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centers having between 501 and 5000 servers and (iii) large 

service centers with a number of servers usually over 5000. 

Many state of the art solutions regarding service center 

servers consolidation approach the energy consumption 

optimization through resource allocation or consolidation.  

A thermal aware workload scheduling and consolidation 

solution aiming to reduce the power consumption and 

temperatures in data centers was proposed in [6]. The 

simulation results show that the algorithm can significantly 

reduce the energy consumption with some degree of 

performance loss. In [7] a novel technique for controlling the 

service centers servers CPU allocation and consolidation 

based on first order Kalman filter is presented. In [8] the 

server consolidation problem is approached for small service 

centers as a constraint satisfaction problem. The authors also 

propose a heuristic for approaching the server consolidation 

in large service centers. In [9], the authors propose an 

algorithm for consolidating virtual machines in large service 

centers based on a simple gossip protocol. To enable energy 

efficient consolidation, the inter-relationships between 

energy consumption, resource utilization, and performance 

of consolidated workloads must be considered [10]. In [11] 

the authors reveal that energy performance trade-offs for 

consolidation and optimal operating points exist. A bio-

inspired workload consolidation algorithm for service 

centers based on defining some autonomous scouting entities 

is defined in [12]. The entities try to find the suitable server 

for migrating a virtual machine (worker entity).   

Optimal computing resources allocation techniques for 

server clusters based on reinforcement learning are proposed 

in [16]. Learning techniques are also used to trade-off 

between computing resources power consumption and 

performance during the allocation process [17]. In [13] a 

consolidation methodology that uses machine learning to 

deal with uncertain information is discussed. Pervious server 

behavior data is used to predict and estimate the current 

power consumption and also to improve the scheduling and 

consolidation decisions.  

The presented state of the art approaches fail to consider 

the scalability problem when varying the service center 

dimension (number of servers) and applying different 

consolidation algorithms. 

III. REINFORCEMENT LEARNING BASED  DYNAMIC SERVER 

CONSOLIDATION 

In a previous published paper [14] we have approached 

the problem of dynamic server consolidation in virtualized 

service centers by proposing the development of an energy 

aware run-time consolidation algorithm based on 

reinforcement learning. To make this paper self-contained in 

Section A we present a short overview of the reinforcement 

learning based consolidation algorithm. More details can be 

found in [14]. Also the reinforcement learning consolidation 

decision time problem statement for large service centers is 

described in Section B. 

A. Consolidation Algorithm Overview 

The reinforcement learning consolidation algorithm has 

three main phases: (i) representing the service center energy 

related context data in a programmatic manner, (ii) 

calculating the  service center greenness level and (iii) 

deciding on the consolidation actions that must be executed 

to bring the service center in an energy efficient state. 

1) Context data representation 

To represent the energy related context data in a 

programmatic manner we have defined an ontology based 

context model: the EACM (Energy Aware Context Model) 

model [15]. The energy related context data is represented in 

the EACM model using three main concepts: Context 

Resources, Context Actions and Context Policies.  

Context Resources define the physical or virtual entities 

that generate and / or process energy related context data. 

For a service center we have identified three sub-types of 

Context Resources: Facility Resources, Computing 

Resources and Application Resources. Facility Resources 

are physical entities which capture the service center 

ambient data (sensors) and enforce the design time defined 

environmental conditions (actuators). Computing Resources 

are physical entities that consume energy as a result of 

executing workload. The main Computing Resource of a 

service center considered in our representation is the server. 

Application Resources are the software entities executed on 

the service center computing resources as incoming 

workload. An activity is modeled through its processor, 

memory and hard disk computing resources requests.  

Context Actions define the set of design time enabled 

adaptation actions that may be executed at run time to 

enforce the service center energy efficiency goals. We have 

identified three sub-types of adaptation actions: Facility 

Adaptation Actions (e.g. adjust the room temperature or start 

the air conditioner), IT Computing Adaptation Actions and 

Application Adaptation Actions (e.g. application redesign 

for energy efficiency). We have defined two main sub-

classes of IT Computing Adaptation Actions: resource 

consolidation actions (Deploy Activity, Migrate Activity) 

and dynamic power management actions (Wake-up server, 

Turn-off server).  

Context Policies define the service center energy 

efficiency goals through a design time established set of 

Green and Key Performance Indicators (GPIs/KPIs). We 

have defined three sub-classes of GPIs/KPIs: (1) 

environmental, imposing restrictions about the service centre 

ambient conditions (e.g. the temperature in the service center 

PXVW� EH� XQGHU� ��Û&CF� B�C� ,7� &omputing, describing the 

energy/performance characteristics of the service centre 

computing resources (e.g. the server CPU is efficiently used 

for a load between 60%-80%) and (3) Application, 

specifying the rules (QoS requests) imposed by the business 

application for execution (e.g. for optimal execution time the 

application needs 1Gb of allocated physical memory). 
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2) Service center greenness level  

To calculate the service center greenness level we have 

defined the concept of service center context situation 

entropy ('O)  [15]. The entropy is a metric which establishes 

the service center context situation degree of complying with 

the design time defined set of GPIs/KPIs. The GPIs/KPIs are 

represented in SWRL (Semantic Web Rule Language) 

reasoning rules and automatically evaluated against the 

EACM model instance ontology implementation. The 

entropy value of a service center context situation (S) is 

calculated using the following relation: 

 

                '5 = Ã S2E Ã SNEF Û RNEFFE                        (1) 

 

where: (i) S2E  is the weight of GPIs/KPIs policy i, and 

represents the importance of the policy in the service centre 

context, (ii) SNEF  is the weight of the service centre context 

resource j in the GPIs/KPIs policy i and reflects the context 

resource importance for that policy and (iii) RNEF  is the 

deviation between the value recorded by the context 

resource j and the accepted value defined by policy i (if  x is 

the accepted value of the context resource j defined by the 

GPI/KPI policy i and the actual value recorded by the 

resource j is NEF , then RNEF  = NEF F T).  

The entropy value is used to trigger the consolidation 

process as follows: if the current service center context 

situation entropy value is above a predefined threshold, the 

service center greenness level is acceptable and 

consolidation is not required, otherwise the reinforcement 

learning consolidation process is started. 

3) Consolidation actions selection 

To decide on the consolidation actions that have to be 

executed if the service center is not in an energy efficient 

state a reinforcement learning based solution is used (see 

Fig. 2 for the algorithm pseudo-code). 

The consolidation process starts from the current service 

center context situation, simulates the execution of all 

available consolidation (Deploy or Migrate activity) or 

dynamic power management actions (Turn-on or Turn-off 

server) based on a reward / penalty approach and builds a 

decision tree (see Fig. 1).  

 

 

Fig. 1 The reinforcement learning consolidation decision process 

A decision tree node stores: (i) the EACM instance 

describing the service center energy related context 

situation, (ii) the list of actions that were simulated to 

generate that EACM instance, (iii) the EACM instance 

calculated entropy value (relation 1) and (iv) the reward 

value calculated for the list of actions simulated so far. The 

reward for executing an action in a certain situation is 

calculated as follows: 

     
         45+1 =  45 + Û Û ('5+1 F '5 F #?PEKJ%KOP)            (2) 
 

where: (i) 45+1 represents the reward for the newly 

generated (current) tree leaf node S+1, (ii) 45 represents the 

reward of the current leaf node parent, (iii) '5+1 and '5  

represent the calculated entropy values for the EACM 

instance stored in the leaf node S+1 and its parent S, while 

(iv) #?PEKJ%KOP represents an associated design time 

consolidation and dynamic power management action cost 

value.  

 

 

Fig. 2 The reinforcement learning consolidation algorithm 

A tree path between two nodes Node0 and Noden defines 

the sequence of actions that executed starting from Node0 

service center context situation generates the new service 

center context situation stored by node Noden. The 

maximum reward path in the tree represents the sequence of 

actions that must be executed for consolidating the service 

center servers.  
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be managed by the same instance of the reinforcement 

learning consolidation algorithm (see Fig. 4). 
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To generalize, we can state that a level n cluster 

(0<n<TopMostLevel - level 0 and the top most level of the 

hierarchical structure does not fit in this definition) can be 

defined as follows: 
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A logical cluster is a level n cluster if and only if it groups 

level n-1 clusters that will be managed by the same instance 

of the reinforcement learning consolidation algorithm. 

Definition 3. A logical cluster is the top most cluster of 

the hierarchical structure (also called meta cluster) if and 

only if it logically groups all the clusters defined on the layer 

below it. On the topmost level of the hierarchy it must exists 

a single meta cluster.  

B. Consolidation Decision Propagation in the Hierarchy 

The reinforcement learning consolidation algorithm 

instances decisions are propagated across the service center 

logical hierarchical structure in two manners: (i) top-down, 

for decisions implying the execution of consolidation actions 

(deploy or migrate activity) and (ii) bottom-up for decisions 

implying the execution of dynamic power management 

actions (turn-on and turn-off server).  

 

Fig. 5 The deploy action propagation example 

The deploy activity decision is taken only by the meta 

cluster which receives the workload that the service center 

must execute (see Fig. 5). The decision and its associated 

activity is propagated to all the reinforcement learning 

algorithm instances controlling the inferior layer logical 

clusters. Each algorithm instance will simulate the activity 

deployment on the resources that it controls, calculates the 

associated reward and propagates the decision to the logical 

cluster algorithm instances below it. This propagation 

process continues recursively until the bottom layer is 

reached. The activity will be deployed on the server which is 

the leaf of the hierarchical structure path with the maximum 

reward. 

The migrate activity decision (from one cluster to 

another) can only be taken by the reinforcement learning 

algorithm controlling both logical clusters (see Fig. 6). The 

migrate decision is also propagated in top-down manner as 

follows (see Fig. 6): (i) in the hierarchical structure sub-tree 

having as root the source logical cluster, a destroy activity 

action is propagated and (ii) in the hierarchical structure sub-

tree having as root the destination logical cluster a deploy 

activity action is propagated. The destroy activity 

propagation is similar with the pattern described for 

deploying a task.  

 

Fig. 6 The migrate activity action propagation example 

The turn-on and off server / cluster actions are propagated 

across the hierarchical structure in a bottom-up manner. The 

decision is taken locally by the reinforcement learning 

consolidation algorithm that controls the computing 

resources that are turned-on or off. The decision is then 

signaled to the reinforcement learning algorithm structure 

controlling the upper level logical cluster which in turn 

investigates the possibility of turning-on / off the entire 

cluster containing the inferior level resources which were 

turned-on or off. 
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V. CONSOLIDATION TIME COMPLEXITY ANALYSIS  

In this chapter the consolidation decision time complexity 

is being estimated for a large service center with N servers 

(N > 5000) that needs to accommodate M virtualized 

activities in an energy efficient manner. Two different cases 

are considered: (i) the service center has no logical 

organization and (ii) the service center is logical organized 

using the proposed hierarchical clusters structure described 

in Section IV.  

In the first case, the reinforcement learning algorithm 

considers all the service center servers and virtual tasks 

when a consolidation decision needs to be taken. As it can 

be noticed from Section III, the reinforcement learning 

consolidation algorithm constructs a decision tree and 

searches for the best sequence of consolidation actions to be 

taken, in a certain situation, using a depth first search 

algorithm. The algorithm complexity is usually expressed as 

$&  where B represents the decision tree branching factor 

while D is the depth factor. The learning tree branching 

factor and the depth factor are equal to the number 

consolidation / dynamic power management actions that the 

reinforcement learning algorithm can consider at each step.  

In the worst case scenario this number is given by the sum 

RI� BVHH� UHODWLRQ� �C�� BLC� WKH� QXPEHU� RI� SRVVLEOH� ³WXUQ-on 

VHUYHU´�DFWLRQV�BLQ�WKH�ZRUVW�FDVH�VFHQDULR�LV�HTXDO�ZLWK�WKH�

number of turned-off servers), (ii) the number of possible 

³WXUQ-RII�VHUYHU´�DFWLRns (in the worst case scenario is equal 

with the number of turned-on servers), (iii) the number of 

SRVVLEOH� ³GHSOR\� DFWLYLW\´� DFWLRQV� BWKH� QXPEHU� RI� XQ-

deployed tasks multiplied with the number of available 

servers for the worst case scenario), and (iv) the number of 

SRVVLEOH� ³PLJUDWH� DFWLYLW\´� DFWLRQV� BWKH� QXPEHU� RI� DOUHDG\�

deployed activities multiplied with the number of up and 

running servers in the worst case scenario).  

 
$ = & = JN6QNJA@1BB5ANRANO + 
 JN6QNJA@1J5ANRANO + 

JN7J@ALHKUA@#?PEREPEAO Û JN6QNJA@1J5ANRANO +     (6) 

 JN&ALHKUA@#?PEREPEAO Û JN6QNJA@1J5ANRANO 

 

By grouping and factoring relation 6 elements, the 

branching and depth factors can be also calculated using the 

following relation 

 
$ = & = 0 + / Û JN6QNJA@1J5ANRANO Q 0 + / Û 0  (7) 

 

where N is the service center total number of servers while 

M is the total number of service center virtualized activities 

considered for consolidation.  

Therefore the consolidation time decision complexity for 

a service center with N servers that needs to accommodate M 

virtualized tasks in the worst case scenario is: 

     

       k(0 + / Û 0)(0+/Û0)o = 1k(/ Û0)(/Û0)o          (8) 

 

In the second case, when the service center is logically 

organized by using the proposed hierarchical cluster 

structure, there will be multiple reinforcement learning 

consolidation algorithms that are executed on logical clusters 

with a smaller number of computational resources. For 

simplicity, we consider that the hierarchical structure logical 

clusters are uniformly created with the same number of 

computational resources c and the service center total 

number of servers N can be expressed as c
kmax

 (where kmax 

is to hierarchy total number of layers). In this case at each 

hierarchical structure level, there will be a number of 0/?G  

clusters where N is the service center total number of servers 

and k is the level number. Using the hierarchical structure 

meta cluster definition which states that on the top-most 

level of the hierarchy a single cluster may exist, we can 

compute the maximum number of hierarchical levels as: 

 

                        
0

?GI=T
= 1 \ GI=T = [HKC?0]                  (9) 

 

The reinforcement learning algorithm complexity for a 

cluster is  1(/?)(/? ) where c is the number of 

computational resources from a cluster and M is the number 

of activities considered in the consolidation decisions. But 

since the consolidation decisions taken by a reinforcement 

learning algorithm instance are propagated in the 

hierarchical structure sub-tree under it, we can state that 

M=1 for all the hierarchical reinforcement learning 

algorithm instances except the one taking the actual 

consolidation decision.  The overall consolidation decision 

time complexity is: 

 

1:/ Û ?;:/Û?; +  :/ F 1; Û GI=T Û 1:??; =  

                                                              1(/ Û ?)(/Û?)     (10) 

 

Considering relations 8 and 10, we can state that using the 

proposed methodology the consolidation decision time 

complexity remains exponential but grows with a much 

slower rate: 

 

   1k(/ Û 0)(/Û0)o >  1(/ Û ?)(/Û?) >A?=QOA ? ' 0   (11) 

 

The consolidation decision time when the service center 

logical hierarchical structuring is used, significantly 

improves when the ratio between the number of computation 

resources from clusters (c) and the service center total 

number of servers (N) decreases. If the difference between c 

and N is small there are few logical clusters created and the 

algorithm complexity remains the same: 

 

 lim?\0 1(/ Û ?)(/Û?) = 1k(/ Û 0)(/Û0)o                (12) 

VI. CONCLUSIONS 

In this paper a server consolidation methodology for large 

service centers based on logically clustering the service 

center in a hierarchical manner is proposed. Each logical 

cluster is being managed by its own instance of a 

reinforcement learning based consolidation algorithm.  
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