

฀

Abstract— Specification languages play a central role in

supporting document engineering. We describe in this paper

how domain-specific languages, along with domain-specific

frameworks and generators, can support formal specification

and document rendering in directory publishing. With flexible

metamodel-based tools we have developed four languages for

the modeling of: (i) small advertisements, (ii) appropriate

documents, (iii) workflow control and (iv) layout patterns. The

paper provides a more detailed description of the first and the

third language, including a brief account of the language

interpreter, as well as code, document and application

generators. The presented approach enables, in a typical

document-centric system, specification of both static and

dynamic characteristics of the system on a high abstraction

level with domain-specific concepts. The concepts of

incremental document specification and incremental document

rendering have been introduced, in order to address the

problem of very frequent specification(s) refinements. The

expression power of the created languages is demonstrated

with a representative examples of document engineering

covering document content specification, workflow control and

application generation. All of the aforementioned languages

are integrated into a single meta-model, under the name of

DVDocLang which is, due to its simplicity, highly applicable

for user-driven conceptual modeling.

I. INTRODUCTION

ocument engineering (DocEng) represents a scientific

discipline which attempts to unify different types of

analyses and modeling perspectives, in order to aid various

specification, design and document implementation activities

and all the processes which, both, create and consume them

[2]. Formal document specification and rendering, as а part
of document engineering, comprise a research area in which

recent years two distinct directions have become prominent:

(i) the first, mostly presented in academic work adhere to

general approaches and solutions based on XML languages

and (ii) the second, emerging due to the need for the

production of large amounts of valid documents, is

characterized by adherence to the complex layout document

฀ A part of the research presented in this paper was supported by

Ministry of Education and Science of Republic of Serbia, Grant III-44010,

Title: Intelligent Systems for Software Product Development and Business

Support based on Models.

rules in specific business domain. These different directions

aim to solve document engineering work in two ways. One

side attempts to describe domain-specific problems by the

using General Purpose Languages (GPL) which has a rather

negative direct consequence creating the need for the

development of a multitude of applications, concentrated on

either one single problem or on a class of similar problems.

Others attempt to develop custom and complete frameworks

which would, to the greatest extent, simplify and automate

the document production process as well as significantly

improve their overall layout quality. This dichotomy,

existing between the approaches based on GPLs and those

based on domain-specific ones, is not only present in the

area of document engineering, but in software engineering in

general ([14],[15]). This topic is receiving more and more

attention in the academic community, with the methodology

tools necessary for solving the problematic aspects being

intensively (constantly) developed. In this paper, the authors

present their substantial long-term experience in the area of

Domain-Specific Modeling (DSM) [1], with the emphasis on

the development of the domain-specific framework. The

examples chosen for the illustration of DSM in document

engineering [2], have been acquired from the directory

publishing, and applied to the formal specification and

visualization of the documents. The problems being solved

are essentially diverse in nature, and are in direct relation to

a number of software engineering domains such as:

construction of formal languages, Domain-Specific

Languages (DSL), conceptual modeling, form-based analysis

(FBA) [3], user-driven modeling (UDM), model-driven

architecture (MDA) [16], service-oriented architecture

(SOA), rendering of the PDF and HTML documents and

generation of web applications. The first part of the paper

describes the domain and the domain-specific languages

(DSL), together with the analysis of the practical benefits of

their usage. The second part of the paper provides a brief

theoretical overview on incremental specification, and

rendering of documents and applications. Accordingly, the

paper is divided into seven sections: next Section introduces

the domain and provides a substantial example of a small

advertisements modeling language DVDocAd. This language

is constructed for the purpose of expressing topological and

semantic relations between the content units (CU) of small

advertisements [9]. Section three describes the workflow

control language DVDocFlow as well as the underlying

principle for modeling the business activities. Section four

D

Domain-Specific Modeling in Document Engineering

Verislav Djukić

Djukić – Software Solutions

Nürnberg, Germany

+49 (0)911 4313-686

info@dvdocgen.com

Ivan Luković

University of Novi Sad

Faculty of Technical Sciences

Novi Sad, Serbia

+381 (0)21 4852-445

ivan@uns.ac.rs

Aleksandar Popović

University of Montenegro

Faculty of Sciences,

Podgorica, Montenegro

aleksandarp@rc.pmf.ac.me

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 817–824

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 817

describes the notion of incremental specification, which can

be regarded as the greatest contribution to DSM in document

engineering. Section five describes the usage of the meta-

models and the repository to generate applications. Section

six provides an explanation of the domain-oriented libraries.

We conclude by describing our experiences of the practical

value of the presented approach as well as the plans for a

further course of action.

II. MODELING OF SMALL ADVERTISEMENTS

By using meta-concepts, as GOPRR (Graph, Object,

Property, Role and Relationship) employed in MetaEdit+

language workbench [4], any domain-specific language can

be constructed. We describe here one particular language

that is constructed towards the most important characteristics

of small advertisements (“small ads” for short). They include

the following:

 Small ad represents a collection of semantically based

content units (CU), predominantly textual;

 Optionally, small ad contains a picture, i.e. a logo;

 Small ad always contains at least one single name, either

the name of the company or the name of the person;

 Elementary-type content units are mostly limited to a

name, address, telephone number, E-mail, web address

and a logo;

 When displaying content units emphasis is placed on

topological relations, primarily on their sequence;

 Telephone number is always placed in the top right

corner, in continuation of a name or an address;

 In the course of element formatting, splitting of the text

for specific content types is not allowed;

 Alignment can be left, right, centered or combined

(applicable to each content unit separately);

 Specific content type can be assigned the leading role in

a logical unit, i.e. implicitly defined complex CU;

 Small ad can be comprised of a number of logical units.

The aforementioned characteristics can be described by

different languages. In this case, 2D graphics and the

following meta-concepts presented in Fig. 1 are employed:

 Object of the type “picture” (logo);
 Object of the type “textual contents” including subtypes:

“name”, “location”, “telephone number”, “street address
and number”, “E-mail” and “web address” (represented
by rectangles containing text within);

 Relations: “content line” (represented by an ellipsis with
three dots), “telephone connection” (represented by a

telephone symbol) and “content unit” (filled in circle);
 Roles: “is a part of content unit”, ”leading in line”,

“successor in line”, ”telephones in” and “tel. rings in”.
 Properties: ad height and width, logotype height, font

and text colour, alignment and leading symbol.

By employing MetaEdit+, within just one hour for middle

experience user, a new domain language has been

constructed and an example, presented in the Fig. 1, is

modeled. The tool provides graphical editors for the creation

of ad instances and checking mechanisms to validation the

specifications through given set of language rules. Such an

approach, to ad modeling, is inherently different from the

process of drawing in general-usage graphic tools. Hence,

what is achieved this way is that each advertisement becomes

a “pentaformat“ document [5]. It means that the document is

viewed as a 5D entity: content, structure, layout, meta-data

and behavior.

Fig. 1 Model of simple advertisement

The ad from Fig. 1 does not represent the final image a

user requires. It is not usual for relations and roles of ad

elements to be displayed explicitly. Instead, in the course of

rendering, the layout rules are interpreted in the way in

which the elements will unambiguously point to the type of

content and relation by their position, font, colour and

alignment. MetaEdit+ as a modeling tool was not primarily

employed here for the purpose of drawing small ads, but to

specify domain knowledge in a form of a DSL so as to

provide a validation of the created specifications and a

generation of special-purpose applications. Ad-production

interface can then completely rely on the rules of DVDocAd

language. Due to practical reasons, and for the purpose of

accelerating the modeling process, a textual language

equivalent - DVDocLang [6], has been created. Moreover,

the language in question can be integrated into arbitrary

framework much easier, and is quite suitable as a basic

interface for the end user. Transformation to and from the

graphic language is possible. We denote a statement created

by DVDocLang syntax, specifying the content, structure,

layout and behavior of the document as "logical script".

Example 1. A logical script that specifies content of the

advertisement from Fig. 1, is specified as follows:
<LOGO>7937,20
<NA>Djukic Verislav, priv.<PH>(0911)4313685
<NA>Office<PH>(0911)4313686
<ST>Gärtnerstr.<HN>17
info@djukic-soft.com

<IN>www.djukic-soft.com ฀

Knowledge about objects, relations, roles and layout is,

due to practical reasons, singled out and regarded as a part of

the document type definition. It is comprised of global

attributes (elements, logo_enabled, logical_fonts, width,

height, logo_params) and content unit attributes (POS,

 (0911) 4313-685

 (0911) 4313-686

17

 Office

Gärtnerstr.

 Djukic Verislav, priv.

 www.djukic-soft.com

 info@djukic-soft.com

 ...

 ...

 ...

818 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

GROUP, SYMBOL, FORMAT, FONT, LOG_FONT, ID

and ROLE) [6], as demonstrated in the following example.

Example 2: A logical script that specifies layout and type

definition of the advertisement from Fig. 1:

<TEMPLATE>=elements:(NA;Name),(ST;Street),
(HN;HouseNr),(PH;Phone),(IN;Inet),(EM;eMail)
<TEMPLATE>=logical_fonts:(s1;Tahoma,Bold;2;97
;2),(s2;Tahoma;2;97;2)
<TEMPLATE>=logo_enabled:true
<TEMPLATE>=width:40
<TEMPLATE>=height:50
<TEMPLATE>=logo_params:7937,center,20,false
<NA>=POS:new_line,GROUP:true,LOG_FONT:s1
<PH>=POS:con,GROUP:true,FORMAT:'2n|3n',...
<ST>=POS:new:line,GROUP:true
<HN>=POS:con,GROUP:true,LOG_FONT:s1
<IN>=SYMBOL:(SymbolFont;&H29),POS:new_line,
GROUP:false,LOG_FONT:s2
=SYMBOL:(SymbolFont;&H40),POS:new_line,

GROUP:false,LOG_FONT:s2 ฀

For the two, grouped (GROUP:true), content-unit types

differing in position (POS:new_line and POS:con) on a level

of appropriate instances, establishment of a relation “content
line” with the following roles – “line leader” and “adherent
in line” is permitted.

This way, the modeling of small ads is reduced to a

description of the structure and the content, based on a fairly

simple syntax. It is intuitively acceptable, and in agreement

with the expectations of the producer of small ads
1
. Fig. 2

shows previously specified ad, generated through

DVDocRender. This is a domain-specific document renderer

that interprets DVDocLang specifications and produces PDF

or HTML specifications, as well as images.

Fig. 2 Small ad generated by DVDocRender

In agreement with the DSM approach, the first step was the

construction of small ad modeling language. Subsequent

steps encompass the process of making or integration of

domain-specific libraries, used for interpreting and rendering

of advertisement documents. Grammar rules and templates

are generated with the assistance of MERL [4], the reporting

language of MetaEdit+. This report serves as an entry point

for automatic parser generation. Such instance and type

specifications of small ads are sufficient for generating other

specification varieties, e.g. in SGML, XSL-FO, HTML,

DVDocLang and other formats. Furthermore, such a

description of relations between objects is sufficient for

1 Successfully applied in production of ads in ten countries.

pattern construction which is employed for advertisement

structure validation, i.e. validation of documents [7].

Capabilities of the document generator were discussed in

detail in the comparative analysis of the concepts and

characteristics of XSL-FO and DVDocLang provided in [8].

In the case of the ad from Fig. 2, our document generator is

even more than forty times faster [10] than the FOP renderer

[13] accepting XSL-FO specifications as the input.

III. WORKFLOW CONTROL LANGUAGE

The fact is that a number of renowned workflow control

systems, such as Bonita, JWT, Alfresco et.al. exist. Still,

they do not provide a solution to the problem of parallel

refinement of the document layout and business process

models. Incremental specification by means of a simple DSL

unifyinng both activities, together with the incremental

rendering, is seen as a prerequisite for the building of the

software system in which the progress in each of the

activities is documented by a valid document instance. This

is the exact reason why we have constructed a new language,

by employing MetaEdit+. We describe in this section

DVDocFlow – a specific language used for workflow control

as well as for synchronization of parallel activities. It is

employed for the description of the dynamic characteristics

of the system, i.e. document behavior. This represents one of

the dimensions of the previously mentioned “pentaformat”.
Typically the production of small ads is not insular, but is a

part of more complex activities such as sending of offers,

error correction in ads and conclusion of the advertising

contracts. The analysis of the documents, in which small ads

represent certain content units, pointed out to two important

facts: (i) the state of an ad affects the state of the document it

is a part of and (ii) collection of potential states of the

documents depends on the overall state of all content units,

and transitional rules. This collection of states and

transitions, which we refer to as the document life cycle,

varies depending on the concrete production model. In

addition, it is indirectly determined by the degree of

automation of the production process. Accordingly, our main

goals in the course of constructing a new language is that it

should provide a solid foundation for the description of

different production models as well as that the documents

which did not yet reach their end state can “respond” to the
change of a production model. It is not necessary for a

concrete system to possess a workflow engine (WFE).

Knowledge of the life cycle, built in each document instance,

can completely replace the WFE. Incremental specification

and rendering are viewed as a domain-specific solution, used

for realization of the specification and tracing of the

document behavior. It is presented in Section 5 in more

detail.

In Fig. 3 we present an example of an offer-production

model, specified in DVDocFlow. In the course of language

creation process for DVDocFlow the same meta-concepts

VERISLAV DJUKIC, IVAN LUKOVIC, ALEKSANDAR POPOVIC: DOMAIN-SPECIFIC MODELING IN DOCUMENT ENGINEERING 819

(GOPRR) have been used, as in the case of DVDocAd. The

DVDocFlow meta-concepts and symbols are:

Objects:

 Document states: , , ;

 Activities: , , ;

 Content units (Complex, Logo): , ;

 Template: ;

 Document generator: and pattern: .

Relations and included roles:

 Increment of a state: (“Sets into a specific state”,
“Comes with a content unit”);

 Layout definition: (“Preferred for document”,
“Document contains content unit”)

 Pattern based: (“Template uses a pattern”,
“Pattern for document templates”);

 Activity states: (“State from an activity”, “Sends to

state”, “Visual repres. of progress in PDF format”); and

 Synchronization action: (“Waits an activity to

end”, “Request accepted”).
The overall number of concepts and properties available

in DVDocFlow is much greater, but we explained here just

those ones necessary to introduce our production model in

brief. Aside from the explicitly described concepts, for

modeling and rendering documents the following is also

important:

 Content units, their layout included, are linked to a

specific role in a real system;

 In each state, except for the final, a specification

increment can be joined to a document instance. It can

alter the life cycle independently from the previously

defined one, for the type instance is a part of;

 All the changes, in a real system, are documented by

concrete document instances in PDF, that can be

generated for any state of activity;

 From the specification of dynamic characteristics,

acquired from modeling tools, a code, which manages

document transitions, is generated;

 Relying on modeling infrastructure (repository, editors,

code generation language and API) application

prototypes are generated;

MetaCase

Offer

Empty document

Sender verified

Publisher verified

Receiver verified

Items filled

Price calculated

Logo produced

 Standard ads

produced

Document ready

Verification of

contractors

 A1

Logo production

 A3

Standard ad production

 A2

Verification of bank data

 A5

Offer items

 Sender

data

 Publisher

data

 Receiver

data

Price calculating

 A4

Bank info

Price data

 ((...))

 [[..]]

Fig. 3 Production model for "Offer"

820 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

 There exists a domain-specific editor that provides

specification of document types by drawing typical

instances and using available patterns for different types

of content units;

 UML activity and state diagrams are suitable for

specification of the document activities and states. Thus,

in DVDocFlow language, similar symbols are used for

the activities, states and transitions; and

 The main purpose of DVDocFlow language is to

provide modeling relations between the states of the

documents, content units, layout forms and activities in

which the appropriate content units are created.

Formal specification of a production model in

DVDocLang, expressed by the concepts which integrate

activities, states, layouts and behavior of the documents, is

an extension of incrementally oriented logical script, as

shown in Examples 1 and 2.

Example 3: A basic form of logical script for expressing

production model of document type “Offer”:

<STATE>Empty document
<CU>Script from validation of sender
<STATE>Sender verified
<CU>Script from validation of receiver
<STATE>Receiver verified
<CU>Script from validation of publisher
<STATE>Publisher verified
<CU>Script from logo production
<STATE>Logo produced
<CU>Script for simple ads, i.e. (1) and (2)
<STATE>Standard ads produced
<STATE>Items filled
<CU>Script from price calculating
<STATE>Price calculated
<CU>Script from verification of bank data

<STATE>Document ready ฀

Each element of a logical script, marked with tag <CU>, is

either a simple value or a complex content unit. In the case

of a complex content unit, it is related to a number of

different document states. Recipient, publisher and sender

data, displayed in Fig. 3, can be represented by one

composite content unit. Commands, in the form of

<STATE>Name, are a part of a logical script, related content

units to the states of a document.

Further characteristics of such conceptualized workflow

control language include the following:

 General approach in the specification of a document

layout represents one simple case in which all of the

<CU> are known prior to the beginning of rendering;

 The content of the expression with <CU> is instance-

related. The definition of content unit type, which

includes the layout properties, can precede an instance

and has the form <CU>=Definition of CU_type. This

implies that the layout can be redefined while it is in a

non-terminal state, depending on a certain activity;

 Expressions - in the form of <CU>=Definition of CU

type, also define a collection of new and potential states

since they alter the layout, regardless of the fact that the

content remains unchanged;

 Definition of the content unit type is rich enough to

enable PDF and HTML generation, as well as that of a

web application;

 Work progress is documented by a valid, legible content

unit or document instance;

 In case meta-data is placed in the form of annotations in

a PDF or meta-properties in HTML, then each instance

also describes completely the type it belongs to, and can,

thus, be cloned and inherited. Viewed from the

standpoint of optimal refinement of layout-definition,

cloning and inheriting are highly important; and

 Separation of the content from a layout definition

enables for a specific component to acquire layout

definition instances, for the purpose of their merging in

the course of rendering process.

Fig. 4 shows a layout of a document's instance, in four

different states. From the standpoint of the user who

produces/creates documents, this specific manner of business

process progress reporting is, by far, most acceptable. State

represented by (1) refers to the confirmed contractor data,

(2) readymade small ads and filled in list, (3) calculated cost

and (4) verified banking data. Presented example refers to a

rather simplified case – when the layout of content units

displayed, remains unchanged regardless of the states.

Fig. 4 Document rendering for each of the different states

DVDocGen Framework

Framework

DVDocGen

Tel. +49 (0)911 4313­686
Mob. +49 (0)174 5111­824

Tax number (DE): 238/211/71342
International tax number: DE 246148286

Manager: Djukic Verislav, M. Sc.
e­mail: info@dvdocgen.com

Djukic Verislav, Gärtnerstr. 17, 90408 Nürnberg

DVDocGen Framework

Framework

DVDocGen

Tel. +49 (0)911 4313­686
Mob. +49 (0)174 5111­824

Tax number (DE): 238/211/71342
International tax number: DE 246148286

Manager: Djukic Verislav, M. Sc.
e­mail: info@dvdocgen.com

Djukic Verislav, Gärtnerstr. 17, 90408 Nürnberg

Company
Djukic Software Solutions

Gärtnerstr. 17
D­90408 Nürnberg

Offer Nürnberg, 10.01.2010

Nr. 434

MO_1 Notes

Djukic Verislav, Ms.Sci, 90408 Gärtnerstr.17....4313686, Fax 4313687

MO_2 Notes

Djukic Verislav, Software,................................ 4313686, Fax 4313687
90408 Gärtnerstr.17

MO_3 Notes

Software

\

Djukic Software Solutions
4 31 36 86

Fax 4 31 36 87
90408 Gärtnerstr.17

www.djukic-soft.com)
info@djukic-soft.com@

DVDocGen Framework

Framework

DVDocGen

Tel. +49 (0)911 4313­686
Mob. +49 (0)174 5111­824

Tax number (DE): 238/211/71342
International tax number: DE 246148286

Manager: Djukic Verislav, M. Sc.
e­mail: info@dvdocgen.com

Djukic Verislav, Gärtnerstr. 17, 90408 Nürnberg

Company
Djukic Software Solutions

Gärtnerstr. 17
D­90408 Nürnberg

Offer Nürnberg, 10.01.2010

Nr. 434

MO_1 Notes

Djukic Verislav, Ms.Sci, 90408 Gärtnerstr.17....4313686, Fax 4313687

MO_2 Notes

Djukic Verislav, Software,................................ 4313686, Fax 4313687
90408 Gärtnerstr.17

MO_3 Notes

Software

\

Djukic Software Solutions
4 31 36 86

Fax 4 31 36 87
90408 Gärtnerstr.17

www.djukic-soft.com)
info@djukic-soft.com@

Netto (Euro): 1,000.00
Tax 19% (Euro) : 190.00

Brutto (Euro): 1,190.00

Djukic (Software Solutions) Bank: Postbank

Gärtnerstr. 17 Account: 791770859 IBAN: DE94 7601 0085 0791 7789 59

90408 Nürnberg Bank code: 76010085 SWIFT: PBNKDEFF

DVDocGen Framework

Framework

DVDocGen

Tel. +49 (0)911 4313­686
Mob. +49 (0)174 5111­824

Tax number (DE): 238/211/71342
International tax number: DE 246148286

Manager: Djukic Verislav, M. Sc.
e­mail: info@dvdocgen.com

Djukic Verislav, Gärtnerstr. 17, 90408 Nürnberg

Company
Djukic Software Solutions

Gärtnerstr. 17
D­90408 Nürnberg

Offer Nürnberg, 10.01.2010

Nr. 434

MO_1 Notes

Djukic Verislav, Ms.Sci, 90408 Gärtnerstr.17....4313686, Fax 4313687

MO_2 Notes

Djukic Verislav, Software,................................ 4313686, Fax 4313687
90408 Gärtnerstr.17

MO_3 Notes

Software

\

Djukic Software Solutions
4 31 36 86

Fax 4 31 36 87
90408 Gärtnerstr.17

www.djukic-soft.com)
info@djukic-soft.com@

Netto (Euro): 1,000.00
Tax 19% (Euro) : 190.00

Brutto (Euro): 1,190.00

1

2

3

4

VERISLAV DJUKIC, IVAN LUKOVIC, ALEKSANDAR POPOVIC: DOMAIN-SPECIFIC MODELING IN DOCUMENT ENGINEERING 821

IV. INCREMENTAL SPECIFICATION AND

RENDERING

The emphasis in the workflow control language was

placed on the procedure that enables the synchronization of

activities in a real system as well as on reporting work-

progress. In document engineering we also need to specify

document production models, rendering processes as well as

their complete implementation based on an incremental

approach. In the broadest sense, incremental specification

and rendering are regarded as document engineering

approaches, allowing content, structure, layout and behavior

related changes (or additions) of a document being in an

arbitrary state. Aside from substantial improvements

regarding the rendering speed, our approach significantly

simplifies the entire document production process and

application generation necessary for the automation of

production. By means of an increment specification, whose

primary source is the activity producing the content unit, the

approach makes the controlled and automated document-

knowledge refinement possible. Such a refinement simplifies

the production of untypical document instances. Those are

the instances somehow differing from the previously defined

type or that cannot be created by the existing applications.

The notion of a "modifier" denotes a knowledge increment.

It can be named, unnamed or unresolvable. A named

modifier consists of a group of attributes recognized in

advance as a possible type variation. It is unnamed if it does

not belong to any previously defined variation. It is

unresolvable if there is no any language concept suitable for

a full specification of the document instance.

The core elements of the proposed incremental

specification, illustrated in Fig. 5, are the following:

 Each content unit or each combination of content units

matches at least one specific document state. Fig. 5

displays the potential document states (Initial, S1, S2,

Final_1, Final_2) for a document „D”. Marked with D1-

D5 are visual representations of the documents, in

specific states. In an initial state a document is empty.

 At least one layout specification is associated to each

content unit, as well as a set of known layout variations

(a visual pattern with its variations). The visual pattern

is a pattern necessary for the representation of a

particular type of the content unit. It is referred from the

logical script and easily customized (contextualized) by

referring to its variations. The list of content units is

placed separately, in the upper right corner of Fig. 5.

The content units are marked with CU1-CU4.

 The increment named as SpcIncr in Fig. 5, as well as a

complete document, is specified by the domain-specific

language DVDocLang. It is possible to define an

increment in advance, so the document would „carry‟ it
from the previous state, while attempting to change to

the next state. The role of any activity would then be just

to accept and return the increment, but not to create it.

 An empty document corresponds to the initial state.

End-state candidates are all those in which a document

contains a single or a group of content units which are a

result of a specific, self-contained real system activity.

 It is possible to define a type and document instance

constraints, referring to a structure, contents and layout

in each of the states, as well as interpretation specific

constraints for any output format (PDF, HTML).

 When, at the time of generation, a document requires

change of a state, the generator informs the environment

and waits for the continuation signal (WaitForCU).

 Each subsequent state can be defined by an increment

specification with additions to the content, structure and

layout. The increment is presented in Fig. 5 as a

parameter „spcIncr”, in a function call for document
rendering: ContDoc(docID,lastState, spcIncr).

Fig. 5 Incremental specification and rendering

The core elements of the proposed incremental document

rendering are the following:

 It is possible to generate a document in PDF, HTML, PS

or other specific format in each state. Additionally, it is

also possible to continue the process of generation by

starting from a previous state. An entry point to continue

the generation process is previously generated PDF or

HTML document, containing the meta-data

(specification of a document class it is a part of, content

and the last-state identifier) and optionally, the

increment of the logical script.

 Base specifications of content units are stored on a

template server, a component which is a part of the

document generator infrastructure.

 In each output format, a document contains meta-data,

while the infrastructure services can be called by an

interchange of XML packages over the known scheme,

or by the interchange of documents in PDF or HTML

format.

822 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

 In a simplified case, when document states are not of

any importance, rendering is reduced to a change from

the initial into an end state, without the synchronizations

of real system activities.

V. GENERATION OF APPLICATIONS

In the incremental approach, a document is observed as a

collection of elementary units – grouped together according

to particular rules. DVDocLang is a language for linear

textual representation of such a collection. The rules,

discussed previously, are, to the greatest extent, dependent

on concrete topological relations of CU types valid for a

specific document, as well as on an semantic domain of

attribute values. If semantic domains and the rules for

composing the structure are set, it is sufficient to connect

particular content types to adequate visual patterns (Fig. 3).

The MetaEdit+ tool, storing the life cycle of an “Offer”,
allows us to automatically generate and test an application

employed for the purpose of “Offer” production. Instead of
the logical script from the Example (3), <CU>Script from…

a script, in the form of <CU.edit>Script from…, is

generated. The difference is in a modifier “edit”, which is
interpreted as an application generation command aimed at

editing the contents of the current CU. Formal DSL

specification and MERL reports allow us to create a

representative pattern collection, as well as grammatical

rules necessary for their validation. The patterns in question

simplify the creation of new documents and enable

validation and altering of the existing document structure.

For the generation of applications the following criteria have

been met:

 For applications, to be driven by а business-process

model, described basically at the moment of

specification of the production model and document

layout;

 For a HTML and PDF document‟s visual
interpretations, to be as close as possible to one another,

or to, even, be completely indistinguishable;

 For a simple-syntax structured text (especially in a

section used to describe the structure and the content of

a document), to be acceptable for a user on an intuitive

level;

 For the properties describing the content-unit layout of a

document, to be automatically translated into the

properties of adequate screen forms (i.e. controls);

 To exist a common algorithm for transformations of an

application from a particular state into an appropriate

document, and vice versa;

 For each document instance, in each state, to provide a

fast generation of an application used to move a

document into the next state.

Once a document, in a particular state of the life cycle or in

the course of rendering, needs to go into the next state, the

document generator sends to the environment the action-

related signal. This way the activity manager present in a real

system is informed that a particular action should be

performed, i.e. that a new content unit ought to be created.

Fig. 6 shows one of the possible signal processing case

scenarios which requests the change of a document from the

S1 state into the S2 state. In case an application for the A2

activity already exists, its signal, announcing continuation of

the rendering process, is waited for, with the content

increment being assumed. However, if the application does

not exist, it can be generated on the basis of the script

increment given in the course of document type

specification, to which an instance belongs to.

Fig. 6 Generating of application on demand

The most complex case is the one of generating production

applications for such CU whose content, structure and layout

were not known in advance. Owing to the DVDocLang,

which is semantically rich enough, generating such web and

.Net applications is possible. Web applications are

implemented by way of a collection of HTML documents,

which in meta-data contains: (i) a logical script, (ii) optional

template definition and (iii) Java Script function which

translate the current state of the interface into a logical script,

and return it upon the web-service call. On a server side,

combining of the initial form script with the current interface

state takes place producing the current instance script.

Except for web applications, specifications of production

model and layout are sufficient for incremental generation of

valid application prototypes in different programming

languages, such as Java and C#. Particularly important for

document engineering in practice are XAML [11] and UIML

[12] languages as they describe in a platform-independent

way the layout and functionality of screen forms. As far as

the .Net platform is concerned, priority has been given to the

development of the collection of user controls, the properties

of which are set dynamically – using MetaEdit+ repository

and API. The next section describes such a component as

well as its „behavior‟ in a particular case.

VI. DOMAIN ORIENTED LIBRARIES

The collection of domain-specific languages is primarily

constructed with the intention to enable the mapping of

domain-specific problems onto specific language concepts

aspiring on a higher abstraction. Governed by the principle

“what you see is what you get“ (WYSIWYG), two libraries
of controls have been created. The first is intended for

applications in which rapid document modeling by means of

VERISLAV DJUKIC, IVAN LUKOVIC, ALEKSANDAR POPOVIC: DOMAIN-SPECIFIC MODELING IN DOCUMENT ENGINEERING 823

structured text is required, driven by formal DSL

specification. The second is designated for template

designing by means of drawing typical examples. In some

cases, three types of representations are combined for the

same language concept: structured text, screen forms and 2D

graphic. Fig. 7 displays such combination of representations.

Based on the defined data types, location, relations and

anticipated size of the content unit, the space is divided into

rectangles (areas). To each of the rectangles an editor is

assigned, with the user being directed to the area where the

data should be entered. For the „Offer‟ illustrated in Fig. 4, a
default layout has been displayed in Fig. 7, left. Located

right is the editor, consisting of forms, i.e. of a collection of

ordered triplets (CU type, modifier, value).

Fig. 7 Editing by structured text and screen forms

The generation of applications for document instance

production is reduced to the use of the MetaEdit+ repository,

for the purpose of assuming the appropriate control

properties. Property values are described as MERL [4]

reports, i.e. as queries on a repository. Property examples

include: the list of allowed content types, modifiers allowed

for a specific content type, collection of special symbols etc.

VII. CONCLUSION

 DSM can be applied to support document engineering.

We have presented in more detail two domain-specific

languages: DVDocAd that is employed for the modeling of

small ads and DVDocFlow – that is employed for the

modeling of business activities in relation to the documents

and their content units. Both of the languages have been

defined and implemented by means of MetaEdit+ tool. As a

result, formal document specification in the domain of

directory publishing is simplified with DVDocLang as it uses

higher-level modeling concepts that are semantically close

with the document formats. It also facilitates effective user-

driven modeling. The issue of „atypical‟ instances has been
solved by applying the incremental specification as well as

by document and application generation. With the developed

approach we have got up to forty times faster rendering in

the case of small ads [13] in comparison to a FOP generator.

In the case of composite documents, including the concepts

which almost entirely account for XSL-FO [17], the speed is

ten times greater. One framework is created, which makes

workflow reporting possible at any given time. By directly

relating content units to activities that form them we are able

to control the document related workflow. A document is

treated as a 5D entity (pentaformat). If the document is

reduced to three dimensions (content, structure and layout)

automatic application generation, inheritance and cloning

become impossible.

We have presented in this paper an overview of the

developed languages and related tools. They enable

automation of document engineering in directory publishing.

We believe that various areas of document engineering may

also be supported by our approach. In particular two most

significant areas that we are concentrating on at the moment

are semantically based 2D graphic editors for template

drawing (DVDoc Editor) and query language for document

browsing (DVQL).

VIII. АCKNOWLEDGEMENT

The authors would like to kindly thank Juha-Pekka

Tolvanen from the University of Jyväskylä for his valuable

support and proof reading.

REFERENCES

[1] Steven Kelly, Juha-Pekka Tolvanen,

„Domain-Specific Modeling: Enabling Full Code Generation“,
ISBN: 978-0-470-03666-2, March 2008, Wiley-IEEE Computer

Society Press.

[2] Robert J. Glushko, Tim Mc Grath, „Document Engineering“, MIT
Press 2008.

[3] Dirk Drahaim, Gerlald Weber, „Form-Oriented Analysis“, Springer-
Verlag 2005, ISBN 3-540-20593-4.

[4] MetaEdit+ Modeler, MetaCase, www.metacase.com

[5] Di Iorio, A. Pattern-based Segmentation of Digital Documents: Model

and Implementation, Ph.D. Thesis, UBLCS-2007-05, Department of

Computer Science, University of Bologna. 2007.

[6] Verislav Djukic, "DVDocLang Language Reference",

www.dvdocgen.com/Framework/DVDocLang.pdf

[7] Antonina Dattolo, Angelo Di Iorio, Silvia Duca, Antonio A. Feliziani,

Fabio Vitali, „Structural patterns for descriptive documents“,
Proceedings of the 7th international conference on Web engineering,

Italy, Lecture Notes In Computer Science, 2007

[8] Ivan Lukovic, Verislav Djukic, DVDocLang vs. XSL-FO,

www.dvdocgen.com/Framework/DVDocLang_XSL-FO.pdf

[9] Angelo Di Iorio, Luca Furini, Fabio Vitali, „Higher-level Layout

through Topological Abstraction“, ACM DocEng 2008

[10] Apache Software Foundation: "FOP", http://xmlgraphics.apache.org/

fop/0.95/index.html

[11] Microsoft Extensible Application Markup Language (XAML)

http://xml.coverpages.org/ms-xaml.html

[12] User Interface Markup Language (UIML)

http://www.uiml.org/

[13] Verislav Djukic, "DVDoc Renderer Benchmark",

 http://www.dvdocgen.com/Framework/DVDocRenderBench.pdf

[14] Kosar T., Oliveira N., Mernik M., Pereira M. J. V., Črepinšek M.,
Cruz D., Henriques P. R., Comparing General-Purpose and Domain-

Specific Languages: An Empirical Study, Computer Science and

Information Systems (ComSIS), ISSN: 1820-0214, Vol. 7, No. 2, May

2010, pp 247-264.

[15] Mernik M., Heering J., Sloane M. A., When and How to Develop

Domain-Specific Languages, ACM Computing Surveys (CSUR),

Association for Computing Machinery, USA, Vol. 37, No. 4, 316-

344. 2005

[16] OMG Model Driven Architecture, http://www.omg.org/mda/

[17] Exstensible Stylesheet Language, Formatting Objects (XSL-FO),

Reference Manual, http://www.w3.org/TR/xsl/.

824 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

