
Automated Conversion of ST Control Programs to
Why for Verification Purposes

Jan Sadolewski
Rzeszów University of Technology

ul. W. Pola 2, 35-959 Rzeszów, Poland

Email: js@prz-rzeszow.pl

Abstract—The paper presents a prototype tool ST2Why, which
converts a Behavioral Interface Specification Language for ST
language from IEC 61131-3 standard to Why code. The specifica-
tion annotations are stored as special comments, which are close
to implementation and readable by the programmer. Further
transformation with Why tool into verification lemmas, confirms
compliance between specification and implementation. Proving
lemmas is performed in Coq, but other provers can be used as
well.

I. INTRODUCTION

I
N SOME cases control programs should be formally

proved before deployment. Large control systems are usu-

ally programmed in IEC 61131-3 standard languages, such

like graphical: LD (Ladder Diagram), FBD (Function Block

Diagram), SFC (Sequential Function Chart), and textual: ST

(Structured Text), IL (Instruction list). ST language is the most

flexible, similar to Pascal, and it is often used by experienced

programmers. It allows to declare function, function blocks

and programs, called POU (Program Organization Units),

which are components of the control application.

Contemporary program developing often uses design by

contract method [8] and Behavioral Interface Specification

Languages. JML (Java Modelling Language) [6] is a compre-

hensive example for such languages which uses the method.

Such approach can be found in similar tools like Caduceus [5]

and Frama C [1] for ANSI C language and in Krakatoa [7]

which is also for Java.

The paper presents a proposition of Behavioral Interface

Specification Language based on JML for ST language, and

shows formal verification of compliance between specification

and implementation. It employs multi-target open-source soft-

ware Why [4] for generating Dijkstra Weakest Preconditions

[3], and open-source Coq [2] as backed prover. The work

presents an improved ST code verification proposed in [13],

[14], which omits translation to ANSI C code and involving of

Caduceus. Direct conversion from ST language to Why uses

preliminary version of ST2Why, which supports functions,

function blocks and programs declarations, but limits ST code

to a subset composing of assignments, if statements, while

loops and other function block calls.

Verification presented in paper [17] uses embedding of

ST constructs in HOL (Higher Order Logic) terms. Function

The research has been supported by MNiSzW under the grant N N516
415638 in years 2010–2011

block is visible as functional program written in HOL terms,

where time is treated like additional input variable (parameter),

which stays constant in each round. It main weakness is

keeping requirements in LTL (Linear Temporal Logic), so the

verification is not simple to use by engineers. Developing

user friendly language for storing specification annotations

conformed with known standards (like JML) can improve

applying of formal methods by the programmers.

The paper is organised as follows. Current state of verifica-

tion of ST programs, and the proposition of improved version

are presented in Sec. II. Next section briefly presents useful

constructions of JML language adapted to ST and useful in

control programs. Section IV describes direct conversion of ST

code with specification annotations to Why. Code conversion

is performed in three aspects: translating interface POUs into

Why language functions, translating POU code into equivalent

form, and translating annotations into Why form. Section

V presents verification process by example of D flip-flop.

The verification is processed half-automatically with prover

standard tactics. Lemmas proofs are presented as tactic trees,

which describe the proving method.

II. VERIFICATION CONCEPT

Freely available software such as Why and Coq allow to be

used as programs provers. These tools can prove compliance

between specification and implementation and help localising

mistakes and side effects of developed programs. Specifica-

tions of such programs are stored in annotations located in

Why code. For ST language the specification can be saved in

special comments (see sec. III), which are invisible for other

ST compilers.

One of current verification method is the conversion of

ANSI C code
with annotations

Why program
Caduceus
conversion

Correct
program

Why
generator

Verification
lemmas

ST code with
annotations

STVCGen

conversion

Coq

prover

Fig. 1. Current verification of ST language control programs

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 849–854

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 849

Why program

Correct
program

Why

generator

Verification
lemmas

ST code with
annotations

ST2Why

conversion

Coq

prover

Fig. 2. Improved verification of control programs

annotated ST code to ANSI C and further conversion by

Caduceus program into Why language (Fig. 1). In next step

Why generator produces verification lemmas in Coq format.

Lemmas can be proved half automatically with tactics. If all

lemmas are proved then correctness of the code is confirmed.

The verification method uses intermediate form in ANSI C

code, which is suitable for small systems. The main weakness

of the approach is that one of the most popular ST types

– BOOL has not corresponding equivalent, and it must be

replaced with larger type like char. Operations on char type

are treated by Caduceus like operation on numerical values.

It limits access to well known laws on Boolean values like

de Morgan Laws, and double negation law. The only one

method to prove such numerical lemmas in Coq is using

Presburger Arithmetic, but as referenced in [16] the method is

slow and may explore many redundant cases. To simpler prove

the verification lemma, specification clauses required special

processing by the designer, for example clause inp1=TRUE,

need to be stored as inp1<>FALSE. Introducing direct ST

translation to Why code (Fig. 2) with ST2Why tool, such

disadvantages can be avoided.

The Why language has build-in three types: bool, real,

and int which are sufficient for typical programming. Ad-

ditional user types can be declared, if necessary, with basic

arithmetic operations on them. Why contains a collection of

libraries which are contributed into provers at install time.

They are used as support of verification lemmas and, in some

standard cases, can made proving simpler and faster.

III. BEHAVIORAL INTERFACE SPECIFICATION LANGUAGE

FOR ST

The main purpose for introducing the BISL language is

to define behaviour of parts of developed code. Software

developing with design by contract use such languages, which

can be seen in Eiffel [9], Why, and JML code. The first two

languages use build-in constructions for storing specification

clauses, the last one uses special kind of comments beginning

with ’@’ character. Such method is also used for storing

specification in ST language.

Specification clauses are stored as assertions. An assertion is

a part of code composed of conditional Boolean expression,

which evaluated at time and order of its execution must be

satisfied. In design by contract two assertions are commonly

used: requires to denote preconditions, and ensures for

postconditions. These assertions must be kept near developed

TABLE I
ADAPTATION OF JML IN ST LANGUAGE

Clause type Standard JML ST adaptation Scope

Assertions
assert assert instruction
ensures ensures: local
requires requires: local

Localise \at \at or at instruction
modifiers \old \old instruction

Quantifiers
\exists \exists mixed
\forall \forall mixed

Invariant invariant invariant: instruction

Declarations

label label: instruction
logic logic: global
ghost ghost: local
predicate predicate: global
axiom axiom: global

Function return
\result

\result or
local

value function_name

Operations
set set: instruction
assigns assigns: local

W-F iteration variant variant: instruction

code, as special comments like mentioned above. They express

conditions, which must be satisfied when given subroutine is

called and guaranteed at its termination.

Function blocks and programs from IEC standard are similar

to lightweight Java objects, so using JML as a base of BISL for

ST seems motivated. It is natural that only some subset of JML

standard can be applied in control programs, so other features

of that will not be described. The adaptation of JML for ST

language, called assertional extension, is presented at Tab. I

and grouped according to clause types. Each clause has its own

affection scope. Scope instruction means that the clauses can

be placed when instructions (or sometimes expressions) are

expected. Scope local means clauses defined for whole POU,

and global for whole project (configuration in IEC standard).

Mixed denotes clause whose use depends on context.

The adaptation of JML for ST has been described in more

details in [13]. Verification clauses, with different scope than

global, are located inside corresponding unit. For example

annotation clause of function block is written after identifier

with the name of the block. The clause must contain at

least ensures section, but often involves requires and

assigns – especially when annotated POU is a program

which modifies global variables. The \result or function

name can be used in ensures section to access function

return value. Modifier \old represents variable value at

beginning of execution, and \at at specified location in the

code which can be declared with label clause.

Additional functions not appearing in the code can be

obtained with logic clause, similar local variables for speci-

fication can be defined by ghost clause and operated by set

clause. The predicate declares additional logic function

which returns Boolean value. The axiom generates new

axiom which can be used by the prover. Quantifiers appear

in declarations of loop invariants, declared with invariant

clause. To examine if loops are well founded variant clause

is employed.

850 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

IV. CONVERSION ST TO WHY

As indicated in Sec. II conversion POUs from ST language

into Why form is needed to use open source tools for pro-

gram verification. The ST2Why tool provides the conversion,

which is based on ST compiler included in CPDev package

[12]. The parser is built according to top-down scheme with

syntax-directed translation. It recognises of ST code shape

and produces correspond Why code. In addition to ST code

translating, the parser also collects annotations and emits them

into valid positions of Why language.

Code translation is performed in three aspects:

• converting POU interfaces,

• converting body code,

• converting specification.

The first aspect concentrates on POUs translating into Why

language functions. If POU to be converted is a function, then

translation seems obviously, except return value, which must

be declared locally to conform to the code. Situation is more

complicated with function block or program. Function block

is translated into Why function in the following way:

• block inputs are converted into function parameters,

• block outputs become function parameters, but declared

as reference,

• local variables are also declared as reference parameters.

An ST program is translated into Why function as follows:

• global variables are converted into global reference pa-

rameters,

• local variables become function parameters, but declared

as reference,

• local function block instances are ignored, but their ref-

erence parameters are also declared like local variables.

Such interfaces conversion is illustrated in Fig. 3. The

IEC 61131-3 defines 20 standard data types, but currently

the conversion process is limited for the basic ones BOOL,

INT, REAL and TIME. Boolean type is translated into bool

type in Why and floating point type REAL is translated into

single real type. Due to early developing stage of ST2Why

converter, all remaining fixed point types are translated into

single int type in Why.

The second aspect is to convert instruction code into valid

Why form. Most of Why common arithmetic operations are

available as functions with type name and operation name.

As seen at Fig. 4a the sum calculation of two integer values

involves int_add function. Boolean expressions (Fig. 4b)

can be converted without complications, like the if statement

from Fig. 4c. More effort is necessary with while loop

conversion. The Why language is functional, so loops can

work only on pointers, which are forbidden in ST language. It

requires redeclaration as pointers of those variables, which are

used in condition expression and are assigned in loop body.

Currently none of the remaining loops in ST language (FOR,

REPEAT, etc.) are supported.

Calls of function blocks require more effort, because values

of local and output variables from previous execution cycle

must be preserved. As shown before in Fig. 3, the program

FUNCTION name : REAL
VAR_INPUT
 X1 : INT;
 X2 : BYTE;
END_VAR
VAR p : INT; END_VAR

...

END_FUNCTION

let name =
fun (X1:int)(X2:int) -> (
 let p = ref 0 in
 let return_name =
 ref 0.0 in

 ...

 !return_name
)

ST declaration Why code

F
u
n
c
ti
o
n

FUNCTION_BLOCK fbnme
VAR_INPUT
 X1 : INT;
 X2 : BYTE; END_VAR
VAR_OUTPUT
 Y1 : REAL;
 Y2 : DWORD; END_VAR
VAR p : INT; END_VAR

...

END_FUNCTION_BLOCK

let fbnme =
fun (X1:int)(X2:int)
(Y1:real ref)(Y2:int ref)
(p: int ref) ->
(

 ...

 void
)F

u
n
c
ti
o
n
 b

lo
c
k

PROGRAM pname
VAR_GLOBAL
 G1 : DWORD;
 G2 : REAL; END_VAR

VAR u : INT;
 d : fbnme;
END_VAR

...

END_FUNCTION_BLOCK

parameter G1 : int ref
parameter G2 : real ref

let pname =
fun (u:int ref)
(d_Y1:real ref)
(d_Y2:int ref)
(d_p:int ref) -> (

 ...

 void
)

P
ro

g
ra

m

Fig. 3. Interface conversion of POU from ST to Why language

IF bexpr
1
 THEN

 instr
1

ELSE
 instr

2

END_IF

if bexpr
1
 then

(instr
1
)

else
(instr

2
)

ST construction Why code

bexpr
1
 AND bexpr

2

bexpr
1
 OR bexpr

2

NOT bexpr
1

bexpr
1
 && bexpr

2

bexpr
1
 || bexpr

2

bool_not (bexpr
1
)

dexpr
1
 + dexpr

2

fexpr
1
 – fexpr

2

expr
1
 OP expr

2

int_add (dexpr
1
) (dexpr

2
)

real_sub (fexpr
1
) (fexpr

2
)

type_fun (expr
1
) (expr

2
)

a)

b)

c)

WHILE bexpr
1

DO
 instr

1

END_WHILE

while bexpr
1

do
(instr

1
)

done

d)

Fig. 4. ST source code to Why conversion

pname uses a hypothetical function block fbname with

the instance called d, so additional inputs (beginning with

d_) have been also declared. Call of the instance d in ST

code and the translation to Why is presented in Fig. 5.

The single variable d does not exist here, but it is replaced

by corresponding arguments of the converted program. Such

approach is necessary to combine complex data type, like

function block interface, from elementary data types.

JAN SADOLEWSKI: AUTOMATED CONVERSION OF ST CONTROL PROGRAMS TO WHY FOR VERIFICATION PURPOSES 851

d(X1:=u, X2:=DWORD_TO_BYTE(G1)); fbnme (!u)(!G1)(!d_Y1)(!d_Y2)(!d_p)

Fig. 5. Function block call conversion

The third aspect of conversion it to change annotations

describing a POU in ST language into equivalent form in Why

with necessary modifications. Conversion of annotations affect

shape and position of its source. The REQUIRES clause is

enclosed in {} brackets, with removed introducing word and

following colon, and moved to position after the arrow (->)

sign. Finally, separating semicolon is removed (Fig. 6). The

ENSURES clause is moved after function implementation, and

similar shape modification are performed.

FUNCTION_BLOCK fbnme
(*@REQUIRES: X1>0;
ENSURES:
 Y2=\old(P)+X1 AND
 Y1=\old(Y1)+1; *)
VAR_INPUT
 X1 : INT;
 X2 : BYTE; END_VAR
VAR_OUTPUT
 Y1 : REAL;
 Y2 : DWORD; END_VAR
VAR P : INT; END_VAR
...

let fbnme = fun (X1:int)
(X2:int)(Y1:real ref)
(Y2:int ref)(p: int ref) ->
{ X1 > 0 }

(

 ...

 void
)

{

 (Y2=(!P@)+X1) &&

 (Y1=(!Y1@)+1)

}

Fig. 6. Converting ST assertional extension

The composition of those aspects produce coherent Why

code, which can be handled by Why tool to produce verifica-

tion lemmas.

V. VERIFICATION EXAMPLE

The verification example will be presented on developing

of D flip-flop. It is a elementary block in control applications,

which preserves state of one electric wire. Its symbol and time

plot are given at Fig. 7a and Fig. 7b.

DFF

D

>CLK

Q

Q
i

Q
i-1

CLK

Da) b)

Fig. 7. D flip-flop; a) symbol, b) time plot

The design by contract process begins from describing

function block requirements by the designer. As it can be seen

at Fig. 7b, the output signal Q is only changing when raising

edge on CLK input is detected, otherwise output signal remains

unchanged. Detecting raising edge requires additional variable,

here called PCKL, which holds value CLK from previous

program cycle. It leads to following ST code interface:

FUNCTION_BLOCK DFF

(*@ENSURES:

((CLK=FALSE) ==> (Q=\old(Q))) AND

((\old(PCLK)=FALSE AND CLK=TRUE)

==> (Q=D)) AND

((\old(PCLK)=TRUE AND CLK=TRUE)

==> (Q=\old(Q))); *)

VAR_INPUT D : BOOL; CLK : BOOL; END_VAR

VAR_OUTPUT Q : BOOL; END_VAR

VAR PCLK : BOOL; END_VAR

END_FUNCTION_BLOCK

Analysing CLK and PCLK input states, one can notice that

only CLK equal to false determines unchanging the Q. It

produces following part of ensures expression CLK=FALSE

==> Q=\old(Q). Second part \old(PCLK)=FALSE

AND CLK=TRUE ==> Q=D can be taken from

specification in textual form. The third part is taken

from remaining input states which have not been described,

so it is \old(PCLK)=TRUE AND CLK=TRUE ==>

Q=\old(Q). Because all of the inputs are fully qualified in

the specification, and work of the D flip-flop is not restricted,

then REQUIRES clause remains empty.

In the second stage of the design by contract the developer

produces an implementation from the time plot according to

given interface and specification:

IF (NOT PCLK) AND CLK THEN Q := D; END_IF;

PCLK := CLK;

and transforms them with rules mentioned in Sec. IV, or

automatically with ST2Why tool into following format:

let dff = fun (D:bool)(CLK:bool)

(Q:bool ref)(PCLK:bool ref) -> {}

((if ((not !PCLK) && (CLK))

then (Q := D) else void);

PCLK := CLK)

{ (CLK=false -> Q=Q@) and

(PCLK@=false and CLK=true -> Q=D) and

(PCLK@=true and CLK=true -> Q=Q@)

}

From that form after Why usage two verification lemmas are

obtained:

Lemma dff_po_1:forall(D CLK PCLK Q:bool),

forall (HW_1: PCLK=false /\ CLK=true),

forall (Q0: bool), forall (HW_2: Q0=D),

forall (PCLK0: bool),

forall (HW_3: PCLK0 = CLK),

(((CLK=false -> Q0=Q)) /\ ((PCLK=

false /\ CLK=true -> Q0=D)) /\

((PCLK=true /\ CLK=true -> Q0=Q))).

Lemma dff_po_2:forall(D CLK PCLK Q: bool),

forall (HW_4: PCLK=true \/ PCLK=false

/\ CLK=false), forall (PCLK0: bool),

forall (HW_5: PCLK0=CLK),

(((CLK=false -> Q=Q)) /\ ((PCLK=false

/\ CLK=true -> Q=D)) /\

((PCLK=true /\ CLK=true -> Q=Q))).

The proofs of the lemmas can be performed in Coq via a set

of tactics. The tactic is a prover command which:

• transforms lemma into hypotheses and goals, or

• splits goal into subgoals, or

• indicates agreement between hypothesis and goal, or

• contradicts two hypotheses.

Verification begins from the whole lemma which is used as

goal in empty context. As the first lemma dff_po_1 is taken

for proving. Tactic intros introduces new hypotheses from

852 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

intros
split

decompose [and] HW_1

intro

rewrite H1 in H
absurd (true=false)

auto with * assumption

split

intro

assumption

intro

decompose [and] HW_1
decompose [and] H

rewrite H2 in H0
absurd (true=false)

auto with * assumption

Fig. 8. Coq proof of Lemma 1

goal to context (Fig. 8). The goal will change into three con-

junctions, so split tactic is necessary to divide goal into two

subgoals. The first subgoal contains implication, so intro

tactic is used to introduce H0 hypothesis. Further it could

be observed that part of hypothesis HW_1 (CLK=true) is in

contradiction with H (CLK=false). It leads to the following

method: changing the one of the occurrences of variable with

opposite value and proving as hypotheses contradiction. To

extract a part of the hypothesis with conjunction, decompose

tactic is used. It produces additional hypotheses in context

with separated parts. Value from H1 hypothesis is applied

into H with tactic rewrite H1 in H. The hypothesis H

become contradiction (true=false), so tactic absurd

(true=false) is applied. Tactic absurd produces also

two subgoals, fist with negated contradiction, and second with

the contradiction itself, so auto with * proves the first one

(true<>false), which is handled automatically by internal

libraries, and assumption proves the second one, due to

existing such hypothesis in context.

After that prover returns into subgoal which was left after

the first split command. Because it is also conjunction,

so another split is necessary. Current first subgoal can

be proved with intro and assumption which matches

goal with HW_2 hypothesis. In the last one goal after intro

another contradiction in hypotheses can be found. Variable

PCLK from part of hypothesis H cannot be equal to true and

also equal to false in part of HW_1 hypothesis. It leads to

mentioned verification method with tactic absurd. Detailed

proof of lemma dff_po_ is presented as tree in Fig. 8. To

obtain a list of proving commands for Coq simple in-order

tree walk (begin from root node, then its left child tree, and

next right child tree) should be performed.

intros
split

intro

absurd (true=false)

auto with * assumption

split

intro intro

trivial

trivial

decompose [and] H
decompose [or] HW_4

rewrite H0 in H2 decompose [and] H2
rewrite H1 in H4
absurd (true=false)

auto with * assumption

Fig. 9. Coq proof of Lemma 2

The second lemma (dff_po_2) can be proved in similar

way. The proof begins from intros and split tactics

(Fig. 9). The first subgoal is a implication, so intro tactic

is applied. After that goal reduces to Q=Q form, which is

very simple and can be proved with trivial tactic. The

second subgoal is still conjunction so another split is

required. After introducing new hypothesis H with intro

tactic, current first subgoal have contradicted hypotheses. First

decomposition of first hypothesis is performed with tactic

decompose [and] H, and due to disjunction in HW_4 the

tactic decompose [or] HW_4 is used. The last one tactic

splits goal for two subgoals, each one with separated part of

disjunction as hypothesis. In current first subgoal assignment

with rewrite tactic is needed and absurd command can

be applied. In the second subgoal additional decompose

is necessary before rewriting, and absurd applying. The

remaining subgoal can be proved exactly like the first one

with intro and trivial tactics.

Proving all verification lemmas confirms compliance be-

tween specification and implementation. Developed code for-

mally satisfies designer guidelines, and the contract has been

fulfilled.

Presented verification tactics are not comprehensive for

all programs, especially when program contains integer or

floating point variables. For that lemmas more complex tactics

such like omega, ring and Fourier are needed. Complete

reference for all build-in tactics in Coq can be found in [16]. It

may be helpful for an inexperienced users, but in some cases

intuition tactic may prove the goal automatically or to

present reason for which current goal cannot be proved.

VI. SUMMARY

The method of proving programs written in ST language

with BISL extension has been presented. The language ex-

tension is stored as special comment inside the function,

function block or program being verified. It accords to JML

language which is commonly used in design by contract

developing approach. Conversion with ST2Why and Why

tools produce verification lemmas. Verification of compliance

between specification and implementation can be performed

in a few provers, but here only simple build-in Coq tactics

have been used. Other provers like PVS [11] or Mizar [10]

can be also used, it requires only one additional parameter in

Why call, which will change the output shape of lemmas.

Future work will concentrate on transforming remaining

clauses of ST language into Why code (like REPEAT and

FOR loops, CASE statements), and on introducing remaining

data types into Why, conformed with ST language types. It

may require to develop additional Why libraries, where their

logical definitions will be stored.

REFERENCES

[1] P. Baudin, P. Cuoq, J. Ch. Filliâtre, C. Marché, B. Monate, Y. Moy, V.
Prevosto, “ACSL: ANSI/ISO C Specification Language”, http://frama-
c.cea.fr, 2011.

[2] Y. Bertot, P. Castéran, Interactive Theorem Proving and Program

Development, Springer-Verlag, Berlin Heidelberg, 2004.

JAN SADOLEWSKI: AUTOMATED CONVERSION OF ST CONTROL PROGRAMS TO WHY FOR VERIFICATION PURPOSES 853

[3] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall Inc., 1976.
[4] J. Ch. Filliâtre, “The Why verification tool. Tutorial and reference

manual”, http://www.lri.fr, 2011.
[5] J. Ch. Filliâtre, T. Hubert, C. Marché, “The Caduceus verification tool

for C programs”, http://caduceus.lri.fr, 2008.
[6] G. T. Leavens, A. L. Baker and C. Ruby, “JML: a Notation for Detailed

Design”, Behavioral Specifications of Businesses and Systems. 1999.
[7] C. Marché. “The Krakatoa verification tool for Java programs. Tutorial

and reference manual”, http://proval.lri.fr.
[8] B. Meyer, “Applying design by contract”, Computer, vol. 25, no. 10,

pp. 40-51, 1992.
[9] B. Meyer, Eiffel: the language. Object-Oriented Series, Prentice Hall

New York, 1992.
[10] M. Muzalewski, An outline of PC Mizar, Foundation Philippe le Hodey,

Brussels, 1993.
[11] S. Owre, N. Shankar, J. M. Rushby, D. W. J. Stringer-Calvert, “PVS

system guide”, SRI International, 2001.
[12] D. Rzońca, J. Sadolewski, A. Stec, Z. Świder, B. Trybus, L., “A Control

Program Developer”. XXI MicroCAD International Scientific Confer-
ence, Miskolc, March 2009, pp. 49-54.

[13] J. Sadolewski, Assertional extension in ST language of IEC 61131-3
standard for control systems dynamic verification, Pomiary Automatyka

Robotyka, no 2, pp. 305-314, 2011 (in Polish).
[14] J. Sadolewski, An introduction to verification of simple programs in

ST language with Coq, Why and Caduceus tools, Metody Informatyki

Stosowanej, vol. 19, no 2, pp. 121-138, 2009 (in Polish).
[15] J. Sadolewski, Conversion of ST Control Programs to ANSI C for

Verification Purposes, e-Informatica Software Engineering Journal, (in
review).

[16] The Coq Development Team, The Coq Proof Assistant Refer-

ence Manual, Ecole Polytechnique, INRIA, Universit de Paris-Sud,
http://coq.inria.fr, 2010.

[17] N. Völker, B. J. Krämer, “Modular Verification of Function Block Based
Industrial Control Systems”, in Proceedings of Joint 24th IFAC/IFIP

Workshop on Real-Time Programming and the 3rd International Work-

shop on Active and Real-Time Database Systems, Schloß Dagstuhl,
Germany, May 30th – June 2nd, 1999.

854 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

