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Abstract—This paper is a review and a comparison of some
preconditioners based on incomplete factorizations of matrices —
for matrices describing Markov chains. Three preconditioners
are considered: ILU(0), ILU3, IWZ(0). Two of them (ILU(0),
ILU3) are based on the LU factorization, the latter (IWZ(0))—
on the WZ factorization. The preconditioners are investigated
in respect of their usability for decreasing number of iterations
in a projection method, namely GMRES(m). To chose the best
preconditioner for such methods, authors introduce a measure
called iteration speed-up (p) and some of its relatives, as well
as they define a function giving an average number of restarts
needed to achieve a given accuracy for matrices from a some
set (Is). These measures are studied for two different cases of
matrices describing Markov chains to compare influence of the
examined incomplete preconditioners for GMRES(m).

I. INTRODUCTION AND MOTIVATION

W
HILE modelling probabilities stationary distributions
(independent of time) with Markov chains, we obtain

a following linear equation system:

QTx = 0, x ≥ 0, xT e = 1, (1)

where Q is a transition rate matrix, x is an unknown vector of
states’ probabilities and e = (1, 1, ...., 1)T . The matrix Q is a
singular square one of size n×n, of rank n−1, with a weakly
dominant diagonal, usually a sparse, large and ill-conditioned
one. These traits of Q cause the need to treat the system (1)
specially.

One of the most popular methods to solve the system 1 is
the GMRES method [13]. The full GMRES algorithm (that
is: GMRES(n), n being the size of the system) is guaranteed
to converge in at most n steps when we used full precision
arithmetic (that means: no restarts are needed), but it is not
very useful for large systems of equations, because a good
approximate solution is often computed quite early, after very
few iterations.

Moreover, the traditional GMRES (without restarts) requires
quite a lot of space (additional O(n) for every iteration, so
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O(n2) for n iterations), which is a big disadvantage for huge
systems coming from Markov chains. On the other hand,
GMRES(m) (that is, the GMRES method restarted after m
iterations) requires at most O(m · n) additional space for
computations, regardless of the number k of restarts (because
after every restart the working space can be reused), but
the achieved accuracy can be comparable (for an appropriate
m, of course, which is often not easy to choose) to the
accuracy achieved with GMRES after the same total number
of iterations — that is k ·m — but in the latter case the space
needed is O(k ·m · n). So, we investigate a restarted version,
GMRES(m), as a potentially more economical method for
huge systems.

The very concept of the preconditioning is almost as old as
iterative methods [8]. One of the most famous preconditioning
techniques is the incomplete factorization of the original ma-
trix Q. The idea of the incomplete factorization was presented
by Buleev [3], [4] and Varga [15]. The papers that popularized
the incomplete factorizations were [9], [10].

There is a need for preconditioners that are fast, stable,
scalable, easy to parallelize and that generate a small fill-
in. In [1], [2] preconditioners for Krylov subspace methods
for solving large singular linear systems arising from Markov
modeling are considered.

The incomplete LU (ILU) factorization process computes a
sparse lower triangular matrix L and a sparse upper triangular
matrix U. Here we discuss the ILU(0) factorization, the
simplest form of the ILU preconditioners. ILU(0) consists in
taking the zero pattern as the original matrix Q. Using ILU(0)
for solving Markov chains was shown in [14].

ILU3 is another kind of incomplete factorization based on
the LU factorization. Here, the factors are nonzero only on
their three central diagonals — for the matrix L it is the
main diagonal and the one directly below, and for the matrix
U it is the main diagonal and the one directly above. This
factorization was not used to Markov chains so we wanted to
test it.

The incomplete WZ factorization is originally described in
some previous works [5]. In [6] we discussed its performance
for GMRES. This work is a step forward in the investigation
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of such incomplete preconditioners and compares some kinds
of IWZ and ILU.

We are concerned in the influence of the preconditioner’s
structure on the GMRES(m) method, so we are considering
three incomplete factorization methods, namely ILU(0), ILU3
i IWZ(0). These methods differ with the structure of the factors
and the number of nonzeros. In factorizations IWZ(0) and
ILU(0) the number of nonzeros is exactly the same as in the
original matrix Q but factors (L and U in ILU(0), W and Z

in IWZ(0)) have different structures. The ILU3 factorization
has usually less nonzero elements the the original matrix Q

and the structure of the factors is similar to ILU(0). ILU3 is
less accurate than ILU(0) and IWZ(0), so we can expect worse
results.

We consider an impact of the incomplete factorization pre-
conditioners on the GMRES(m) method for the numerical so-
lution of Markov chains. We study the relationship between the
number of iterations, the convergence rate of the GMRES(m)
method and properties of the matrix Q and the structure
of preconditioners. For better understanding of the behavior
of the GMRES(m) convergence and its preconditioners we
introduce some measures — the iteration speed-up among
others (see Section IV-A).

The research was carried out for two case. The first case
are matrices that have not got any particular structure and
we assume that the matrix row and column ordering is given
and cannot be changed. The second case are matrices of a
Markov chain known from the literature as the epidemic model
and these matrices has got a structure. For all those (sparse)
matrices we introduced another measure — matrix density.

The rest of the paper is organized as follows. Section
II recalls briefly the incomplete preconditioning. Section III
presents two test cases. Section IV describes conducted nu-
merical experiments. Section V contains some conclusions.

II. INCOMPLETE PRECONDITIONERS

The convergence rate of iterative methods depends on
properties of the coefficient matrix of the linear system. If the
matrix Q is ill-conditioned, this can make the convergence of
iterative methods slow. One way to prevent such problems is
to transform the system (1) into an equivalent system (that is,
having the same solution), but with better numerical properties.
Such a transformation can be done by preconditioning, that is
by converting the system (1) into:

M−1QTx = 0,
n∑

i=1

xi = 1, x ≥ 0, (2)

where the nonsingular matrix M (known as a preconditioner)
approximates the matrix QT in a manner. The system (2)
has the same solutions as (1) but it is (hopefully) better
conditioned.

The matrix M should have the following properties:

• its use should entail low memory requirements;
• its inverse should be cheaply applicable;
• the transformed problem (2) should converge faster (in

shorter computational time) than the original problem.

Of course, there is a clear conflict among these three re-
quirements, especially for the construction of general purpose
preconditioners.

Generally, computing and using a good preconditioner is
an expensive task consisting of finding the matrix M and its
inverse. If the preconditioning is to be used, that cost should be
refunded by a reduced number of iterations needed to acquire
a required accuracy — or by using the same preconditioner
for various linear systems.

The preconditioner matrix is usually built on the base of the
original coefficients of the matrix Q.

A. ILU(0) preconditioner

The incomplete LU factorization (denoted ILU) is based
on the well known LU factorization, where a lower triangular
matrix (with ones on the diagonal) L̃ and an upper triangular
matrix Ũ are found and where the preconditioner matrix M =
L̃Ũ is a kind of approximation for the matrix QT .

There are many variants of ILU, the most straightforward
being ILU(0) [14]. In ILU(0) the computations are conducted
as in the traditional (complete) LU factorization (that is, the
Gaussian elimination), but any new nonzero element (lij and
uij) arising in the process is dropped if it appears in the
place of a zero element in the original matrix QT . Hence,
the factors together have the same number of nonzeros as
the original matrix QT . Thereby, the most important problem
of the factorization of sparse matrices — the fill-in (which
consists in appearing nonzero elements in new matrices on
the places of zero elements in the original matrix, what makes
dense the output factors and renders impossible their packed
storage) — is eliminated. At the expense of accuracy, of
course.

After ILU(0) we have:

QT = L̃Ũ+RLU , (3)

where L̃ and Ũ are (respectively) the lower triangular matrix
and the upper triangular matrix and the remainder matrix RLU

is hoped to be small in a sense.
Let M = L̃Ũ, then M−1 = Ũ−1L̃−1 and the equation (2)

takes the shape:

Ũ−1L̃−1QTx = 0,
n∑

i=1

xi = 1, x ≥ 0. (4)

Let SLU = Ũ−1L̃−1QT . Now, the equation (4) takes the
shape:

SLUx = 0,
n∑

i=1

xi = 1, x ≥ 0. (5)

The following Octave code was used to generate the ILU(0)
factors used in this article. For a given matrix Q two triangular
matrices are constructed. The matrix (L) is lower triangular
(the main diagonal of L is filled with ones only) and the matrix
(U) — upper triangular. The time complexity is O(n3).
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function [L,U]=ilu0(Q)

[n,n]=size(Q); U=Q; L=zeros(n);

for i=1:n, L(i,i)=1.0; end;

for k=2:n,

for i=1:k-1,

if Q(k,i) != 0,

L(k,i)=U(k,i)/U(i,i);

for j=i+1:n,

U(k,j)=U(k,j)-L(k,i)*U(i,j);

end;

end;

end;

for i=1:n,

if Q(k,i)==0, U(k,i)=0; end;

end;

end;

for i=2:n,

for j=1:n,

if i>j, U(i,j)=0; end;

end;

end;

end;

B. ILU3 preconditioner

ILU3 is an incomplete LU factorization conducted quite
similarly to ILU(0), but the structure of output matrices L and
U have nothing to do with the structure of the input matrix
QT . The output matrices simply consist of diagonals: the main
one and its lower neighbor diagonal (L) or the main one and
its upper neighbor diagonal (U).

As for now, this factorization was not used in solving
Markov chains. However, it is quite fast (O(n)) and easy to
use in parallel. The code is shown below.

function [L,U]=ilu3(Q)

[n,n]=size(Q); U=Q; L=zeros(n);

for i=1:n, L(i,i)=1.0; end;

for k=2:n,

i=k-1;

L(k,i)=U(k,i)/U(i,i);

U(k,k)=U(k,k)-L(k,i)*U(i,k);

if (k<n),

U(k,k+1)=U(k,k+1)-L(k,i)*U(i,k+1);

end;

end;

for j=1:n,

for i=1:n,

if (i>j),U(i,j)=0;end;

if (i+2<=j), U(i,j)=0;end;

end;

end;

end;

C. IWZ(0) preconditioner

The incomplete WZ (denoted IWZ) factorization is origi-
nally described in a previous works [5]; here we only recall
it. The WZ factorization (on which IWZ is based) consists in
decomposition of the given matrix (QT in the paper) into a
product of two matrices: W and Z (Fig. 1).

The incomplete WZ factorization (IWZ) is based on the WZ
factorization described above, where we find matrices W̃ and

Fig. 1. The form of the output matrices in the WZ factorization (left: W;
right: Z)

Z̃ (of the form of the matrices W and Z shown in Fig. 1) and
the product W̃Z̃ is a kind of approximation for the matrix
QT .

In IWZ(0) the computations are conducted as in the com-
plete WZ factorization, but any new nonzero elements (wij

and zij) arising in the process are dropped if they appear in
the place of a zero element in the original matrix QT . Hence,
the factors together have the same number of nonzeros as the
original matrix QT . It is worth noting that we got the inverse
of W̃ very easily, because [16]:

W̃−1 = (−1) · (W̃ − I) + I (6)

(just like W−1 = (−1) · (W − I) + I). (7)

After IWZ(0) we have:

QT = W̃Z̃+RWZ , (8)

where W̃ and Z̃ are (respectively) matrices of the form of W
and Z from Fig. 1 and the remainder matrix RWZ is supposed
to be small in a sense.

The time complexity is O(n3) — just like for ILU(0).
Here is an Octave code that shows the sequence of opera-

tions that must be followed and that provides some feel for the
applicability of the algorithm. This (and previous, that is for
ILU(0) and ILU3) code is not meant to represent production
versions of the algorithms.

function [W,Z]=iwz0(Q)

[n,n]=size(Q); Z=Q; W=zeros(n);

for i=1:n, W(i,i)=1.0; end;

for k=1:n/2-1,

k2=n-k+1;

det=Z(k,k)*Z(k2,k2)-Z(k2,k)*Z(k,k2);

for i=k+1:k2-1,

if Q(i,k)!=0,

W(i,k)=(Z(k2,k)*Z(i,k2)

-Z(k2,k2)*Z(i,k))/det;

end;

if Q(i,k2)!=0,

W(i,k2)=(Z(k,k2)*Z(i,k)

-Z(k,k)*Z(i,k2))/det;

end;

for j=k+1:k2-1,

if Q(i,j)!=0,

Z(i,j)=Z(i,j)+W(i,k)*Z(k,j)

+W(i,k2)*Z(k2,j);

end;
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TABLE I
THE ESSENTIAL CHARACTERISTICS OF THE MATRICES USED IN THE TESTS

Group matrix ID n nz d

A 1 100 1190 11.9
B 2 100 388 3.9
A 3 1500 37955 25.3
B 4 1500 5873 3.9
A 5 3000 120590 40.2
B 6 3000 11636 3.9

end;

end;

end;

for i=1:n,

for j=1:n,

if ((i>j)&(i<n-j+1))

| ((i<j)&(i>n-j+1)),

Z(i,j)=0; end;

end;

end;

end;

III. TEST CASES

Here we shortly present two cases which were used to
investigate the influence of our preconditioners (ILU(0), ILU3
and IWZ(0)) on the convergence of GMRES(m). We assume
that the investigated matrix cannot be a subject for any
reordering.

A. Case I

The matrices of the Case I were created randomly, with
given some parameters as n (the number of rows) and nz (the
number of nonzeros) as well as the range of the elements out-
side the diagonal. For every nonzero element, its indices (that
is the number of its row and the number of its column) were
randomly (uniformly) chosen as well as its value. Then, the
diagonal elements were computed (from: qii = −

∑
j 6=i qij)

to get a correct transition rate matrix.
In Table I the essential characteristics of the matrices are

presented (n is the number of rows and columns of the matrix,
nz is the number of nonzeros in the matrix, d = nz/n).

For these matrices we can observe, that the matrices might
have the same size and a different value of d. The matrices
were divided into two groups, the first group include matrices
with d > 8 (Group A), the second group include matrices with
d ≤ 8 (Group B).

The structure of the matrix with ID=3 is shown in Fig. 2.
We can see that the matrices from Case I have no particular
structure. It is worth noting that IWZ(0) and ILU(0) for them
have not such a structure either, because their structures are
based on structures of Q. And ILU3 preconditioner is just a
tri-diagonal — as usual.

B. Case II

The matrix of Case II was generated from a standard
two-dimensional Markovian model [7], [11]. This particular
example has been taken from [11], [12]. The states of the
chain are described with two numbers (u, v), u = 0, . . . , Nx,

Fig. 2. The structure of the matrix with ID=3 of Case I

Fig. 3. The structure of the matrix of Case II

v = 0, . . . , Ny (here Nx = 64, Ny = 16). The matrix
describing the two-dimensional Markov chain has a structure
shown in Fig. 3.

It is worth noting that for the matrix of Case II, the in-
vestigated preconditioners are also structured. It is so because
ILU(0) and IWZ(0) inherit their structures after the original
matrix (Fig. 3). But ILU3 is here somewhat a special case,
because here it reduces to the Jacobi preconditioner (that is
L = I and U = diag(qii)).

IV. EXPERIMENTAL RESULTS

The main goal of the numerical experiments was to test
the incomplete factorization preconditioners in respect of their
usability for the GMRES(m) method for matrices arising
from Markov chains. The experiment was performed on a
Pentium IV 2.8GHz computer with 1GB RAM under the
Debian GNU/Linux operating system. We used a high-level
programming language, namely Octave (a GNU equivalent of
MATLAB).

A vector x(0) = (x
(0)
i ) with x

(0)
i = 1

i
was chosen as an

initial vector. As a measure of accuracy of the solution we
chose the 2-norm of the residual:

ε(k)(Q) = ||0−QTx(k)||2 = ||QTx(k)||2. (9)
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TABLE II
NUMBER OF ITERATIONS NEED TO ACHIEVE A GIVEN ACCURACY

ε(k) < 10−16 FOR THE SELECTED VALUES OF THE PARAMETER m FOR

CASE I (MATRICES FORM GROUP A ARE PRINTED NORMALLY, THOSE

FROM GROUP B ARE DISTINGUISHED WITH A BOLD FONT)

m method
matrix ID

1 2 3 4 5 6

m = 1

GMRES(m) 45 87 44 185 42 271

IWZ(0)G–(m) 14 29 11 33 10 34

ILU(0)G–(m) 14 28 12 33 11 33

ILU3G–(m) 31 66 24 80 21 84

m = 5

GMRES(m) 8 17 7 30 6 32

IWZ(0)G–(m) 3 6 3 7 2 7

ILU(0)G–(m) 4 6 3 7 3 7

ILU3G–(m) 6 14 5 16 5 17

m = 10

GMRES(m) 4 8 4 14 3 15

IWZ(0)G–(m) 2 3 2 4 1 4

ILU(0)G–(m) 3 4 3 5 3 4

ILU3G–(m) 3 7 3 8 3 9

Above (and throughout the whole paper), as k, we consider
the number of external iterations of GMRES(m), that is the
number of restarts.

The accuracy has been studied experimentally for the ma-
trices of Case I and Case II. We studied both the number
of iterations needed to achieve a given accuracy, and the
convergence rate. The stop condition used here is that the
2-norm of the residual (that is ε(k)(Q) = ||QTx(k)||2) is
less than 10−16 (such a chosen value is quite real if we are
to find probabilities of unlikely but important events — as a
packet loss or a channel jamming — precisely). To improve the
readability we did not use ε(k)(Q) in the results presentation,
but rather:

acc(Q, i) = − log10 ε
(i)(Q). (10)

A. Number of iterations

Table II shows numbers of iterations (external iterations,
that is restarts) used to achieve a given accuracy for selected
parameters m for four methods: GMRES(m) alone (denoted
GMRES(m)) and GMRES(m) preconditioned with IWZ(0)
(denoted IWZ(0)GMRES and (m)IWZ(0)G–(m)), ILU(0) (de-
noted ILU(0)GMRES(m) and ILU(0)G–(m)) and ILU3 (de-
noted ILU3GMRES(m) and ILU3G–(m)).

For a deeper analysis of the influence of the preconditioners
on the method, we consider some more measures.

Let I(M,A, ε) denote a number of restarts (that is external
iterations) needed to achieve the 2-norm of the residual less
than ε for a given matrix A with a given method M . In other
words, I(M,A, ε) is a minimal k for which defined in (9)
ε(k)(A) < ε.

Let us define p(PM,A, ε), which shows the relationship
between the number of iterations needed to achieve a given
accuracy ε with a method M with no preconditioner and the
same method M with a preconditioner P — both for the same
matrix A. We call it iteration speed-up and define as follows:

p(PM,A, ε) =
I(M,A, ε)

I(PM,A, ε)
. (11)

Now, let Is(M,Z, ε) be an average number of restarts
needed to achieve a given accuracy for matrices from a set Z:

Is(M,Z, ε) = avg
A∈Z

I(M,A, ε). (12)

Next, we define ps(PM,Z, ε) which shows the relationship
between the average number of iterations needed to achieve
a given accuracy ε with a method M with no preconditioner
and the same method M with a preconditioner P — for a set
Z of matrices.

ps(PM,Z, ε) =
Is(M,Z, ε)

Is(PM,Z, ε)
. (13)

At last, we are going to define some more characteristics
with p defined above (11). They will be the maximal and
minimal p for a given matrix A solved with a preconditioned
GMRES(m) (for m ∈ {1, . . . ,m0}; with a preconditioner P )
as well as m giving that p:

pmax(PGMRES(m),m0,A, ε) =
= max

1≤i≤m0

p(PGMRES(i),A, ε), (14)

pmin(PGMRES(m),m0,A, ε) =
= min

1≤i≤m0

p(PGMRES(i),A, ε), (15)

mmax(PGMRES(m),m0,A, ε) =
= argmax

1≤i≤m0

p(PGMRES(i),A, ε), (16)

mmin(PGMRES(m),m0,A, ε) =
= argmin

1≤i≤m0

p(PGMRES(i),A, ε). (17)

Whenever we omit the parameter ε (as in
p(ILU(0)GMRES(m),Q) where we mean iteration speed-up
of the GMRES method restarted after m inner iterations
preconditioned with the ILU(0) factorization — and similar),
we assume ε = 10−16.

Fig. 4 shows ps(PGMRES(m),A) and
ps(PGMRES(m),B) — that is the relationship between the
parameter m and the average number of restarts (external
iterations) needed to achieve the given accuracy for P being
preconditioners: ILU(0), ILU3, IWZ(0). The average number
of iterations is counted for two groups of matrices: Group A
with d > 8 (the matrices 1, 3, 5) and Group B with d ≤ 8
(the matrices 2, 4, 6).

Some conclusions that can be drawn from Table II and Fig. 4
are following.

• With the increase of the parameter m the average num-
ber of iterations needed to achieve the assumed accu-
racy of the method GMRES(m), IWZ(0)GMRES(m),
ILU3GMRES(m) and ILU(0)GMRES(m) decreases.

• Regardless of the size of the matrix, the number of iter-
ations needed to achieve a given accuracy is practically
the same and depends on the value of d = nz/n (see
Group A versus Group B).

• In the methods IWZ(0)GMRES(m), ILU(0)GMRES(m)
and ILU3GMRES(m) the number of outer iterations (that
is, restarts) needed to achieve the given convergence is
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Fig. 4. The relationship between the parameter m and the average number
of restarts (external iterations) needed to achieve the accuracy 10−16 for
the matrices of Group A (d > 8) and Group B (d <= 8) for Case I with
preconditioners IWZ(0) (top); ILU(0) (middle); ILU3 (bottom)

less than in the GMRES(m) method, regardless of the
parameter m and the parameter d.

• The value of the iteration speed-up (p) for the matrices
of Group A is not less than for those of Group B.

• For the matrices of Group B, the
growth of p(ILU(0)GMRES(m),Q) and
p(IWZ(0)GMRES(m),Q) is more uniform than
for the matrix of Group A.

Table III shows the minimal and maximal values of p (that
is pmin and pmax from (14) and (15)) and the values of the
parameter m for which those values of p are reached (mmin

and mmax from (16) and (17)) — in Case I.
Table IV provides values p(ILU(0)GMRES(m),Q),

TABLE III
MAXIMAL AND MINIMAL VALUES OF THE CHARACTERISTICS p AND THE

RESPECTIVE VALUES OF m FOR MATRICES OF CASE I

precond. value
matrix ID

1 2 3 4 5 6

IWZ(0)

pmax 3.21 3.00 4.00 5.61 4.20 7.97

mmax 9 8 1 2 1 1
pmin 2.00 2.50 2.00 3.50 2.00 3.75
mmin 8 2 7 10 6 9

ILU(0)

pmax 3.21 3.11 3.67 5.69 3.82 8.21

mmax 1 1 1 1 1 1
pmin 1.33 2.00 1.33 2.80 1.00 3.20
mmin 10 10 10 10 10 9

ILU3

pmax 1.45 1.32 1.83 2.33 2.00 3.23

mmax 1 1 1 2 1 1
pmin 1.18 1.11 1.25 1.67 1.00 1.60
mmin 3 8 7 9 10 9

TABLE IV
VALUES OF p(ILU(0)GMRES(m),Q), p(IWZ(0)GMRES(m),Q),

p(ILU3GMRES(m),Q) FOR THE MATRIX Q OF CASE II FOR DIFFERENT

VALUES m

m p(IWZ(0)G–(m)) p(ILU(0)G–(m)) p(ILU3G–(m))

5 5.07 7.89 0.45
14 5.00 5.00 0.25
25 4.50 3.00 0.16
29 3.50 2.33 0.15
33 3.00 2.00 0.19
41 2.00 1.33 0.17
49 1.50 1.00 0.14
61 1.50 1.50 0.16

p(IWZ(0)GMRES(m),Q), p(ILU3GMRES(m),Q) for the
matrix from Case II. In that table we omit Q because there is
only one such a matrix.

From Tables III and IV it can be concluded the following.

• With the growth of parameter m (where m changes from
1 to 10) the value of p for IWZ(0) and for ILU(0)
decreases in both cases.

• IWZ(0) and ILU(0) improve (that is: decreases) the
number of restarts for both cases — even 8 times.

• The ILU3 preconditioner in Case I always reduces the
number of restarts. However, in Case II it always spoils
the performance.

• IWZ(0) and ILU(0) behave similarly for both cases.

B. Convergence rate of GMRES(m)

1) Case I: Fig. 5 presents the relationship between
the number of iterations and the achieved accuracy
acc(Q, i) (see (10)) for the matrices with ID 3 and
4 (from Group A and B, respectively) for the meth-
ods GMRES(m), IWZ(0)GMRES(m), ILU(0)GMRES(m) and
ILU3GMRES(m) for two selected values of parameter m.
The values of m were chosen after the analysis of Table III
and Fig. 4. The maximal iteration speed-up is for m = 1
(regardless of the preconditioner) and the minimal iteration
speed-up is usually for m = 10.

Fig. 5 shows that the higher value of the param-
eter m, the more rapidly convergent is the method
GMRES(m). Analogously, the higher value of the parameter
m means that IWZ(0)GMRES(m), ILU(0)GMRES(m) and
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ILU3GMRES(m) methods are faster convergent regardless of
the matrix.

The convergence curve acc(Q, i) as a function of i is
almost of the same shape for any particular parameter m
for the GMRES(m) method and the IWZ(0)GMRES(m),
ILU(0)GMRES(m) and ILU3GMRES(m) methods — only for
the preconditioned GMRES(m) methods the curve is shifted
upwards. It means that these methods are faster convergent
than the GMRES(m) method.

The best preconditioner for GMRES(m), regardless of the
parameter m and of the properties of the matrix, is IWZ(0).

For the the matrix of ID 3 from Group A and m = 10
(Fig. 5, higher middle) all the investigated preconditioners give
similar results.

2) Case II: Fig. 6 shows the relationship between
the number of iterations and the accuracy acc(Q, i) (10)
for the GMRES(m) method and the IWZ(0)GMRES(m),
ILU(0)GMRES(m), ILU3GMRES(m) methods for m = 5 and
m = 49. The values of m was based on Table IV — the
maximal iteration speed-up (regardless of the preconditioner)
is usually for m = 5 and minimal — for m = 49.

Fig. 6 and Table IV show the following conclusions.

• The preconditioner ILU3 is completely not fitted for Case
II, worsening the accuracy of the method GMRES(m). As
we noticed in the end of Section III-B, ILU3 reduces to
the Jacobi preconditioner for such banded matrices as in
Case II and it causes such a poor accuracy, because the
Jacobi preconditioner is rather little effective.

• The best preconditioner is ILU(0). However, as m grows,
the iteration speed-up declines.

For the matrix of Case II it is not always the case, that
IWZ(0) improves the convergence rate, because that matrix has
a banded structure. ILU(0), being diagonally arranged, seems
to be more consistent with the matrix’s structure than IWZ(0)
— the structure of the latter “crosses” the structure of the
original matrix and thus spoils it.

V. CONCLUSION

Those numerical experiments helped us understand the
effect of incomplete preconditioners on the convergence of
preconditioned Krylov subspace methods — like GMRES(m).

Using IWZ(0) and ILU(0) improves the convergence of
the GMRES(m) method (that is, decreases the number of the
iterations needed to achieve the required accuracy — even 8
times) used to solve sparse linear equation systems connected
to Markov chains.

Both preconditioners — IWZ(0) and ILU(0) — work sim-
ilarly in terms of the iteration speed-up for the described
method and matrices. However, ILU3 appears to be completely
useless in the presented cases.

The rate of the convergence of the projection method
GMRES(m) as well as the preconditioned one does not depend
on the size of the matrix Q.

The speed of convergence in terms of numbers of iterations
(restarts) of GMRES(m) depends on the structure of the
matrix. There were tested matrices for two different cases and

Fig. 5. The plot of the achieved accuracy acc(Q, i) as a function of i for
various matrices and values of m: matrix ID = 3 of Group A, m = 1 (top);
matrix ID = 3 of Group A, m = 10 (higher middle); matrix ID = 4 of
Group B, m = 1 (lower middle); matrix ID = 4 of Group B, m = 10
(bottom)
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Fig. 6. The plot of the achieved accuracy acc(Q, i) as a function of i for
the matrix of Case II for various values of the parameter m: m = 5 (top);
m = 49 (bottom)

they were characterized by the fact that the matrices from case
I had no structure, the matrix from case II had a really clear
structure.

The matrices of Case I were further distinguished by their
density, given by d = nz/n. And the set of the matrices which
had a low value of the parameter d (d < 8) gave slower
convergence and they require additional techniques to improve
the rate of the convergence. This technique could be some

more complicated preconditioning.
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