Furthermore, the determination of the corrective 

 

Figure 3: The concept of autonomic manager for a 

single service 
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actions may require a correlation of information coming 

from several monitors.  

The services defined in the routing slip serve as executors 

of the autonomic manager. The intent here is to remove the 

conditions that led to the fault of and then to re-invoke the 

managed service. For example, in the case of a job 

submission, invoking a sequence of services may be 

necessary to modify the job’s RSL description and/or its 

input files, and then, to re-submit the job. Any already 

deployed service can be used as an executor, if its 

functionality happens to serve the purpose (e.g., RSL 

generator service); otherwise dedicated services must be 

developed and deployed.  In addition, if applicable, a service 

acting as the executor of the autonomic manager may make 

an attempt to adapt the system to avoid the same type of 

faults in the future.  

Finally, all actions need to be logged into the database 

(message store [22] pattern), the knowledge component of 

the autonomic manager. It is necessary to allow the end user 

to monitor the progress in real time (e.g., through an 

interactive GUI), and to indentify the sources of 

unrecoverable faults. Furthermore, the planners use the 

database to correlate responses from different services, such 

as monitors of the system state (e.g., is there enough disk 

space available?), or to break infinite loops or deadlocks if 

the sequence of the applied corrections does not converge.  

To summarize, a service is managed by a M-A-P-E 

autonomic manager, schematically shown in Figure 3: 

should the service fail to complete successfully (the monitor 

functionality), the service response is detoured (the analysis 

functionality) to a planner service that determines the 

sequence of corrective actions to be preformed by executors. 

Once the conditions leading to the fault have been removed, 

the managed service is re-invoked. Should the planner or 

executors fail to recover from the fault, an “unrecoverable 

fault” message is returned to the service requestor. 

We have realized this autonomic behavior using Apache 

ServceMix [23] implementation of the ESB. The requests 

from external requestors are received by a Binding 

Component, as shown in Figure 4. Binding components are 

standard JBI components that plug into NMR and provide 

transport independence to NMR and Service Engines (SE). 

The role of binding components  is to isolate communication 

protocols from JBI containers so that Service Engines are 

completely decoupled from the communication 

infrastructure.  

The routing decisions in our implementation of the 

standard org.apache.service.jbi.nmr.broker interface are 

based on three message properties: routing slip, return 

address and fault, following a simple algorithm shown in 

Figure 5. In the absence of a fault, the first element in the 

routing slip is resolved via registry to an endpoint of a 

Service Engine (e.g., JES). The fault messages are routed to 

the corresponding planner Service Engines with the endpoint 

defined in the service registry. If the routing slip is empty, or 

the endpoint of the planner cannot be resolved, the fault 

message is returned to the requestor, using the return address 

embedded as the message property. 

This implementation treats all services symmetrically, that 

is, the router is not aware of the business logic implemented 

by a service. In particular, it does not distinguish between 

the managed services and the various components of 

autonomic managers at different levels. The router only 

distinguishes between regular and fault messages, and it 

follows the routing slips created by invoked services and 

embedded as the message property. This approach reduces 

the complexity of the services, their managers, and the router 

to a set of simple rules.  

Note that because of the symmetrical treatment of the 

services, the elements of the autonomic managers are also 

autonomically managed: if the event message generated by a 

planner or an executor is of type Fault, the router recognizes 

the failure and re-routes the message so that corrective 

actions can be taken. This feature is rarely discussed in 

literature. 

B. Scientific fidelity of a service response 

A faultless completion of a service does not necessarily 

guarantee that the service’s response satisfies criteria 

specified in a policy. An autonomic validation of the 

response must be performed as well. As an example, a job 

executed via JES may produce unreliable results (e.g., the 

minimization process has not converged). It would be a 

software engineering mistake to add the capability of 

Figure 5: Routing algorithm 

 

 

Figure 4: The architecture of Enterprise Service Bus 
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detecting application-specific failures to the otherwise 

generic JES.  

The validation of the results is therefore performed by a 

dedicated, validating service, which is automatically invoked 

after the service that produces the results completes. It can 

be easily achieved with ESB, exploiting its support for the 

virtualization of services. The original request (e.g., “run a 

job”) is dynamically re-routed to a process manager service 

(implementing process manger [22] pattern) that inserts a 

routing slip to the message (in this example, run job, verify 

the exit value, and validate output). As a result, the sequence 

of services specified in the slip is autonomically executed: 

should the service’s response not satisfy the criteria, the 

validating service fires a Fault message, which, in turn, 

prompts the router to schedule a detour to the associated 

planner in order to initiate corrective action. Ultimately, the 

final response of the service to the original requestor is 

either trustworthy or it is an explicit fault message 

(“unrecoverable fault”), should no corrective action or other 

resolution be found.  

 

C. Workflow as a managed resource 

Any workflow engine, e.g., a BPEL-based [24] one, will 

benefit from the autonomous execution of services, in 

particular, when the results produced by the services are 

autonomically verified. However, the complexity of 

dynamic workflows, especially those for which the 

determination of the subsequent actions can be defined by 

applying a set of rules (as is the workflow for hierarchical 

multistep design optimizations), can be reduced by applying 

the same autonomic approach as we have for a single 

service, that is, by treating the workflow as a managed 

resource. This creates a hierarchy of resource managers, 

with the workflow autonomic manager consuming 

“unrecoverable fault” messages generated by the individual 

services’ autonomic managers.  

Figure 6 shows the autonomic execution of a single node 

(node A.1 in Figure 1) of the idealized multistep 

optimization workflow. The execution begins with a 

planning activity based on the predefined rules (here, ATC). 

The planning is performed by a dedicated process manager 

service that updates the routing slip of the received message. 

There are three possible outcomes of this manager service: 

(1) the subsystem represented by A.1 node system is already 

optimized, and its optimized values are to be returned to its 

parent (here, node A); (2) the subsystem needs to be 

optimized by first optimizing its children (subsystems A.1.1 

and A.1.2), followed by submitting a job to minimize 

objective function of subsystem A.1; (3) the optimization of 

the subsystem failed. The first case is handled by sending a 

message to the next service in the routing slip of the event 

that triggered this planning activity. The second case is 

processed by sending two messages, one with “process 

A.1.1” and “optimize A1,” and the other with “process 

A.1.2” and “optimize A1” added to the top of the routing 

slip. The last case results in sending a Fault message, which 

triggers an autonomic recovery attempt. In each case, one or 

more messages are sent to the bus, and the router delivers 

them to the recipient following the simple algorithm shown 

in Figure 5.  

Services labeled “process A.1.1” and “process A.1.2” are 

nodes in the workflow, and they are implemented in the 

same way as discussed for node A.1 (recursion). The 

“optimize A1” is actually a composite service: it aggregates 

(through updating of a routing slip) services for the creation 

of the job descriptor, the job input files, and job execution, 

which was discussed in detail above. Each of these services 

may fail, which results in sending a fault message that is 

appropriately routed for autonomic recovery (for clarity, this 

is not shown in Figure 6). The “optimize A1” is trigged by 

two independent events: successful completion of either 

“optimize A.1.1” or “optimize A.1.2” service (aggregator 

[22] pattern). In our implementation, the message store was 

used to correlate the events. When one of the children nodes 

sends the message, the store is searched for the message 

from the other child. If it is not found, the service exits 

without sending any events. For scientific fidelity, it is 

paramount that the messages from the children nodes are 

delivered to the “Optimize A.1” if, and only if, their results 

are trustworthy. Similarly, the decision whether or not 

subsystem A.1 has been optimized is based on the 

trustworthy result of “optimize A.1.”  

The system is easy to implement and can be deployed 

gradually, in small steps. The critical first step is to 

implement the ESB router capable of routing messages 

according to the routing slip embedded in the messages and 

of detouring the fault messages. Initially, this custom router 

preserves the original functionally of the system; for 

example, a fault the message is routed to the requestor 

unchanged since no corresponding planner is defined in the 

registry. Then the autonomic behavior can be added by 

deploying planners and process manager services, one by 

one, as experience with detecting failures and devising 

recovery procedures is accumulated. Furthermore, the self-

healing property of the system can be progressively 

enhanced by adding “stand-alone” monitors which add to the 

message store updates on the status of other system 

resources that influence the reliability of the system. 

It is important that the implementation of the services 

Figure 6: Autonomic execution of a multistep optimization 

workflow node 
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accommodate processing of policy documents that define the 

criteria for the determination of trustworthiness of results 

and specify the corrective actions. Following these 

guidelines enables updates of the policies at runtime that 

result in behavioral changes of the system, leading to a truly 

adaptive autonomic system.  

 

VI. SUMMARY 

In this paper we have described an autonomic 

environment for execution of dynamic, rule-base 

computational workflows. This environment not only makes 

the best effort to recover from faults, it also guarantees the 

scientific fidelity of the results, in particular, that the final 

outcome of complex computations are not distorted by 

erroneous information resulting from unreported system- 

and/or application-level failures of the workflow and/or its 

components.  

The autonomic behavior has been achieved by harnessing 

Service-Oriented Software Engineering, most notably, by 

employing the Enterprise Service Bus, exploiting the Java 

Business Integration specification, and applying Enterprise 

Integration Patterns. By defining a set of very simple rules 

that apply to autonomous, loosely coupled services, we have 

generated a very complex autonomic behavior involving 

iterative, and possibly recursive, sequences of service 

invocations, thus mimicking biological systems. Scientific 

fidelity is achieved by enforcing service responses that meet 

criteria specified by configurable policies. 

Failures to meet the criteria are caught as exceptions that 

result in firing fault messages. The custom ESB router, 

without any knowledge of the workflow’s business logic of 

the workflow, detours all fault messages to specialized 

services that, based on the signature of the fault, plan 

corrective actions through inserting routing slips to 

messages. Those multiple planner services are independent 

of each other, each addressing specific problems and making 

decisions based on the policies defined in the configuration 

files that can be modified (adapted) at run time.   
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