
Task Scheduling with Restricted Preemptions

Tomasz Barański

Email: tbaransk@poczta.onet.pl

Abstract—One of basic problems in task scheduling
is finding the shortest schedule for a given set of tasks.
In this paper we analyze a restricted version of the
general preemptive scheduling problem, where tasks
can only be divided into parts at least as long as a
given parameter k. We introduce a heuristic scheduling
method TSRP3. Number of processors m, number of
tasks n and task lengths pi are assumed to be known. If
n ≥ 2m and k is sufficiently small, TSRP3 finds shortest
possible schedule with O(m) divisions in polynomial
time. In addition we introduce a more robust algorithm
TSRP4 based on combining TSRP3 with multi-fit.

I. Introduction

U
NRESTRICTED scheduling on parallel processors
is solved in linear time using McNaughton’s [7]

algorithm. Unfortunately this approach often leads to
processing of some tasks only for a very short time before
or after preemption. Preemptions are usually costly in
some way, so we introduced “granularity” threshold k, so
that no part of any divided task can be shorter than k,
which should be large enough to make any preemption
times and costs negligible. Unless k is 01 this problem is in
general NP-hard (see [4]). This paper is based on research
thesis by Tomasz Barański [2].

II. The model

In this paper we consider deterministic scheduling prob-
lem of type2

P | k − pmtn | CMAX

We schedule n tasks with known lengths pi on m identical
processors3 numbered from 1 to m. Tasks can be divided,
but no part of any task may be shorter than some given
parameter k. Any processor can work on at most one
task at any given time, and tasks cannot be executed in
parallel. All tasks must be completed. The aim is to find
a schedule of minimum makespan CMAX . There is also a
secondary goal of decreasing number of divisions, and out
of 2 schedules with the same CMAX we prefer the one with
fewer divisions.

We assume task lengths pi, division threshold k and
lengths of all divided task parts to be integer. This doesn’t
make our solution less general, since real numbers within

1Actually 1, since we assume lengths of all tasks and their parts
are integer.

2See [6] or [8] for description of three-field notation of scheduling
problems.

3By that we mean some abstract portions of work to be done on
abstract machines, not actual microprocessors.

✛ ✲ ✛ ✲

k k

✛ ✲

pi ≥ 2k

✛ ✲

✛ ✲

k k

✛ ✲

pi < 2k

Fig. 1. Example of divisible task (left) and non-divisible task (right).
First task can be divided anywhere within the grated area.

a few orders of magnitude can be scaled to integers with
reasonable precession. Using integers eliminates rounding
errors and simplifies calculations.

In [4] two similar models were presented. In first tasks
could be preempted after being processed for at least k
time. In second tasks could be preempted after being
processed for a multiple of k, which allowed for easier
task switching. Algorithms for solving both models were
proposed, however there were no restriction on lengths
of final parts of tasks, so in some cases they could be
processed for a very short time after preemption.

III. TSRP3 algorithm

A. TSRP3 introduction

TSRP3 was developed by Tomasz Barański while work-
ing on research thesis [2] and based on earlier work by
Michał Bakałarczyk [1]. It is basically a heavily modified
version of McNaughton’s algorithm with best-fit heuris-
tics, and it never divides any task in more than 2 parts.

1) Sorting and grouping Tasks: Before TSRP3 begins
scheduling all tasks are sorted and divided into four
groups:

TSK pj ≤ k Shorter than k
TND k < pj < 2k Not divisible
TDIV 2k ≤ pj < 3k Divisible
TGD 3k ≤ pj Well divisible

Divisible tasks in groups TGD and TDIV are generally
scheduled shortest to longest, while non-divisible TND

and TSK are generally scheduled longest to shortest. The
longer a divisible task is, the easier it is to divide in such a
way, that schedule of current processor has desired length.
The shorter a non-divisible task is, the easier it is to fit
into schedule on current processor. Indivisible tasks from
TND generally cause the most problems while scheduling,
so TSRP3 tries to schedule them first.

2) Estimating CMAX : TSRP3 starts scheduling from
the first processor and in each step either assigns some
task or task fragment to current processor or closes it,

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 231–238

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 231

and moves to next processor. This decision is based on
task lengths and current approximation of schedule length
worst ≥ CMAX . After TSRP3 finishes scheduling tasks
on a processor it moves to next one, and never returns to
any previous processor. To explain worst we first need to
introduce a few other estimates.

While scheduling tasks we always know the number of
current processor proc, hence the number of processors on
which we can still schedule tasks prc is (2). We also know
the sum of lengths of all unscheduled tasks4 σ and loads
of all processors tj

Z including current tproc
Z .

C∗ := max







max
j

pj ,









1

n

n
∑

j=1

pj















(1)

McNaughton’s lower bound on schedule length is defined
in (1). Since only one processor can work on each task
at any given time, no schedule can be shorter than the
longest task. All schedules must also be at least as long
as the sum of all task lengths divided by the number of
processors.5 C∗ is calculated only once, while (2) to (6)
must be recomputed once for each processor.

prc := m + 1 − proc (2)

Number of processors where we can still schedule tasks
prc must account for current processor as well, hence in
(2) we add 1 to m − proc.

slack := prc · C∗ − σ − tproc
Z (3)

In (3) slack is the total amount of extra space that
we could in theory allocate among remaining processors
without going over C∗. To put it another way: slack tells
how “sloppy” we can be scheduling tasks, while still (in
theory) being able to complete optimal schedule.

hb :=

{

⌈

σ
prc

⌉

if slack ≤ 0,

C∗ if slack > 0.
(4)

As was shown in explanation of McNaughton’s lower
bound on CMAX , any schedule must be at least as long
as the sum of task lengths divided by the number of
processors, hence form prc and σ we can derive approxi-
mation hb (4). If slack < 0 definition (4) is equivalent to

hb := C∗ +
⌊

−slack
prc

⌋

.

slackeff :=

{

⌊

slack
prc

⌋

if hb = C∗ and slack > 0,

0 else.
(5)

Effective slack slackeff (5) is slack divided among
processors that we have left. It is assumed, that if on

4In some cases we may not change processor after task division, so
σ has to include tproc+1

Z
5We compute ceiling to get an integer value. For example if sum

of task lengths is 31 and we have 3 processors, CMAX with integer
task parts’ lengths cannot be less than 11.

current processor we have tproc
Z ≥ worst − slackeff , it

is safe to close current processor and move to next one
without increasing CMAX .

lvb :=

{

C∗ − slack − (hb − C∗)(prc − 1) if slack < 0,

C∗ − slack if slack ≥ 0.

(6)
Approximation lvb ≥ 0 in (6) is defined as “What is the

shortest schedule on current processor that won’t increase
hb when we change processor to next one”.

worst := max

{

C∗, hb, max
j∈1..prc+1

tj
Z

}

(7)

Our final estimate of CMAX is worst defined in (7).
It is the smallest number that is at least as big as C∗

and current hb and greatest processor load so far. TSRP3
tries to make load of current processor as close to worst
as possible before closing it, and moving to next processor.
This is explained in detail in next subsection.

3) Load zones: TSRP3 behaves differently depending
on the load of current processor tproc

Z . Load zones are based
on our current estimate worst. They are:

(S1) 0 ≤ tproc
Z < worst − 2k

(S2) worst − 2k ≤ tproc
Z < worst − k

(S3) worst − k ≤ tproc
Z < worst

(S4) worst ≤ tproc
Z

4) Choosing the task that fits best on current processor
and goal function dist(x): 6

TSRP3 uses best-fit heuristics to determine which task
or task part is the best candidate to schedule on active
processor before moving to next one. It is generally best
to close processor when lvb ≤ tproc

Z ≤ worst and tproc
Z is

as close to worst as possible. As can clearly be seen in (7)
increasing tproc

Z above worst will increase worst and thus
possibly CMAX . This is still the best course of action under
some circumstances, but should be severely discouraged
when it comes to choosing among other options. If current
processor is closed when its load was below lvb, future hb
will increase. This is almost as bad as going above worst,
but its effects may be spread among all remaining prc − 1
processors. The “punishment” for schedule length beyond
[lvb, worst] can be some sufficiently big number, like 4k or
2k + worst − lvb. The former is more convenient, and the
latter more correct. From these considerations we get the
following function that can choose the best candidate (or
no candidate) to schedule on current processor:

dist(x) :=











4k + lvb−x
prc−1

if x < lvb,

worst − x if x ∈ [lvb, worst],

4k + x − worst if worst < x.

(8)

6This is actually dist(x, worst, lvb, prc), but we abbreviated it to
dist(x)

232 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

TABLE I
Explanation of used symbols

Symbol Meaning See Upd.
n Total number of tasks — No
m Total number of processors — No
pj Durations of tasks j ∈ 1 . . . n — No

CMAX Schedule length — No
C∗ Lower bound on CMAX (1) No

proc Current processor proc ∈ 1 . . . m — Proc.
prc Number of processors left (2) Proc.

tj
Z

Load of processor j. Usually tproc
Z

— Yes
σ Sum of unscheduled task durations — Yes

slack Amount of “Slack space” under C∗ (3) Proc.
hb Estimate CMAX from σ and prc (4) Proc.
lvb Lowest tproc

Z
that won’t increase hb (6) Proc.

worst Current estimate of CMAX (7) Yes.
slackeff Amortized slack space on proc (5) Proc.

When choosing task or task part zi to assign to current
processor, TSRP3 finds zi, for which dist(tproc

Z + pi) or
dist(tproc

Z + length) is the lowest. If dist(tproc
Z) is lower

than for any task part we can schedule, TSRP3 moves to
the next processor without scheduling anything on current
one. It is more convenient to make dist(x) a real function.
Integer values can be used, but for x < lvb you have to use
⌈dist(x)⌉ and choose the longest task among those with
the same (lowest) value of dist().

Table I presents a list of symbols used by TSRP3, along
with references to equations defining these symbols. Col-
umn Upd. says how often a variable is updated: No means
a fixed parameter, Proc. means update once per processor,
and Yes means update before scheduling another task.

B. TSRP3 Step by step

TSRP3 begins from the first processor. It assigns tasks
to the current (open) processor, trying to make its load
as close to worst as possible. When current processor
is sufficiently loaded, TSRP3 closes it, and moves to
(opens) next processor, which in turn becomes the cur-
rent processor. For each assignment it generally chooses
some task or task part zi, for which dist(tproc

Z + zi) is
lowest. This task or task part is called candidate, and
may be compared to more tasks, scheduled, or discarded
if dist(tproc

Z + zi) > dist(tproc
Z) where tproc

Z is the load of
current processor. If a task is divided, it’s remaining part
is assigned to the next processor. TSRP3 can be presented
in the following steps:

1) Sort and divide tasks in groups TSK , TND, TDIV ,
TGD. Compute C∗.

2) If there are at least m well divisible tasks TGD, sched-
ule all tasks of length C∗ on separate processors.

3) If there are no unscheduled tasks, finish.
4) If m ≥ n, schedule all remaining tasks on separate

processors and finish.
5) If proc = m, schedule all remaining tasks on proc,

and finish.
6) Recompute slack, slackeff , hb, lvb, worst, updating

them once per processor.

7) Update tproc
Z and worst. If (worst−slackeff) ≤ tproc

Z

and 0 < tproc
Z change processor to next one and go

to step 5.
8) Take action depending on zone in which tproc

Z is.
This is explained in detail below, and may result in
scheduling some task or task part, changing proces-
sor to the next one, or choosing a candidate task to
schedule.

9) Choose candidate task to schedule. Take into ac-
count:

• Candidate from step 8 if chosen
• Longest and shortest tasks in each group.
• Task division
• combo (divides 2 or 3 tasks at once, explained

later).

If dist(tproc
Z + zi) ≤ dist(tproc

Z) for chosen candidate
zi, schedule it on current processor, otherwise move
to next processor. Go to step 3

In step 2 we slightly reduce number of divisions in spe-
cial cases, with lots of well divisible tasks. Step 4 takes care
of some trivial cases. It is better to compare the number
of unscheduled tasks to number of open processors except
current one, rather than total numbers of processors and
tasks. Steps 3 to 9 constitute the main loop of TSRP3.
Step 7 is there to avoid divisions where not necessary. If
slackeff is positive, we have a good chance to complete
optimal schedule. Step 8 is the most complex, and is
explained below.

Following subsections are divided by zones S1 to S4,
and in one run of step 8 only one subsection gets executed
depending on tproc

Z . When a task is scheduled, it is con-
sidered to be removed from appropriate task set, therefore
“TSK 6= ∅” means “there is at least one unscheduled task
shorter than k”. In some cases we use term “divisible task”
zi. It means that zi ∈ TDIV ∪ TGD, and we generally
use it, when we want to select as candidate the shortest
task, that we can conveniently divide to make load of
current processor equal to worst. Each subsection consists
of sequentially checking some conditions and executing
some instructions, such as scheduling a task. If conditions
for an item are met, then its instructions are executed,
including possibly jump to step 3 described above. If
conditions for an item are not met, ignore it’s instructions,
and jump to next item on the same level. By making some
task zi a candidate to assign in step 9 we mean comparing
it first to current candidate (if any) with dist() and only
making zi candidate, if it’s dist(pi + tproc

Z) is lower than
for current candidate.

1) Step 8, zone S1: tproc
Z ∈ [0, worst − 2k):

• If TND 6= ∅, choose as candidate the longest non-
divisible task zi such that either pi ≤ (worst − k −
tproc
Z) or (worst − slackeff − tproc

Z) ≤ pi. If the latter
condition is met, or zi is the longest task in TND,
schedule that task on current processor and go to step
3.

TOMASZ BARANSKI: TASK SCHEDULING WITH RESTRICTED PREEMPTIONS 233

• If there are at least prc well divisible unscheduled
tasks left in TGD

– Find the shortest divisible task zi ∈ TDIV ∪ TGD

such that either (pi + tproc
Z) ∈ [worst −

slackeff , worst] or (pi + tproc
Z) ≤ (worst −k).

If such a task exists schedule it and go to step 3.
– Find the shortest divisible task zi such that

(pi + tproc
Z) ≥ (worst + k − slackeff) If it exists

divide it, scheduling part of length min {worst−
tproc
Z , pi − k} on processor proc and the rest on

proc + 1, change current processor to next one
and go to step 3.

• If there are more unscheduled tasks in TSK than in
TDIV ∪ TGD, schedule the longest task from TSK on
current processor and go to step 3.

• If TDIV ∪ TGD 6= ∅

– If the shortest divisible task zi is longer than
(worst − k − tproc

Z) and shorter than (worst +
k − slackeff − tproc

Z) and (pi + tproc
Z) /∈

[worst −slackeff , worst] and there are unsched-
uled tasks in TSK , keep scheduling them on cur-
rent processor until they run out, or one of above
conditions is no longer satisfied or scheduling
even shortest task would cause tproc

Z to increase
above (worst − k).7

– Choose the shortest divisible task zi as candidate.
– If task zi is longer than (worst − k − tproc

Z) and
shorter than (worst + k − slackeff − tproc

Z)
and (pi + tproc

Z) /∈ [worst − slackeff , worst],
choose as candidate zi the shortest divisible task
of length at least (worst +k −slackeff −tproc

Z). If
it does not exist, then make the longest divisible
task candidate. 8

– If (pi + tproc
Z) ≤ (worst − k) or (pi + tproc

Z) ∈
[worst − slackeff , worst], schedule zi on current
processor and go to step 3.9

– If (pi + tproc
Z) ≥ (worst + k − slackeff) divide zi,

scheduling part of length min {worst−tproc
Z , pi−

k} on processor proc and the rest on proc + 1,
change current processor to next one and go to
step 3.

– If there are at least 2 unscheduled divisible tasks
and (worst − tproc

Z) ≥ 2k and tproc
Z ≥ k, try

dividing 2 or 3 tasks using combo10 heuristics. If
successful, change processor to the next one and
go to step 3.

– Find the longest divisible task such that (pi +
tproc
Z) ≤ worst. If it exists, make it candidate to

add zi.

• Go to step 9.

7If there is a problem with division, tproc

Z
can be increased by

scheduling some short tasks.
8By dividing task as short as possible, we preserve longer divisible

tasks to be scheduled on another processor.
9We avoid zone S3 with this check.
10Explained in III-C.

Operations in this zone are the most complex, because
we are actively avoiding zones S3 and S4 except for
range [worst−slackeff , worst]. We also divide long tasks,
if scheduling them would make tproc

Z ≥ (worst + k −
slackeff). Before going to step 9, where we do some oper-
ations common to all zones, we may or may not choose a
task as candidate to schedule. If selected, it is compared in
step 9 to other possibilities, including scheduling nothing
and moving to next processor.

2) Step 8, zone S2: tproc
Z ∈ [worst − 2k, worst − k):

• If TND 6= ∅, find the longest task zi ∈ TND such that
(pi + tproc

Z) ≤ worst. If it exists make it candidate
to schedule. If it satisfies (pi + tproc

Z) ≥ (worst −
slackeff) schedule it, and go to step 3.

• If there is some divisible unscheduled task left.

– If the shortest divisible task is shorter than
(worst + k − slackeff − tproc

Z), and there are un-
scheduled tasks in TSK , keep scheduling them on
current processor until they run out, or the above
condition is no longer satisfied or scheduling even
the shortest task would cause tproc

Z to increase
above worst − k.

– Find the shortest divisible task zi such that
(pi + tproc

Z) ≥ (worst + k − slackeff). If it exists,
divide zi, scheduling part of length min {worst−
tproc
Z , pi − k} on processor proc and the rest on

proc + 1, change current processor to next one
and go to step 3.

• Go to step 9.

In this zone we first try to find a non-divisible task of
length (pi + tproc

Z) ∈ [worst−slackeff , worst]. If that fails,
we try to divide some task instead, possibly increasing
tproc
Z with tasks from TSK . Other actions, common to all

zones, are considered in step 9.
3) Step 8, zone S3: tproc

Z ∈ [worst − k, worst):

• If there is at least one unscheduled task in TSK , find
the longest task zi in TSK such that (pi + tproc

Z) ≤
worst. If it exists, make zi the candidate to schedule.
If (pi + tproc

Z) ≥ (worst − slackeff) schedule zi, and
go to step 3.

• Go to step 9.

Here the only actions that make sense are: fitting a task
from TSK or scheduling task part of length k or changing
current processor to next one without scheduling anything.
Only the first option is not covered in step 9.

4) Step 8, zone S4: tproc
Z ≥ worst:

• Move to next processor, and go to step 9.

We never actually get to this zone, because condition
tproc
Z ≥ (worst − slackeff) is checked in step 7, but it is

safer to include this check.

C. Dividing 2 or 3 tasks with combo

Description of TSRP3 algorithm has two references to
combo heuristics, that tries to divide 2 or 3 tasks before
changing current processor to next one. This is useful,

234 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

worst − 2k
worst − k

worst

Pproc+1 res1 res2

Pproc tproc
Z

expr1 expr2

t2 expr2 res2

t1 expr1 res1

Fig. 2. Dividing two tasks with combo.

when there are some short divisible tasks, and scheduling
any one task, divided or not, will guarantee tproc

Z to be in
either zone S3 or S4 and outside [worst−slackeff , worst].
While this is counter to our stated goal of reducing the
number of divisions, our primary aim is still to minimize
CMAX .

Consider the following example: slackeff = 0, tproc
Z =

(worst − 2k − ǫ), all indivisible tasks have lengths pi >
(k + ǫ), and all divisible tasks have lengths pi = (2k + λi),
where ǫ, λ ≥ 0 and ǫ 6= λi and ∀i ǫ − k < λi < ǫ + k.
No single task can be assigned or divided so as to avoid
zones S3 and S4 or make load of current processor equal
to worst. This can be done by increasing tproc

Z by about
k, or more precisely between ǫ + k − λi and ǫ + k for some
i. It can be achieved by double division of tasks, as shown
in Fig. 2.

If there are 2 divisible tasks z1 and z2 such that p1+p2 ≥
4k + ǫ−slackeff 11 and they can be divided in a way that
satisfies (9) to (12), and scheduled like in Fig. 2, then it
won’t result in any conflicts (overlapping task execution
on different processors).

tproc
Z ≥ k (9)

expr1, res1, expr2, res2 ≥ k (10)

tproc
Z ≥ res1 (11)

res1 + res2 ≤ tproc
Z + expr1 (12)

res1 + res2 + expr2 ≤ worst (13)

Inequality (9) is a sanity check derived from (10) and
(11). Inequality (10) ensures that there are no task parts
shorter than k. Inequality (11) is more precise than (9)
and makes conflict between expr1 and res1 impossible.
Inequality (12) does the same for expr2 and res2. Finally
inequality (13) forbids combo on too long tasks, and makes
sure that tproc+1

Z ≤ (worst − k).

11This is a bit too restrictive. In some cases the next best course
of action chosen with dist() is so bad, that it is better to use combo
anyway, even if it makes tproc

Z
/∈ [worst − slackeff , worst]. If this

next best thing would be assigning whole task zi longer than (worst−
tproc
Z

), scheduling 2 task parts shorter than pi may be a better option.
On the other hand when there are few processors left, and we are to
either move to next processor while tproc

Z
< lvb, or assign some task

zi and land in zone S3 or S4, scheduling 2 task parts whose sum is
longer than pi and shorter than the resulting hb, may also be better.

Pproc+1 res1 res2 res3

Pproc tproc
Z

expr1 expr2 expr3

t3 expr3 res3

t2 expr2 res2

t1 expr1 res1

worst
worst − k

worst − 2k
worst − 3k

Fig. 3. Dividing three tasks with combo.

As it turns out, sometimes dividing 2 tasks with combo
is not enough to make tproc

Z = worst. Such situation arises
when there are only divisible tasks left, there is at least 3
of them, tproc

Z = (worst − 3k + ǫ) and pi = (2k + λi) where
∀i 0 ≤ ǫ < λi < k+ǫ

2
. In this case scheduling whole task

or dividing 2 tasks causes tproc
Z to be in zone S3, which

is undesirable. To solve this problem we find 3 tasks that
satisfy inequalities (14) to (19) and assign their parts like
in Fig. 3.

tproc
Z ≥ k (14)

expr1, res1, expr2, res2, expr3, res3 ≥ k (15)

tproc
Z ≥ res1 (16)

tproc
Z + expr1 ≥ res1 + res2 (17)

tproc
Z + expr1 + expr2 ≥ res1 + res2 + res3 (18)

res1 + res2 + res3 + exp3 ≤ worst (19)

It is generally best to choose for combo as short a tasks
as possible, divide shortest first and longest last, and
always make expr as long as possible, while reserving k
space for all future expr.

Scheduling resi on different processors would relax some
restrictions, but it would complicate computing sigma,
hb, lvb, and require keeping track of loads on too many
processors. We do not recommend it, and in practice task
divisions between current and next processors suffice.

It is never necessary to divide more than three tasks at
once. If scheduling any divisible task zi would cause tproc

Z

to end up in S3 or S4, than increasing tproc
Z by at most 2k

by dividing at most two other tasks, makes (tproc
Z + pi) ≥

(worst+k). Therefore dividing at most 3 tasks will always
suffice, provided it is possible.

D. Sufficient conditions of optimality for TSRP3

With k = 0 (or k = 1 for all task parts’ lengths integer)
optimal schedule can be completed in O(n) time with
McNaughton’s algorithm. Scheduling indivisible tasks is
in general an NP-hard problem (although there are rea-
sonably good rough algorithms). The question arises of
where is the threshold value kl between these two cases or
how many well divisible tasks are needed for guaranteed

TOMASZ BARANSKI: TASK SCHEDULING WITH RESTRICTED PREEMPTIONS 235

completion of optimal schedule in polynomial time. This
subsection addresses these questions by showing sufficient
conditions for TSRP3 to complete an optimal schedule. As
shown in section V these conditions are very restrictive,
and in fact TSRP3 often completes optimal schedule with
fewer than m divisible tasks.

Case a)

For 0 ≤ l ≤ m tasks pi = C∗ (20)

For other tasks: pi ≤ C∗ − 2k (21)

There are 2(m − l − 1) tasks in TGD (22)

For pairs of them pa + pb ≤ (C∗ + k) (23)

All tasks (20) of length C∗ are assigned to sepa-
rate processors. This way we will decrease number
of divisions while still getting optimal schedule.
Condition (23) stands for this: We have at least
2(m − l − 1) well divisible tasks, and we can form
(m − l − 1) pairs, such that sum of their lengths
is ≤ (C∗ + k). This may be done by choosing
some subset M of TGD, and pairing longest and
shortest tasks in M . They may be used for combo.
Let us consider what actions TSRP3 will take
depending on tproc

Z . If tproc
Z = 0, then after

scheduling any task we have tproc
Z ≤ C∗ − k

because (21), so we avoid zones S3 and S4. If
tproc
Z ≤ C∗ − 2k and by scheduling some task zi

we would end up in zone S3, we can do a double
division instead. If C∗ − 2k < tproc

Z ≤ C∗ − k,
we can divide one task from (22). Therefore we
never get to zones S3 and S4, and we always have
enough long tasks to make tproc

Z = C∗ by dividing
one or two of them.

Case b)

For 0 ≤ l ≤ m tasks pi = C∗ (24)

For other tasks: pi ≤ C∗ − 2k (25)

There are (m − l − 1) well divisible tasks (26)

And 2(m − l − 1) more divisible tasks (27)

Sum of 1 (26) and 2 (27) is ≤ C∗ + 2k (28)

Now we have at least (m−l−1) well divisible tasks
and additionally at least 2(m − l − 1) divisible
tasks. This is different from above case in that we
can have fewer well divisible tasks, but need more
divisible tasks overall. We also need to be able
to combine these tasks in triplets satisfying (28).
Reasoning proceeds as above, but if necessary we
divide 3 tasks.

Case c)

For 0 ≤ l ≤ m tasks we have pi = C∗ (29)

For other tasks: pi ≤ C∗ − 2k (30)

There are (m − l − 1) well divisible tasks (31)

Sum of tasks in TSK is ≥ 2(m − l − 1) (32)

If by scheduling a well divisible task zi we get
tproc
Z > (C∗ − k), then we need to extend tproc

Z

by at most 2k to divide zi and make tproc
Z = C∗.

Tasks shorter than k are useful for this. Since zone
of possible division as shown in Fig. 1 for well
divisible task is at least k long, and TSK are at
most k long, there never will be any trouble fitting
some TSK on current processor to divide zi as
long as there are enough of them.

Case d)

For 0 ≤ l ≤ m tasks pi = C∗ (33)

For other tasks: pi ≤ C∗ − 2k (34)

We have (m − l − 1) tasks of length pi ≥ 4k
(35)

And (m − l − 1) tasks of length pi ≥ k (36)

Tasks (36) are there to avoid some malicious
cases. Long tasks (35) have division zone of length
at least 2k This makes it easy to make loads of
all processors at most C*. If by scheduling an
indivisible task, we would get to zone S3, we can
instead divide one of tasks (35). If by scheduling
a divisible task we would get to zone S3, we can
do a double division instead.

Case e)

|a| + |b| + |c| + |d| ≥ (m − l − 1) (37)

We have a combination of cases a) b) c) d) and
the sum of number of processors, for which at
least one of them can be used to make tproc

Z = C∗

is at least (m − l − 1). We use different methods
to complete optimal schedule.

1) Conclusions: These are sufficient, but not necessary
conditions for completion of optimal schedule by TSRP3.
As shown in section V, in practice TSRP3 will usually
find optimal schedule as long as there are at least m/2
divisible tasks and 2m other tasks. Having at most l, where
0 ≤ l ≤ m tasks of length C∗ and other tasks no longer
than C∗ − 2k is forced just to exclude malicious data sets.

A simple rule for finding kl for which TSRP3 will
complete optimal schedule is as follows (38):

L(i) := Length of i-th longest task

ka =

⌊

L(2m)

3

⌋

kb = min

{⌊

L(3m)

2

⌋

,

⌊

L(m)

3

⌋}

kl = max {ka, kb} (38)

As shown in [2], computational complexity of TSRP3
is O(n · log(n)), which is comparable to sorting. Memory
requirements depend on data structures used for schedule,
but are around 100b or less per task.

236 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

IV. TSRP4 Algorithm

TSRP3 works well when there are many long divisible
tasks, but noticeably worse when there are few or none.
TSRP4 is a method for making TSRP3 more robust
with indivisible tasks. As can be concluded from (7) on
page 2 worst either increases or stays the same when we
move to the next processor. TSRP3 tries to make the
load of current processor as close to current worst as
possible, which may lead to overloading last processors
while underloading first processors. To address this we
introduce parameter COGR ≥ C∗, and modify (7) to make
sure that worst ≥ COGR. Our goal then becomes to find
such C∗

OGR that modified TSRP3 can complete a schedule
of length C∗

OGR, but not C∗

OGR − 1.
This is accomplished by first setting COGR to C∗, and

running TSRP3. If the length of resulting schedule len
is C∗ then finish, else C∗ < C∗

OGR ≤ len and C∗

OGR

can be found with bisection of (C∗, len] by completing
O(log(len − C∗)) schedules with modified TSRP3. Sched-
ule completed with TSRP4 is never longer than completed
with TSRP3 for the same input.

V. Experimental comparison of TSRP3 with

other scheduling algorithms

To show behavior of TSRP3 and TSRP4 depending on
k, they were tested for 10 randomly generated data sets.
Each contained 500 tasks with Gauss distribution with µ =
100 and σ = 30 to schedule on 100 processors. If there are
fewer tasks than processors then scheduling is trivial, and
if there are many (10+) tasks of wildly varying lengths,
there is usually a good schedule without task divisions.
Scheduling is most problematic, when there are few tasks
per processor. Even statistically small sample of 10 data
sets is enough to form opinion on behavior of TSRP3 and
TSRP4 for changing k. The results were averaged and are
shown in Fig. 4. They were taken from [2], where a slightly
different version of TSRP3 was implemented.

Some labels in Fig. 4 require explanation. C∗ is Mc-
Naughton’s lower bound on schedule length (1). LPT
and Multi-fit are algorithms scheduling tasks without
dividing them. LPT assigns the longest task to the first
processor that becomes idle. Multi-fit was our inspiration
for TSRP4. It has “superior” and “subordinate” parts.
Superior part manipulates parameter COGR to find C∗

OGR

as described in IV. Subordinate part starts from the first
processor and in each step either schedules on current
processor the longest task that fits under COGR or moves
to the next processor.

In Fig. 4 there are two main areas. Below k = 60 there
are at least m divisible tasks, and there are some well
divisible tasks. Above k = 80 the number of divisible tasks
drops rapidly.

In III-D it was shown, that with sufficient number
of divisible tasks TSRP3 can complete optimal schedule
of length C∗. There may however exist some optimal
schedules with fewer task divisions. Sufficient conditions

for completing optimal schedule given in III-D turn out to
be very restrictive. During tests and barring maliciously
chosen data sets TSRP3 was generally not failing at
completing optimal schedules until number of divisible
tasks dropped below m/2. When there are few or none
divisible tasks, TSRP3 usually completes schedules longer
than LPT, which does not divide tasks at all. When there
are no divisible tasks, and k changes, length of TSRP3
schedule fluctuates, because border between TSK and TND

moves, so tasks are scheduled in different order. This leads
to a somewhat paradoxical observation that sometimes
a shorter schedule may be completed by increasing k.
These fluctuations generally stop well before all tasks are
classified as TSK .

Algorithm TSRP4 was written to mitigate shortcomings
of TSRP3 when there are few or none divisible tasks. As
you can see in Fig. 4 schedule completed with TSRP4
is never longer than with TSRP3. For relatively short k
TSRP4 schedule length is optimal, and as k grows, CMAX

approaches length of schedule completed with Multi-fit.
This shows similarity of these two algorithms. Fluctuations
with changing k and no divisible tasks are also smaller.
This is an improvement over TSRP3, but it may require
completing several schedules to find C∗

OGR.

In paper [2] an even better scheduling algorithm was
devised by completing 2 schedules: one with TSRP4 and
another with a good scheduling algorithm that doesn’t
divide tasks: “LPT + PSS”, and choosing shorter one, or
one with fewer divisions, if both schedule lengths were the
same. In short LPT + PSS uses local search to balance
loads of processors in schedule completed by LPT.

Algorithm LPT + PSS doesn’t divide tasks, and was
developed by Tomasz Barański and presented in [2]. It
has proven to be superior to both multi-fit and LPT in
terms of CMAX , but takes longer to compute. Several
speed improvements were proposed to mitigate this. LPT
+ Presistent Simple Swap starts by computing a schedule
with LPT and sorting processors by load. In each step it
chooses the most loaded processor PMAX , and the least
loaded PMIN and tries to balance their loads by either
moving one task from PMAX to PMIN or switching a
pair of tasks between them. It tries to balance loads of
these two processors as much as possible. If successful
it updates PMAX and PMIN and continues balancing
loads, otherwise it changes PMIN to another processor
with schedule shorter than that of PMAX . PSS stops when
CMAX reaches C∗ or no further balancing can be done.
Any feasible schedule without tasks division can be used as
starting point for PSS, such as multi-fit or even scheduling
all tasks on a single processor, but in [2] LPT + PSS
produced the best results. For data sets used in Fig. 4
in 9 out of 10 cases LPT + PSS produced schedule with
CMAX = C∗. It may seem superior to TSRP4, but in some
cases optimal schedule can only be obtained by dividing
tasks.

TOMASZ BARANSKI: TASK SCHEDULING WITH RESTRICTED PREEMPTIONS 237

495

500

505

510

515

520

525

20 40 60 80 100 120 140 160

LPT

Multi-Fit

C∗

C∗

LPT
Multi-Fit

TSRP3

+ + + + +
+

+

+
+ +

+

+
+

+
+

+ ++
TSRP4

× × × × × × ×
× ×

× × × × × × × ×

×

Fig. 4. Relation between k (horizontal axis) and CMAX (vertical axis) for TSRP3 and TSRP4. Less is better. Results are averaged for 10
data sets with similar C*. While k was gradually increased, Task durations stayed the same. C∗ is lower bound on schedule length. LPT
and Multi-fit don’t divide tasks, and are shown for comparison. As k increases, number of divisible tasks drops, and TSRP3 produces worse
results. TSRP4 is much more robust.

VI. Concluding remarks

In this article we proposed TSRP3, a heuristic algorithm
for completing schedules with partial task division. As we
have shown in (III-D) it is guaranteed to find optimal
schedule if there are at least 2m tasks 3k long or longer.

While schedules completed with TSRP4 may be satis-
factory in general, and optimal with enough divisible tasks,
in some cases dividing tasks in at most two parts is not
enough. We will illustrate this with a simple example: We
have m = 3 processors and n = 7 tasks, with k = 4. There
is one task of length p1 = 12 and six tasks pi = 6. To get
optimal schedule we need to divide the longest task in 3
parts of length 4 and schedule one on each machine with
two indivisible tasks. This way we get CMAX = C∗ = 16.
If we divide the longest task in at most 2 parts, then no
part of it will be on one processor P3. Therefore we either
schedule 2 or 3 indivisible tasks on that processor. If we
schedule 3 tasks, their combined length is 6 · 3 = 18. If
we schedule only 2 tasks, than we need to divide tasks of
length 12+6·4 = 36 among 2 processors, so schedule won’t
be shorter than 18. Therefore in this example we need to
cut some task in more than 2 fragments to get optimal
schedule. A method of doing this is hinted in [2].

TSRP3 or TSRP4 may be used to solve one-dimensional
bin-packing problem, like cut-weld problem, by changing
m, running TSRP4 and comparing resulting CMAX to
target bin size. This is similar to method used in TSRP4

to find C∗

OGR. Please note, however, that in bin-packing
problem there are no conflicts. We recommend using a
dedicated algorithm for bin-packing rather than TSRP4.
We suggest introducing some cost of dividing tasks for
further study of TSRP3. Divivision of tasks in more than
two parts is also worth investigating.

References

[1] Michał Bakałarczyk, “Szeregowanie zadań z oraniczoną podziel-
nością na procesorach równoległych”, Praca inżynierska, PW
EiTI, Warszawa 2006.

[2] Tomasz Barański, “Szeregowanie zadań z częściową podzielnoś-
cią na procesorach równoległych”, Praca magisterska, PW EiTI,
Warszawa 2010.

[3] Krzysztof Trakiewicz “Modele i algorytmy optymalizacji
rozkroju i spawania ksztaïż¡townikïż¡w”, Praca magisterska, PW
EiTI, Warszawa 2004.

[4] K. Ecker, R. Hirschberg “Task scheduling with restricted pre-
emptions”, p. 464-475, LNCS vol. 694, Springer-Verlag 1993.

[5] Nir Menakerman, Raphael Rom “Bin packing with item frag-
mentation”, WADS 2001, LNCS 2125, p. 213-324, Springer-
Verlag, Heidelberg 2001.

[6] A. Janiak “Wybrane problemy i algorytmy szeregowania zadań
i rozdziału zasobów”, Akademicka Oficyna wydawnicza PLJ,
Warszawa 1999.

[7] Robert Mc Naughton, “Scheduling with Deadlines and Loss
Functions”, Management Science, Vol. 6, No. 1, 1959.

[8] B. Chen, C.N. Potts, G.J. Woeginger. “A review of ma-
chine scheduling: Complexity, algorithms and approximability.”,
Handbook of Combinatorial Optimization, Vol. 3, 1998, 21-169.

[9] Manfred Kunde “A multifit algorithm for uniform multipro-
cessor scheduling”, Lecture Notes in Computer Science, 1982,
Volume 145/1982, 175-185.

238 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

