

Abstract—This paper describes the application of an

autonomic paradigm to manage the complexity of software

systems such as computational workflows. To demonstrate our

approach, the workflow and the services comprising it are

treated as managed resources controlled by hierarchically

organized autonomic managers. By applying service-oriented

software engineering principles, in particular enterprise

integration patterns, we have developed a scalable, agile, self-

healing environment for execution of dynamic, data-driven

workflows which are capable of assuring scientific fidelity

despite unavoidable faults and without human intervention.

I. INTRODUCTION

Support for scientific workflows is now recognized as a

crucial element of cyberinfrastructure, facilitating e-Science.

Typically sitting on top of a middleware layer, scientific

workflows are means by which scientists can model, design,

execute, debug, re-configure and re-run their analysis and

visualization pipelines.

There are many ways of implementing scientific

workflows [1, 2]; however, with the advent of Grid and

Cloud computing, most of the current efforts adopt Service-

Oriented Architectures (SOA). Consequently, research on

workflow management systems highlights methodologies of

service composition and orchestration. To that end, this

paper focuses on particular aspects of service-oriented

workflow system development, namely, the scientific

fidelity, fault tolerance, adaptivity, and management of

complexity. The ideas presented in this paper are illustrated

by an exemplary implementation of an adaptive

computational workflow.

Scientific fidelity refers to a software system’s ability to

deliver reliable, trustworthy computational results; i.e., the

end user can trust that the output is not distorted by

erroneous information resulting from unreported failures of

the workflow and/or its components. To achieve such

fidelity, the system for executing the computational

workflows must be capable of detecting faults and

abnormalities and performing corrective actions, whenever

 This work has been supported by the U.S. Department of Energy,

under contract DE-FC26-06NT42755 and NSF Grant No. 826547

feasible. The system can react to faults and abnormalities

either by protecting against faults before they occur

(possible when an abnormality has been detected), or by

recovering after a fault has happened. In the latter case, the

detection of a fault may also help detect an abnormality,

which could then prompt a corrective action to prevent

future failures of the same type.

In addition to a direct recovery from a point failure by

automatic fixing the cause of the problem and retrying, it is

desirable that the system has a capability to respond to an

abnormality by adaptation. It may include use of an

alternative service instance, correction of the request due to

a change of the service interface, the selection of an

alternative algorithm to be used by the service (or the code

submitted by that service), or the modification of the

workflow specification, i.e., the change of the execution

path, perhaps using alterative or optional workflow nodes.

Since the adaptations forced by the failures may be data-

driven and thus unpredictable, enforcing the scientific

fidelity is of critical importance.

Unfortunately, the enforcement of scientific fidelity adds

to the complexity of the system; if not managed properly,

this added complexity might actually decrease the reliability

and maintainability of the overall system, thereby defeating

its ultimate purpose. The situation is further complicated by

the fact that the end user, a domain specialist that composes

and runs the workflow, may not know or care about possible

failure modes below the application level or the methods for

remedying them. Conversely, an IT specialist maintaining

the system typically has very little, if any, knowledge of the

business logic of the workflow.

Herein, we address scientific fidelity, fault tolerance,

adaptivity, and the management of complexity, applying (1)

the concepts of Autonomic Computing, in particular self-

management and self-healing, and (2) service-oriented

software engineering, in particular exploiting the capabilities

of the Enterprise Service Bus for dynamic message routing.

The remainder of this paper is organized as follows. In

Section II we describe the concepts of Autonomic

Computing (AC). In Section III we define dynamic

computational workflows and explain the benefits of

applying an AC paradigm to manage the complexity of the

Autonomic Execution of Computational Workflows

Tomasz Haupt, Nitin Sukhija, Igor Zhuk
Mississippi State University

Center for Advanced Vehicular Systems, Box 5405

Mississippi State, MS 39762

USA

Email: {haupt, nitin, igorzhuk}@cavs.msstate.edu

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 965–972

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 965

system while assuring the scientific fidelity of the results. In

Section IV we discuss the concepts of the Service-Oriented

Software Engineering (SOSE), including Enterprise Service

Bus (ESB) and Enterprise Integration Patterns (EIP) and

their potential for enabling AC, and in section V we present

our implementation of an autonomic workflow. Finally, in

Section VI we offer our conclusions.

II. AUTONOMIC COMPUTING

Autonomic Computing (AC) concepts [3, 4] have been

effectively used to manage enterprise systems and

applications; now they provide a promising approach to

address the challenges of complexity management.

Analogous to the human body, where the autonomic nervous

system responds to stimuli by adapting the body to its needs

and to the environment without involving the conscience,

AC-driven complexity management is achieved by creating

self-managing environments capable of dynamically

adapting to unpredictable changes using only high-level

guidance or intervention from the users. Following this

concept, each element of a computational system is managed

by its own autonomic control loop, involving monitoring,

analysis, planning, and execution (M-A-P-E, cf. [1]),

realizing a set of predefined system policies. These

individual control loops will then collaborate, i.e.,

communicate and negotiate with other autonomic managers

which control other aspects of the computations.

Furthermore, as Parashar expressed it, “the autonomic

approach mimics nature’s way of managing the complexity:

complex patterns emerge from the interaction of millions of

organisms that organize themselves in an autonomous,

adaptive way by following relatively simple behavioral

rules. In order to apply this approach, the organization of

computations over large complex systems, computations

must be broken into small, self-contained chunks, each

capable of expressing autonomous behavior in its

interactions with other chunks” [4]. The goal of autonomic

computing, then, is to manage complex computations via

sets of predefined, simple rules that define the system’s

responses to failures and unpredictable changes in the

computational environment, thus providing means for

recovery from faults and/or adaptation of the system without

direct human intervention.

III. COMPUTATIONAL WORKFLOWS

A computational workflow is a sequence of computational

and data management tasks in a scientific application.

Organizing the scientific analysis into a workflow

significantly reduces the complexity of the application: the

monolithic and thus difficult to maintain application is

decomposed into simpler, independent modules (workflow

nodes) focused on specific aspects of the problem at hand.

Individual components can be reused for different

applications (workflows), and the business logic of the

overall application can be tuned and improved by

reconfiguring the workflow, i.e., changing the sequence of

tasks.

Our goal is to provide a workflow execution environment

with the capability to recover from faults of the workflow

components and consequently to prevent erroneous data

from failed components from entering the final result set

(“scientific fidelity”) or crippling the business logic of the

workflow. Furthermore, we envision the workflow execution

environment as capable of autonomous “self-healing,” that

is, correcting non-fatal failures without human intervention.

The autonomic execution of a workflow is even more

important in the case of dynamic workflows in which the

sequence of the components changes unpredictably (e.g., is

data driven), and the same component can be invoked many

times. The multistep design optimization (MDO) is an

example of a dynamic workflow.

A. Multistep Design Optimization

Many complex engineering systems are more readily

optimized when they are decomposed into a number of

subsystems with partitioned design variables and separate

objective functions and design constraints. Following the

Analytical Target Cascading (ATC) approach [5, 6], the

resulting workflow has a layered architecture of

decomposed systems, as schematically shown in Figure 1.

The hierarchy can be expanded to include several levels,

each containing multiple elements. This hierarchical

architecture, applicable to integrated product-material

design, offers autonomy to each element to optimize its own

objective function according to an element-specific set of

constraints, which are, in turn, based upon either inputs from

lower-level elements and design targets or demands imposed

by corresponding upper-level elements. Because the number

of design variables in each element represents a fraction of

the total set, the dimensionality of each element optimization

problem is reduced. Hierarchically decomposed systems are

naturally suitable for parallel computing and decentralized

optimization approaches, but they require a careful

coordination strategy in the ensuing iterative solution

process to ensure satisfaction of system-level design criteria

Figure 1: Idealized hierarchical workflow for multistep

design optimization.

966 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

and proper convergence to an optimum design.

B. Idealized dynamic workflow

The details of ATC and its application for design

optimization are beyond the scope of this paper. What is of

interest here is the structure of the resulting dynamic

workflow. The workflow comprises a number of nodes (cf.,

Figure 1), and each node implements the same pattern:

given initial values, it performs an optimization of the

subsystem by submitting a job to minimize its objective

function. Depending on the results of the subsystem

optimization, the children nodes are dispatched, or the

results are returned to the parent node. This dependency on

the optimization results at each level makes the overall

computations dynamic: at the beginning of the process, it is

unknown how many times each node will be invoked, and

consequently, the sequence of job submissions is

unpredictable.

ATC defines the rules for controlling the execution of the

workflow, that is, the sequence of invoking workflow nodes

and convergence criteria. However, these rules implicitly

assume that all submitted jobs complete successfully and

deliver trustworthy results. A failure of a single job may

cripple the entire workflow, wasting all the results obtained

before the fault occurred. Even worse, an unreliable result

caused by an unreported failure may distort the end results.

C. Job Execution Service

Since the core functionality of the workflow node is

submitting a job, let us examine an example implementation

of a Globus-based Job Execution Service (JES) [7], as

shown in Figure 2. Given a job descriptor (a string in

Resource Specification Language (RSL) [8]) as the service

request argument, the service selects the target machine

(e.g., site 1 or 2), performs data staging, and submits the job

to the Globus Resource Allocation Manager (GRAM) [9]

server at the selected site. If the submission succeeds, the job

submission service enters the job id (returned by GRAM) to

the job monitoring (JM) service, and responds with an

acknowledgement. Otherwise, it responds with a job

submission failure message. All changes of the state of the

job (pending, running, completed) reported by GRAM are

forwarded to the JM service. The submitting client then polls

for job status by sending requests to the JM service until the

job is completed. At that moment, the client retrieves job

information comprising of the actual location of the job

stdout, stderr, and any other available output files.

D. Failure modes

A job submitted through the JES may fail (i.e., no or

unreliable results are produced) in many different ways.

Following the patterns recognized in [10], we can group

these failures into four categories or levels:

1. The service may not be responding to or reporting

an internal error, that is, a service level failure.

2. The job submission may fail because of expired

credentials, errors in RSL, shutdown of the target

machine, or other specific job submission service

level failure.

3. The job may crash (non-zero exit value) because of,

for example, missing input data, insufficient

memory, time limit, or other system level failure.

4. The job may complete with exit value=0 but still

produce unreliable results, such as non-converged

optimization or other application level failure.

Although demonstrated here for JES, this categorization is

generic and can be applied to any type of service.

Many of these faults can be remedied programmatically.

For example, in the non-responding service, a peer service

can be invoked instead. Expired credentials can be refreshed;

memory requirements or execution time limits can be tuned

in a re-generated RSL; lack of convergence can be remedied

by selecting another algorithm, changing the initial values,

or modification of the constrains on the values of design

variables.

Recovering from these failures could be incorporated into

the workflow specification, but it would add unnecessary

complexity to an already complex set of ATC rules.

Furthermore, the domain expert who applies the ATC rules

may not know or understand the failure modes and the

remedies than could or should be applied, while the IT

professional responsible for the deployment and

maintenance of the services typically has little, if any,

understanding of the ATC rules. It is thus desirable to

manage the complexity of the ATC workflow (or any other

computational workflow) by separating failure recovery

from the business logic of the workflow, thereby designating

fault recovery as a property of the execution environment

and not of the workflow itself. This property, often referred

to as self-healing, can be achieved by applying AC concepts.

E. Autonomic execution of jobs

The complexity of computational workflow management

due to unpredictable job failures can be addressed by

treating jobs as managed resources. Following the AC

approach, the job should be managed by its own autonomic

control loop that would guarantee that the results generated

Figure 2: Job Execution Service

TOMASZ HAUPT, NITIN SUKHIJA, IGOR ZHUK: AUTONOMIC EXECUTION OF COMPUTATIONAL WORKFLOWS 967

by the job meet criteria specified in predefined system

policies. To achieve that, the JES must be augmented with

additional functionality for assessing the quality of the

results. To earn the qualification of being autonomic, the

manger implementing the control loop to enforce the

scientific fidelity of the results must be independent of the

business logic defined in the workflow specification.

The taxonomies of failure modes help design monitors and

analyzers of M-A-P-E autonomic managers, while the

taxonomy of remedies allows design of the planners.

Typically the planners would modify the service request

(e.g., the job specification) and re-invoke the managed

service (e.g., resubmit the job). These taxonomies will be

necessarily open, as it is unreasonable to expect that all

possible failure modes will be captured at the design time.

Furthermore, the repertoire of remedies will grow as the

knowledge of the system increases. Consequently, the design

of the system must allow for adaptive runtime changes

(defined by configuration files and/or policies) and learning.

The autonomic job manager envisioned here acts

reactively: it responds to faults after they have actually

happened. Such a manager should be complemented with

proactive behavior: corrective actions taken before a

predictable fault occurs (e.g., as in [11]). For example, the

availability of the disk space could be monitored regularly

(independently of whether a job is submitted or not), and if

the available space is less than a predefined threshold value,

some corrective action is taken so that when a job is

submitted, it will not crash because of lack of disk space.

It follows that the AC paradigm requires adding a large

number of new components: monitors, analyzers, planners,

and executors. Therefore, if the system is not designed

carefully, the complexity will move from the workflow’s

business logic to the execution environment, defeating one

of our principal goals.

IV. SERVICE-ORIENTED SOFTWARE ENGINEERING

The Service-Oriented Computing (SOC) paradigm uses

services to support the development of rapid, low-cost,

interoperable, evolvable, and massively distributed

applications [12]. Services are autonomous, platform

independent entities that can be described, published, and

discovered. The visionary promise of SOC is that it is

possible to easily assemble application components into a

loosely coupled network of services that can create dynamic

business processes and agile applications which span

organizations and computing platforms [13]..

A. Enterprise Service Bus

The requirements to provide capable and manageable

integration of services are coalescing into the concept of the

Enterprise Service Bus (ESB) [14, 15], implementing Java

Business Integration (JBI) [16] specification. An ESB is a

software construct that provides fundamental services for

complex architectures via an event-driven and standards-

based messaging engine (the bus). With ESB, requestors and

service providers are no longer interacting directly with each

other; rather they exchange messages through the bus, and

the messages can then be processed by mediations (e.g.,

message transformation, routing, monitoring). Mediations

implement the integration and communication logic, and

they are the means by which ESB can ensure that services

interconnect successfully. As a result, the ESB acts as the

intermediary layer between a portal server and the back-end

data sources with which the data portal interacts [12].

B. Self-managing of Service-Oriented Systems

During the last few years, the issue of self-management

and support for adaptivity of service-oriented systems has

attracted attention of many researchers [17-21]. Most of the

proposed solutions to support this autonomic behavior place

the service bus in the center of the architecture, taking

advantage of dynamic routing features offered by most

implementations of the bus.

For example, S-Cube [19] adopts a publisher-subscriber

[22] pattern to manage the flow of messages in the bus. A

central Service Adaptation and Monitoring (SAM) module

subscribes to events fired by monitors of all managed

resources. Based on the signature of the received event

(context and runtime values) and adaptation strategies

retrieved in real time from the Adaptation Manager, SAM

automatically selects a suitable adaptation action and

invokes it by firing an event (a one-way message) to be

consumed by the adaptation gateway, which in turn,

dynamically routes the message to a service capable of

performing the corrective action. For the purposes of S-

Cube, the adaptation strategy is an XML document

implementing the router slip pattern [22], that is, it specifies

the sequence of services to be invoked and message

transformations needed in between.

The Ceylon autonomic system [11] exploits the flexibility

of the publisher-subscriber pattern even further by

implementing planners (in the M-A-P-E paradigm) capable

of correlating independent but related events.

Many authors recognize the arising problem with

developing such systems: heterogeneity of messages

traveling through the bus and, associated with it, the

increasing complexity of the dynamic routing. Multifactor-

driven hierarchical routing (MDHR) [20] distinguishes three

layers for message routing on an ESB: the message layer for

standard ESB mechanisms for message delivery (content-

based routing, itinerary-based routing, or static routing); the

application layer that encapsulates legacy applications; and

the business layer allowing for external mechanisms for

message routing as defined by domain specific language of a

business process. The virtualization of services supported by

ESB is also exploited by the DRESR framework [21] to

allow for dynamic changes in business and service

processes.

The heterogeneity of messages and the resulting

complexity of routers comes from different “types of service

variability” [10] that require an adaptation of the system at

one of four levels: (1) workflow composition (e.g., using

968 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

optional or alternative steps); (2) composition (e.g.,

alternative implementations to be bound at runtime); (3)

interface variability (mismatch between actual and published

service interfaces); and (4) logic variability (alternative

business logic of a service). Handling the messages, which

are carrying information about a system state change, an

abnormality, or a failure at one of these levels, requires

identifying a “signature” from a message and using it to

select alternative services as defined in a registry and which

are capable of modifying the workflow or service endpoints,

applying a transformation, or changing a service

configuration as needed.

The complexity of recognizing the message content

needed to apply content-based routing seems to originate

from the design feature that is common for the above-

described implementations: the centralization of the

adaptation control, leading to an unnecessary complexity of

the autonomic environment. In this paper we propose an

alternative approach, based on the foundations of AC. We

propose a decomposition of the central complex decision

maker, such as S-Cube’s SAM, into a large number of small

components implementing simple behavioral patterns, and

use of the full power of a rich set of Enterprise Integration

Patterns (EIP) [22] offered by ESB to integrate them into a

dynamic, autonomic system. By mimicking biological

systems, the inherent complexity of an autonomic system

can be thereby reduced to a collection of easy to maintain

and configure services, each following simple rules.

V. COMPUTATIONAL WORKFLOW AS A MANAGED RESOURCE

Within the SOA paradigm, a workflow is a composite

service, that is, a service that combines other services, where

the ‘constituent’ services interact with each other through an

exchange of messages.

A message traveling in the ESB is a Java object

implementing javax.jbi.messaging.NormalizedMessage

interface. This interface mandates, among other things, the

message properties (“headers”) and message content

(“body”). A special case is a Fault message

(javax.jbi.messaging.Fault interface that extends Normalized

Message interface). A Fault message is created when the

service cannot complete the processing of a request. It may

happen for many reasons, such as missing or invalid data,

insufficient resources, a bug in the implementation, or other

unpredicted circumstances. This mechanism can be further

exploited by introducing exceptions at the business level: if

the result to be returned by the service does not satisfy

requirements specified by a predefined policy, an exception

is thrown. The content of the Fault message provides the

details of the exception that triggered the service failure.

The Java objects representing the messages within the bus

are converted to “wire-ready” messages (e.g., SOAP over

HTTP) by ESB binding components when communicating

with the external service requestor and provider (cf. Figure

4).

A. Service as a managed resource

Catching exceptions by the service implementation itself

is a form of service monitoring. The clear distinction

between successful and fault messages can be used as a

simple rule for content-based routing: unless the event

message is of type Fault, the message is routed to the service

specified in the routing slip (Routing Slip [22] pattern);

otherwise, it is routed to an alternative endpoint (Detour [22]

pattern). As a consequence, this simple router acts also as an

analyzer, the second element of an autonomic manager.

The intention here is straightforward: should a fault happen,

the system makes an attempt to recover from it by applying a

detour and, when the problem is resolved, the requestor gets

a successful, trustworthy response without knowing that a

corrective action has been autonomically performed. The

detour results in forwarding the Fault message to a planner,

that is, a dedicated service, which is capable of identifying

the cause of the failure and of selecting one of a set of

predefined but configurable corrective actions. The

corrective actions are driven by a policy (e.g., articulated as

XML documents) so that the planner service can translate

the signature of the failure encoded in the content of the

Fault message into a sequence of actions to be taken

following the routing slip pattern. Since the planner must

understand the signatures of failures, the functionality of the

managed service and the planner are tightly correlated, and

therefore each managed service should be associated with a

corresponding planner. Should the planner fail to recognize

the fault or devise a plan for corrective action (e.g., no

policy defined), it throws an exception. In general, there is

no reason to define a planner for the planner service;

therefore, the router sends an “unrecoverable fault” message

to the requestor: at this point, there is nothing that can be

done to recover from the failure.

The planner should be a separate service because the

monitor (i.e., the managed service itself) is capable of only

identifying what is wrong, but, in general, does not have

enough information to determine why the exception

happened. For example, the service can easily recognize

that the input data is invalid, but it is outside the service’s

scope to determine what steps need to be taken to correct the

data. Furthermore, the determination of the corrective

Figure 3: The concept of autonomic manager for a

single service

TOMASZ HAUPT, NITIN SUKHIJA, IGOR ZHUK: AUTONOMIC EXECUTION OF COMPUTATIONAL WORKFLOWS 969

actions may require a correlation of information coming

from several monitors.

The services defined in the routing slip serve as executors

of the autonomic manager. The intent here is to remove the

conditions that led to the fault of and then to re-invoke the

managed service. For example, in the case of a job

submission, invoking a sequence of services may be

necessary to modify the job’s RSL description and/or its

input files, and then, to re-submit the job. Any already

deployed service can be used as an executor, if its

functionality happens to serve the purpose (e.g., RSL

generator service); otherwise dedicated services must be

developed and deployed. In addition, if applicable, a service

acting as the executor of the autonomic manager may make

an attempt to adapt the system to avoid the same type of

faults in the future.

Finally, all actions need to be logged into the database

(message store [22] pattern), the knowledge component of

the autonomic manager. It is necessary to allow the end user

to monitor the progress in real time (e.g., through an

interactive GUI), and to indentify the sources of

unrecoverable faults. Furthermore, the planners use the

database to correlate responses from different services, such

as monitors of the system state (e.g., is there enough disk

space available?), or to break infinite loops or deadlocks if

the sequence of the applied corrections does not converge.

To summarize, a service is managed by a M-A-P-E

autonomic manager, schematically shown in Figure 3:

should the service fail to complete successfully (the monitor

functionality), the service response is detoured (the analysis

functionality) to a planner service that determines the

sequence of corrective actions to be preformed by executors.

Once the conditions leading to the fault have been removed,

the managed service is re-invoked. Should the planner or

executors fail to recover from the fault, an “unrecoverable

fault” message is returned to the service requestor.

We have realized this autonomic behavior using Apache

ServceMix [23] implementation of the ESB. The requests

from external requestors are received by a Binding

Component, as shown in Figure 4. Binding components are

standard JBI components that plug into NMR and provide

transport independence to NMR and Service Engines (SE).

The role of binding components is to isolate communication

protocols from JBI containers so that Service Engines are

completely decoupled from the communication

infrastructure.

The routing decisions in our implementation of the

standard org.apache.service.jbi.nmr.broker interface are

based on three message properties: routing slip, return

address and fault, following a simple algorithm shown in

Figure 5. In the absence of a fault, the first element in the

routing slip is resolved via registry to an endpoint of a

Service Engine (e.g., JES). The fault messages are routed to

the corresponding planner Service Engines with the endpoint

defined in the service registry. If the routing slip is empty, or

the endpoint of the planner cannot be resolved, the fault

message is returned to the requestor, using the return address

embedded as the message property.

This implementation treats all services symmetrically, that

is, the router is not aware of the business logic implemented

by a service. In particular, it does not distinguish between

the managed services and the various components of

autonomic managers at different levels. The router only

distinguishes between regular and fault messages, and it

follows the routing slips created by invoked services and

embedded as the message property. This approach reduces

the complexity of the services, their managers, and the router

to a set of simple rules.

Note that because of the symmetrical treatment of the

services, the elements of the autonomic managers are also

autonomically managed: if the event message generated by a

planner or an executor is of type Fault, the router recognizes

the failure and re-routes the message so that corrective

actions can be taken. This feature is rarely discussed in

literature.

B. Scientific fidelity of a service response

A faultless completion of a service does not necessarily

guarantee that the service’s response satisfies criteria

specified in a policy. An autonomic validation of the

response must be performed as well. As an example, a job

executed via JES may produce unreliable results (e.g., the

minimization process has not converged). It would be a

software engineering mistake to add the capability of

Figure 5: Routing algorithm

Figure 4: The architecture of Enterprise Service Bus

970 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

detecting application-specific failures to the otherwise

generic JES.

The validation of the results is therefore performed by a

dedicated, validating service, which is automatically invoked

after the service that produces the results completes. It can

be easily achieved with ESB, exploiting its support for the

virtualization of services. The original request (e.g., “run a

job”) is dynamically re-routed to a process manager service

(implementing process manger [22] pattern) that inserts a

routing slip to the message (in this example, run job, verify

the exit value, and validate output). As a result, the sequence

of services specified in the slip is autonomically executed:

should the service’s response not satisfy the criteria, the

validating service fires a Fault message, which, in turn,

prompts the router to schedule a detour to the associated

planner in order to initiate corrective action. Ultimately, the

final response of the service to the original requestor is

either trustworthy or it is an explicit fault message

(“unrecoverable fault”), should no corrective action or other

resolution be found.

C. Workflow as a managed resource

Any workflow engine, e.g., a BPEL-based [24] one, will

benefit from the autonomous execution of services, in

particular, when the results produced by the services are

autonomically verified. However, the complexity of

dynamic workflows, especially those for which the

determination of the subsequent actions can be defined by

applying a set of rules (as is the workflow for hierarchical

multistep design optimizations), can be reduced by applying

the same autonomic approach as we have for a single

service, that is, by treating the workflow as a managed

resource. This creates a hierarchy of resource managers,

with the workflow autonomic manager consuming

“unrecoverable fault” messages generated by the individual

services’ autonomic managers.

Figure 6 shows the autonomic execution of a single node

(node A.1 in Figure 1) of the idealized multistep

optimization workflow. The execution begins with a

planning activity based on the predefined rules (here, ATC).

The planning is performed by a dedicated process manager

service that updates the routing slip of the received message.

There are three possible outcomes of this manager service:

(1) the subsystem represented by A.1 node system is already

optimized, and its optimized values are to be returned to its

parent (here, node A); (2) the subsystem needs to be

optimized by first optimizing its children (subsystems A.1.1

and A.1.2), followed by submitting a job to minimize

objective function of subsystem A.1; (3) the optimization of

the subsystem failed. The first case is handled by sending a

message to the next service in the routing slip of the event

that triggered this planning activity. The second case is

processed by sending two messages, one with “process

A.1.1” and “optimize A1,” and the other with “process

A.1.2” and “optimize A1” added to the top of the routing

slip. The last case results in sending a Fault message, which

triggers an autonomic recovery attempt. In each case, one or

more messages are sent to the bus, and the router delivers

them to the recipient following the simple algorithm shown

in Figure 5.

Services labeled “process A.1.1” and “process A.1.2” are

nodes in the workflow, and they are implemented in the

same way as discussed for node A.1 (recursion). The

“optimize A1” is actually a composite service: it aggregates

(through updating of a routing slip) services for the creation

of the job descriptor, the job input files, and job execution,

which was discussed in detail above. Each of these services

may fail, which results in sending a fault message that is

appropriately routed for autonomic recovery (for clarity, this

is not shown in Figure 6). The “optimize A1” is trigged by

two independent events: successful completion of either

“optimize A.1.1” or “optimize A.1.2” service (aggregator

[22] pattern). In our implementation, the message store was

used to correlate the events. When one of the children nodes

sends the message, the store is searched for the message

from the other child. If it is not found, the service exits

without sending any events. For scientific fidelity, it is

paramount that the messages from the children nodes are

delivered to the “Optimize A.1” if, and only if, their results

are trustworthy. Similarly, the decision whether or not

subsystem A.1 has been optimized is based on the

trustworthy result of “optimize A.1.”

The system is easy to implement and can be deployed

gradually, in small steps. The critical first step is to

implement the ESB router capable of routing messages

according to the routing slip embedded in the messages and

of detouring the fault messages. Initially, this custom router

preserves the original functionally of the system; for

example, a fault the message is routed to the requestor

unchanged since no corresponding planner is defined in the

registry. Then the autonomic behavior can be added by

deploying planners and process manager services, one by

one, as experience with detecting failures and devising

recovery procedures is accumulated. Furthermore, the self-

healing property of the system can be progressively

enhanced by adding “stand-alone” monitors which add to the

message store updates on the status of other system

resources that influence the reliability of the system.

It is important that the implementation of the services

Figure 6: Autonomic execution of a multistep optimization

workflow node

TOMASZ HAUPT, NITIN SUKHIJA, IGOR ZHUK: AUTONOMIC EXECUTION OF COMPUTATIONAL WORKFLOWS 971

accommodate processing of policy documents that define the

criteria for the determination of trustworthiness of results

and specify the corrective actions. Following these

guidelines enables updates of the policies at runtime that

result in behavioral changes of the system, leading to a truly

adaptive autonomic system.

VI. SUMMARY

In this paper we have described an autonomic

environment for execution of dynamic, rule-base

computational workflows. This environment not only makes

the best effort to recover from faults, it also guarantees the

scientific fidelity of the results, in particular, that the final

outcome of complex computations are not distorted by

erroneous information resulting from unreported system-

and/or application-level failures of the workflow and/or its

components.

The autonomic behavior has been achieved by harnessing

Service-Oriented Software Engineering, most notably, by

employing the Enterprise Service Bus, exploiting the Java

Business Integration specification, and applying Enterprise

Integration Patterns. By defining a set of very simple rules

that apply to autonomous, loosely coupled services, we have

generated a very complex autonomic behavior involving

iterative, and possibly recursive, sequences of service

invocations, thus mimicking biological systems. Scientific

fidelity is achieved by enforcing service responses that meet

criteria specified by configurable policies.

Failures to meet the criteria are caught as exceptions that

result in firing fault messages. The custom ESB router,

without any knowledge of the workflow’s business logic of

the workflow, detours all fault messages to specialized

services that, based on the signature of the fault, plan

corrective actions through inserting routing slips to

messages. Those multiple planner services are independent

of each other, each addressing specific problems and making

decisions based on the policies defined in the configuration

files that can be modified (adapted) at run time.

REFERENCES

[1] Jia Yu and Rajkumar Buyya, A Taxonomy of Scitific Workflow

Systems for Grid Computing, Special Issue on Scientific Workflows,

SIGMOD Record, ACM press, Volume 34, Number 3, 2005.

[2] E. Deelman and Y. Gil. “Managing Large-Scale Scientific Workflows

in Distributed Environments: Experiences and Challenges,”

Proceedings of the Workshop on Scientific Workflows and Business

Workflow Standards in e-Science, The Second IEEE International

Conference on e-Science and Grid Computing, Amsterdam, The

Netherlands, December 4-6, 2006

[3] J. O. Kephart, D. M. Chess, “The Vision of Autonomic Computing,”

Computer 36, 1 (2003), pp. 41-50.

[4] M. Parashar, “Autonomic Grid Computing: Concepts, Requirements,

and Infrastructure,” in “Autonomic Computing”, M. Parashar, S.

Harriri, (Eds), CRC Press 2007

[5] E.H. Miller, N.F. Michelena, M.K. Kim, and P.Y. Papalambros, “A

System Partitioning and Optimization Approach to Target Cascading,”

Proceedings of the 12th International Conference on Engineering

Design, Munich, Germany, 1999.

[6] M.K. Kim, N.F. Michelena, P.Y. Papalambros. P.Y., and T. Jiang,

“Target Cascading in Optimal System Design,” Journal of

Mechanical Design, Vol. 125, pp. 474-480 2003.

[7] T. Haupt, A. Voruganti, A. Kalyanasundaram, and I. Zhuk. 2006.

Grid-Based System for Product Design Optimization. In Proceedings

of the Second IEEE International Conference on e-Science and Grid

Computing (E-SCIENCE '06). IEEE Computer Society, Washington,

DC, USA, 46-52.

[8] Globus Toolkit 2.4, Resource Specification Language (RSL):

http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html

[9] Globus Toolkit 2.4, Globus Resource Allocation Manager (GRAM):

http://www.globus.org/toolkit/docs/2.4/gram/

[10] H.J. La, J. S. Bae, S.H. Chang, S. D. Kim, “Practical Methods for

Adapting Services Using Enterprise Service Bus,” ICWE 2007, LNCS

4607 (L. Baresi, P. Fratenalli, G.J. Houben, eds.), pp. 53-58, 2007

[11] Y. Maurel, A. Diaconescu, P. Lalanda, “CEYLON: A Service-

Oriented Framework for Building Autonomic Managers,” in

Proceedings of the 2010 Seventh IEEE International Conference and

Workshops on Engineering of Autonomic and Autonomous Systems

(EASE '10). IEEE Computer Society, 2010, pp 3-11.

[12] M. Papazoglou, P. Traverso, S. Dustar, F. Leymann, “Service

Oriented Computing: State of the Art and Research Challenges,” IEEE

Computer, Vol. 40 (2007), Issue 11, p. 38

[13] Leymann, F., “The (Sevice) Bus: Service Penertrate Everyday Life,”

3
rd

 Intl. Conf. on Service Oriented Computing ISCOC’05,

Amsterdam, the Netherlands, Dec. 13-16, 2005, LNCS 3826

Springler-Verlag Berlin Heidelberg 2005

[14] D. Chappel, “Enterprise Service Bus: Theory and Practice,” O'Reilly

Media, 2004

[15] F. Leymann, “Combining Web Services and the Grid: Towards

Adaptive Enterprise Applications,” Proc. CAiSE/ASMEA’05, Porto,

Portugal, June 2005

[16] Java Community Process, JSR 208 “Java Business Integration,”

http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html

[17] B.A. Christudas, “Service Oriented Java Business Integration:

Enterprise Service Bus integration solutions for Java Developers,”

Packt Publishing, 2008.

[18] P. Martinez-Julia, D.R. Lopez, and A.F. Gomez-Skarmeta. 2010. The

GEMBus Framework and Its Autonomic Computing Services. In

Proceedings of the 2010 10th IEEE/IPSJ International Symposium on

Applications and the Internet (SAINT '10). IEEE Computer Society,

Washington, DC, USA, pp. 285-288

[19] L. Gonzalez and R. Ruggia. 2010. Towards dynamic adaptation within

an ESB-based service infrastructure layer. In Proceedings of the 3rd

International Workshop on Monitoring, Adaptation and Beyond

(MONA '10). ACM, New York, NY, USA, pp. 40-47.
[20] X. Mi, X. Tang, X. Yuan, D. Chen, and X. Luo. 2009. Multifactor-

Driven Hierarchical Routing on Enterprise Service Bus. In

Proceedings of the International Conference on Web Information

Systems and Mining (WISM '09), Wenyin Liu, Xiangfeng Luo, Fu Lee

Wang, and Jingsheng Lei (Eds.). Springer-Verlag, Berlin, Heidelberg,

pp. 328-336.

[21] X. Bai, J.Xie, B. Chen, and S. Xiao. 2007. DRESR: Dynamic Routing

in Enterprise Service Bus. In Proceedings of the IEEE International

Conference on e-Business Engineering (ICEBE ’07), Hong Kong, pp.

528-531.

[22] G. Hohpe, B. Woolf, “Enterprise Integration Patterns,” Addison-

Wesley, 2004.

[23] Apache ServiceMix, http://servicemix.apache.org/home.html

[24] Business Process Execution Language (BPEL),

http://www.ibm.com/developerworks/library/specification/ws-bpel/

972 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

