
A comparison of geometric analogues of

Holographic Reduced Representations, original

Holographic Reduced Representations and Binary

Spatter Codes

Agnieszka Patyk-Łońska, Marek Czachor, and Diederik Aerts

Abstract—Geometric Analogues of Holographic Reduced Rep-
resentations (GA HRR) employ role-filler binding based on
geometric products. Atomic objects are real-valued vectors in
n-dimensional Euclidean space and complex statements belong
to a hierarchy of multivectors. The paper reports a battery of
tests aimed at comparison of GA HRR with Holographic Reduced
Representation (HRR) and Binary Spatter Codes (BSC). Firstly,
we perform a test of GA HRR which is analogous to the one
proposed by Plate in [13]. Plate’s simulation involved several
thousand 512-dimensional vectors stored in clean-up memory.
The purpose was to study efficiency of HRR but also to provide
a counterexample to claims that role-filler representations do
not permit one component of a relation to be retrieved given the
others. We repeat Plate’s test on a continuous version of GA HRR
– GAc (as opposed to its discrete version described in [12]) and
compare the results with the original HRR and BSC. The object
of the test is to construct statements concerning multiplication
and addition. For example, “2 · 3 = 6” is constructed as
times2,3 = times+ operand ∗ (num2 +num3)+ result ∗num6.
To look up this vector one then constructs a similar statement
with one of the components missing and checks whether it
points correctly to times2,3. We concentrate on comparison of
recognition percentage for the three models for comparable data
size, rather than on the time taken to achieve high percentage.
Results show that the best models for storing and recognizing
multiple similar statements are GAc and Binary Spatter Codes
with recognition percentage highly above 90.

Index Terms—distributed representations, geometric algebra,
HRR, BSC, scaling.

I. INTRODUCTION

HOLOGRAPHIC Reduced Representations (HRR) and

Binary Spatter Codes (BSC) are distributed represen-

tations of cognitive structures where binding of role–filler

codevectors maintains predetermined data size. In HRR [13]

binding is performed by means of circular convolution

(x⊛ y)j =

n−1∑

k=0

xkyj−kmodn. (1)

of real n-tuples or, in ‘frequency domain’, by componentwise

multiplication of (complex) n-tuples,

(x1, . . . , xn)⊛ (y1, . . . , yn) = (x1y1, . . . , xnyn). (2)

Bound n-tuples are superposed by addition, and unbinding

is performed by an approximate inverse. A dual formalism,

where real data are bound by componentwise multiplication,

was discussed by Gayler [6]. In BSC [8], [9] one works with

binary n-tuples, bound by componentwise addition mod 2,

(x1, . . . , xn)⊕ (y1, . . . , yn) = (x1 ⊕ y1, . . . , xn ⊕ yn),

xj ⊕ yj = xj + yj mod 2, (3)

and superposed by pointwise majority-rule addition; unbinding

is performed by the same operation as binding.

One often reads that the above models represent data by vec-

tors, which is not exactly true. Given two vectors one does not

know how to perform, say, their convolution or componentwise

multiplication since the result depends on basis that defines the

components. Basis must be fixed in advance since otherwise all

the above operations become ambiguous. It follows that neither

of the above reduced representations can be given a true and

meaningful geometric interpretation. Geometric Analogues of

Holographic Reduced Representations (GA HRR) [2] can be

constructed if one defines binding by the geometric product,

a notion introduced in 19th century works of Grassmann [7]

and Clifford [5].

The fact that GA HRR is intrinsically geometric may be

important for various conceptual reasons — for example, the

rules of geometric algebra may be regarded as a mathematical

formalization of the process of understanding geometry. The

use of geometric algebra in distributed representations has

been inspired by a well-known fact, that most people think in

pictures, i.e. two- and three-dimensional shapes, not by using

sequences of ones and zeroes.

In order to grasp the main ideas behind GA HRR let us con-

sider an orthonormal basis b1, . . . , bn in some n-dimensional

Euclidean space. Now consider two vectors x =
∑n

k=1 xkbk
and y =

∑n

k=1 ykbk. The scalar

x · y = y · x (4)

is known as the inner product. The bivector

x ∧ y = −y ∧ x (5)

is the outer product and may be regarded as an oriented plane

segment (alternative interpretations are also possible, cf. [4]).

1 is the identity of the algebra. The geometric product of x

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 221–228

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 221

and y then reads

xy =

n∑

k=1

xkyk 1

︸ ︷︷ ︸

x·y

+
∑

k<l

(xkyl − ykxl)bkbl

︸ ︷︷ ︸

x∧y

. (6)

Grassmann and Clifford introduced geometric product by

means of the basis-independent formula involving the mul-

tivector

xy = x · y + x ∧ y (7)

which implies the so-called Clifford algebra

bkbl + blbk = 2δkl1. (8)

when restricted to an orthonormal basis. Inner and outer

product can be defined directly from xy:

x · y =
1

2
(xy + yx), x ∧ y =

1

2
(xy − yx).

The most ingenious element of (7) is that it adds two ap-

parently different objects, a scalar and a plane element, an

operation analogous to addition of real and imaginary parts of

a complex number. Geometric product for vectors x, y, z can

be axiomatically defined by the following rules:

(xy)z = x(yz),

x(y + z) = xy + xz,

(x+ y)z = xz + yz,

xx = x2 = |x|2,

where |x| is a positive scalar called the magnitude of x. The
rules imply that x · y must be a scalar since

xy + yx = |x+ y|2 − |x|2 − |y|2.

Geometric algebra allows us to speak of inverses of vectors:

x−1 = x/|x|2. x is invertible (i.e. possesses an inverse) if

its magnitude is nonzero. Geometric product of an arbitrary

number of invertible vectors is also invertible. The possibility

of inverting all nonzero-magnitude vectors is perhaps the

most important difference between geometric and convolution

algebras.

Geometric products of different basis vectors

bk1...kj
= bk1 . . . bkj

,

k1 < · · · < kj , are called basis blades (or just blades). In

n-dimensional Euclidean space there are 2n different blades.

This can be seen as follows. Let {x1, . . . , xn} be a sequence

of bits. Blades in an n-dimensional space can be written as

cx1...xn
= bx1

1 . . . bxn
n

where b0k = 1, which shows that blades are in a one-to-one

relation with n-bit numbers. A general multivector is a linear

combination of blades,

ψ =

1∑

x1...xn=0

ψx1...xn
cx1...xn

, (9)

with real or complex coefficients ψx1...xn
. Clifford algebra

implies that

cx1...xn
cy1...yn

= (−1)
∑

k<l
ykxlc(x1...xn)⊕(y1...yn),(10)

where ⊕ is given by (3). Multiplication of two basis blades

is thus, up to a sign, in a one-to-one relation with exclusive

alternative of two binary n-tuples. Accordingly, (10) is a

projective representation of the group of binary n-tuples with
addition modulo 2.

GA HRR is based on binding defined by geometric product

(10) of blades while superposition is just addition of blades

(9). The discrete GAd is a version of GA HRR obtained if

ψx1...xn
in (9) equal ±1. The first recognition tests of GAd,

as compared to HRR and BSC, were described in [12]. In the

present paper we go further and compare HRR and BSC with

GAc, a version of GA HRR employing “projected products”

[2] and arbitrary real ψx1...xn
. We also repeat Plate’s scaling

test ([13], Appendix I) and compare test results for GAc, HRR

and BSC models.

Throughout this paper we shall use the following notation:

“∗” denotes binding roles and fillers by means of the geometric

product and “+” denotes the superposition of sentence chunks,

e.g.

“Fido bit Pat” = biteagt ∗ Fido+ biteobj ∗ Pat. (11)

Additionally, “⊛” will denote binding performed by circular

convolution used in the HRR model and a∗ denotes the

involution of a HRR vector a. A “+”’ in the superscript of

x+ denotes the operation of reversing a blade or a multivector

x: (bk1...kj
)+ = bkj

. . . bk1 . Asking a question will be denoted

with “♯”, as in

“Who bit Pat?”

= (biteagt ∗ Fido+ biteobj ∗ Pat) ♯ biteagt (12)

≈ Fido.

The size of a (multi)vector means the number of memory

cells it occupies in computer’s memory, while the magnitude

of a (multi)vector V = {v1, . . . , vn} is its Euclidean norm
√∑n

i=1 v
2
i .

For our purposes it is important that geometric calculus

allows us to define in a very systematic fashion a hierarchy

of associative, non-commutative, and invertible operations that

can be performed on 2n-tuples. The resulting superpositions

are less noisy than the ones based on convolutions, say.

Such operations are in general unknown to a wider audience,

which explains popularity of tensor and convolution algebras.

Geometric product preserves dimensionality at the level 2n-
dimensional multivectors, where n is the number of bits

indexing basis vectors. Moreover, all nonzero vectors are

invertible with respect to geometric product, a property absent

for convolutions and important for unbinding and recognition.

A detailed analysis of links between GA HRR, HRR and BSC

can be found in [2]. In particular, it is shown that both GA

HRR and BSC are based on two different representations (in

222 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

group theoretical sense) of the additive group of binary n-
tuples with addition modulo 2. Actually, the latter observation

was the starting point for studying geometric algebra forms of

reduced representations [3].

II. THE GAc MODEL

Multivector (9) associated with n-dimensional

Euclidean space can be represented by the 2n-tuple
(ψ01...0n , . . . , ψ11...1n). Geometric product of two such

2n-tuples is again a 2n-tuple. In this sense geometric product

is analogous to bindings employed in HRR or BSC, but we

can still proceed in several inequivalent ways. For example,

since a product of two basis blades is again a basis blade

multiplied by ±1, we can require that ψx1...xn
= ±1. Such a

discrete version of GA HRR was tested vs. HRR and BSC in

[12], and will be denoted here by GAd (discrete GA HRR).

The continuous GAc model differs greatly from GAd.

First of all, we do not begin with a general 2n-dimensional

multivector. Atomic objects are real-valued vectors in n-
dimensional Euclidean space, in practice represented by n-
tuples of components taken in some basis. A hierarchy of

multivectors is reserved for complex statements, formed by

binding and superposition of atomic objects. An n-dimensional

vector, when seen from the multivector perspective, is a highly

sparse 2n-tuple: Only n out of 2n components can be nonzero.

The procedure we employ was suggested in [2]. The space

of 2n-tuples is split into subspaces corresponding to scalars

(0-vectors), vectors (1-vectors), bivectors (2-vectors), and so

on. At the bottom of the hierarchy lay vectors V ∈ R
n,

having rank 1 and being denoted as
1

V . An object of rank

2 is created by multiplying two elements of rank 1 with

the help of the geometric product. Let
1

V= {α1, α2, α3} and
1

W= {β1, β2, β3} be vectors in R
3. A multivector

2

X of rank

2 in R
3 comprises the following elements (cf. [10])

2

X=
1

V
1

W=

α1

α2

α3

β1
β2
β3

 =

α1β1 + α2β2 + α3β3
α1β2 − α2β1
α1β3 − α3β1
α2β3 − α3β2

, (13)

the first entry in the array on the right being a scalar and the

remaining three entries being 2-blades. For arbitrary vectors in

R
n we would have obtained one scalar (or, more conviniently:(
n
0

)

scalars) and

(
n
2

)

2-blades.

Let
2

X= {γ1, γ2, γ3, γ4} and
1

V= {α1, α2, α3} be two

multivectors in R
3. A multivector

3

Z of rank 3 in R
3 may

be created in two ways: as a result of multiplying either
1

V by
2

X or
2

X by
1

V . Let us concentrate on the first case

3

Z=
1

V
2

X=

α1

α2

α3

γ1
γ2
γ3
γ4

=

α1γ1 − α2γ2 − α3γ3
α1γ2 + α2γ1 − α3γ4
α1γ3 + α2γ4 + α3γ1
α1γ4 − α2γ3 + α3γ2

. (14)

Here, the first three entries in the resulting matrix are 1-blades,

while the last entry is a 3-blade. For arbitrary multivectors of

rank 1 and 2 in R
n we would have obtained

(
n
1

)

vectors

and

(
n
3

)

trivectors. We cannot generate multivectors of rank

higher than 3 in R
3, but it is easy to check that in spaces

R
n>3 a multivector of rank 4 would have

(
n
0

)

scalars,

(
n
2

)

bivectors and

(
n
4

)

4-blades. The number of k-blades in a

multivector of rank r is described by Table I. It becomes clear

that a multivector of rank r over Rn is actually a vector over

a
∑⌊ r

2 ⌋
i=0

(
n

2i+ r mod 2

)

-dimensional space.

As an example let us consider the following roles and

fillers being normalized vectors drawn randomly from R
n with

Gaussian distribution N(0, 1
n
)

Pat = {a1, . . . , an},
male = {b1, . . . , bn},

66 = {c1, . . . , cn},

name = {x1, . . . , xn},
sex = {y1, . . . , yn},
age = {z1, . . . , zn}.

(15)

PSmith, who is a 66 year old male named Pat, is created by

first multiplying roles and fillers with the help of the geometric

product

PSmith =

= name ∗ Pat+ sex ∗male+ age ∗ 66

= name · Pat+ name ∧ Pat+ sex ·male+

sex ∧male+ age · 66 + age ∧ 66 (16)

=

∑n
i=1(aixi + biyi + cizi)

a1x2 − a2x1 + b1y2 − b2y1 + c1z2 − c2z1
a1x3 − a3x1 + b1y3 − b3y1 + c1z3 − c3z1

.

.

.

an−1xn − anxn−1 + bn−2yn − bnyn−1 + cn−1zn − cnzn−1

= [d0, d12, d13, . . . , d(n−1)n]
T

= d0 + d12e12 + d13e13 + · · ·+ d(n−1)ne(n−1)n, (17)

where e1, . . . , en are orthonormal basis blades. In order to be

decoded as much correctly as possible, PSmith should have

the same magnitude as vectors representing atomic objects,

therefore it needs to be normalized. Finally, PSmith takes

the form of

PSmith = [d̂0, d̂12, d̂13, . . . , d̂(n−1)n]
T , (18)

where d̂i =
di

√

∑(n−1)n
j=0,12 d2

j

.

PSmith is now a multivector of rank 2. The decoding

operation

name+PSmith

= name+(name · Pat+ name ∧ Pat+ sex ·male

+sex ∧male+ age · 66 + age ∧ 66) (19)

will produce a multivector of rank 3 consisting of vectors

and trivectors. However, the original Pat did not contain any

trivector components — they all belong to the noise part and

the only interesting blades in name+PSmith are vectors. The

expected answer is a vector, therefore there is no point in

AGNIESZKA PATYK=ŁOŃSKA ET AL.: SOME TESTS ON GEOMETRIC ANALOGUES 223

TABLE I
NUMBERS OF k-BLADES IN MULTIVECTORS OF VARIOUS RANKS IN R

n

rank scalars vectors bivectors trivectors 4-blades . . . data size

1 0
(

n

1

)

0 0 0 . . . O
(

(

n

1

)

)

2
(

n

0

)

0
(

n

2

)

0 0 . . . O
(

(

n

0

)

+

(

n

2

)

)

3 0
(

n

1

)

0
(

n

3

)

0 . . . O
(

(

n

1

)

+

(

n

3

)

)

...
...

...
...

...
...

. . .
...

2r
(

n

0

)

0
(

n

2

)

0
(

n

4

)

. . . O
(

∑r
i=0

(

n

2i

)

)

2r + 1 0
(

n

1

)

0
(

n

3

)

0 . . . O
(

∑r
i=0

(

n

2i + 1

)

)

calculating the whole multivector name+PSmith and only

then comparing it with items stored in the clean-up memory.

To be efficient, one should generate only the vector-part while

computing name+PSmith and skip the noisy trivectors.

Let 〈·〉k denote the projection of a multivector on k-blades.
To decode PSmith’s name we need to compute

〈name+PSmith〉1

= name+namePat+ 〈 name+(name ∧ Pat

+sex ·male+ sex ∧male+ age · 66 + age ∧ 66) 〉1

= Pat+ noise = Pat′. (20)

The resulting Pat′ will still be noisy, but to a lesser degree

than it would have been if the trivectors were present.

Formally, we are using a map ∗11,2 that transforms a multi-

vector of rank 1 (i.e. an n-tuple) and a multivector of rank 2

(i.e. a (1+ (n−1)n
2)-tuple) into a multivector of rank 1 without

computing the unnecessary blades. Let X be a multivector of

rank 2

X = 〈X〉0 + 〈X〉2 = x0 +
∑

l<m

xlmelem, (21)

where xlm = −xml. If A = (A1, . . . , An) is a decoding vector
(actually, an inverse of a role vector), then

A ∗11,2 X = x0A+
∑

l,m

Alxlmem

=
∑

k

(
xAk +

∑

l

Alxlk
)
ek

=
∑

k

Ykek = Y, (22)

with Y = (Y1, . . . , Yn) being an n-tuple, i.e. a multivector of

rank 1. More explicitly,

Yk = (A ∗11,2 X)k = x0Ak +

k−1∑

l=1

Alxlk −

n∑

l=k+1

Alxkl. (23)

The map ∗11,2 is an example of a projected product, introduced

in [2], reconstructing the vector part of AX without com-

puting the unnecessary parts. The projected product is basis

independent, as opposed to circular convolutions. In general,

∗ml,k transforms the geometric product of two multivectors
l

A

and
k

B into a multivector
m

C.

We now need to compare Pat′ with other items stored in

the clean-up memory using the dot product, and since Pat′

is a vector, we need to compare only the vector part. That

means, if the clean-up memory contained a multivector
2t+1

M

of an odd rank, we would also need to compute Pat′ · 〈
2t+1

M 〉1
while searching for the right answer.

This method of decoding suggests that items stored in the

clean-up memory should hold information about their ranks,

which is dangerously close to employing fixed data slots

present in localist architectures. However, a rank of a clean-up

memory item can be “guessed” from its size. In a distributed

model we also should not “know” for sure how many parts

the projected product should reject, but it can certainly reject

parts spanned by blades of highest grades. Unfortunately,

since the geometric product is non-commutative, questions

concerning roles and fillers need to be asked on different sides

of a sentence, forcing atomic objects to hold information on

whether they are roles or fillers and thus, forcing them to be

partly hand-generated. We can either ask question always on

the same side of a sentence and be satisfied with less precise

answers or always ask about only the roles or only the fillers. It

becomes clear, that recognition based on the hierarchy of mul-

tivectors and the projected product is best applicable to tasks

in which questions need to be asked only on one side of the

sentence or in which sentences have predetermined structure.

Before providing formulas for encoding and decoding a

complex statement we need to introduce additional notation for

the projected product and the projection. We have already in-

troduced the projected product ∗ml,k transforming the geometric

product of two multivectors of ranks l and k into a multivector

of rank m. This will not always be the case for complex

statements, since we can produce a multivector that will not

be of any given rank. Let ∗m
l,{α1,α2,...,αk}

denote the projected

product transforming the geometric product of a multivector
l

A and a multivector B containing α1-blades, α2-blades,. . . and

αk-blades into a multivector
m

C . In this way, the projected

product ∗11,2 may be written down as ∗11,{0,2}. By analogy, let

〈·〉{α1,α2,...,αk} denote the projection of a multivector on com-

ponents spanned by α1-blades, α2-blades,. . . and αm-blades.

224 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Let Ψ denote the normalized multivector encoding the

sentence “Fido bit PSmith”, i.e.

Ψ = biteagt ∗ Fido
︸ ︷︷ ︸

rank 2

+ biteobj ∗ PSmith︸ ︷︷ ︸

rank 2
︸ ︷︷ ︸

rank 3

. (24)

Multivector Ψ will contain scalars, vectors, bivectors and

trivectors and can be written down as the following vector

of dimension
∑3

i=0

(
n
i

)

Ψ = α
︸︷︷︸

a scalar

+

n∑

i=1

βiei

︸ ︷︷ ︸

vectors

+

n∑

1=i<j

γijeij

︸ ︷︷ ︸

bivectors

+

n∑

1=i<j<k

δijkeijk

︸ ︷︷ ︸

trivectors

(25)

The following example illustrates how to ask questions in

the GAc architecture.

“Who was bitten?”

The answer to that question will be a multivector of rank 2

Ψ ♯ biteobj = 〈bite+objΨ〉{0,2} = bite+obj ∗
2
1,{0,1,2,3} Ψ

= PSmith′ ≈ PSmith. (26)

Let biteobj = {y1, . . . , yn}, PSmith
′ will then have the form

PSmith′ = (y1e1 + · · ·+ ynen) ∗
2
1,{0,1,2,3}

(

n∑

i=1

βiei +

n∑

1=i<j<k

δijkeijk) (27)

=

n∑

k=1

ykβk

︸ ︷︷ ︸

a scalar

+

n∑

1=i<j

θijeij

︸ ︷︷ ︸

bivectors

, (28)

where

θij = yiβj − yjβi +

n∑

t=1
t6∈{i,j}

ytδijt (29)

with δijt = δtij = −δitj . As previously, PSmith′ should be

compared with appropriate items from the clean-up memory

to produce the most probable answer.

III. OVERVIEW OF PLATE’S SCALING TEST

Plate [13] describes a simulation in which approximately

5000 HRR 512-dimensional vectors were stored in the clean-

up memory. The purpose of his simulation was to study effi-

ciency of the HRR model but also to provide a counterexample

to the claim that role-filler representations do not permit one

component of a relation to be retrieved given the others. We

will repeat Plate’s test on several models and compare the

results.

Let us consider the following atomic objects

numx (for x = 0, . . . , 2500),
times,
plus,

fillers, (30)

result,
operand.

}

roles (31)

At the beginning of the scaling test, relations concerning multi-

plication and addition are constructed. For example, “2·3 = 6”
is constructed as

times2,3 = times+operand∗(num2+num3)+result∗num6.
(32)

Generally, relations are constructed in the following way

timesx,y = times+ operand ∗ (numx + numy)

+ result ∗ numx·y, (33)

plusx,y = plus+ operand ∗ (numx + numy)

+ result ∗ numx+y. (34)

x and y range from 0 to 50 with y ≤ x making a total of

2501 number vectors and 2652 instances of each timesx,y and

plusx,y. As one can notice, the same operand role is used for

both x and y to preserve commutativity of multiplication and

addition.

Plate writes, that a relation can be “looked up” by supplying

enough information to distinguish a specific relation from

others. For example, to look up “2 · 3 = 6” one needs to find

the most similar relationR to any of the following fragmentary

statements

(case 1) times+ operand ∗ num2

+operand ∗ num3, (35)

(case 2) times+ operand ∗ num2

+result ∗ num6, (36)

(case 3) times+ operand ∗ num3

+result ∗ num6, (37)

(case 4) operand ∗ num2 + operand ∗ num3

+result ∗ num6. (38)

Retrieving the missing piece of information in the first three

cases can be done by asking any of the subquestions

(case 1) R ♯ result, (39)

(case 2) R ♯ operand, (40)

(case 3) R ♯ operand. (41)

Case 4 is somewhat more problematic — to look up a missing

relation name (times or plus) one needs to have a separate

clean-up memory containing only relation names or to use an

alternative encoding in which there is a role for relation names.

We will alter Plate’s test by using the latter method.

Plate states that he had tried one run of the system making

a query for each component missing in every relation — this

amounted to 10608 queries. A further 7956 queries had been

made to decode the missing component except for the relation

name. Plate goes on to claim, that the system made no errors.

There appear to be two misstatements in Plate’s claims.

Firstly, we cannot treat subquestions regarding cases 2 and 3

separately, as there are two equally probable answers to each

of these subquestions, provided that relations R2 and R3 point

AGNIESZKA PATYK=ŁOŃSKA ET AL.: SOME TESTS ON GEOMETRIC ANALOGUES 225

correctly to timesx,y. Secondly, consider a fragmentary piece

of information

times+ operand ∗ num0 + result ∗ num0. (42)

In this situation, the missing component can be any of the

numbers numx where x ∈ {0, . . . , 50} and thus, there are

51 atomic objects that are equally probable to be the right

answer. This suggests that Plate regards several answers as

valid ones, as long as the similarity of these answers exceeds

some threshold. To work out the missing component, one then

needs to check which of those potential answers is not in the

original set used for retrieval.

Such a method of investigating scaling properties has more

than a few advantages:

• Inaccuracies mentioned above act as a test if all atomic

objects are created and treated equally. Ideally, every

atomic object of the numx form should be recognized as

a correct answer to the “zero problem” for number of trials
51 ·

100% of the time.

• Prime numbers greater than 100 do not appear in any of

timesx,y and plusx,y relations, therefore they test if the

model is immune to garbage data.

• Numbers ranging from num0 to num100 may be con-

structed in a multitude of ways by addition (num0 by

multiplication) and any given sentence chunk result ∗
numz will appear quite often in the plusx,y relation.

Hence, this is a great way of checking if the model

deals with excessive similarity of a number of complex

statements.

• Atomic objects bound with operand and result range

in variety. On the other hand, there are just two atomic

objects acting as an operation — does it affect in any

way the recognition of operation filler? Indeed, it will

be shown in Section V that recognition of the operation
chunk turns out to be quite interesting depending on the

choice of the architecture.

IV. NOTATION

For the purpose of explaining test results, let us introduce

the following notation. Let S∗
x,y and S+

x,y denote relations

S∗
x,y = operation ∗ times+ operand ∗ (numx + numy)

+result ∗ numx·y, (43)

S+
x,y = operation ∗ plus+ operand ∗ (numx + numy)

+result ∗ numx+y, (44)

for y ≤ x. We chose to use a separate role for a relation

name to enable encoding the information given only operands

and the result. Let F op
i,x,y denote fragmentary statements for

i ∈ {1, 2, 3, 4} and op ∈ {∗,+}

F op
1,x,y = Sop

x,y − result ∗ numx op y, (45)

F op
2,x,y = Sop

x,y − operand ∗ numx, (46)

F op
3,x,y = Sop

x,y − operand ∗ numy, (47)

F op
4,x,y = Sop

x,y − operation ∗ op. (48)

If v is an element of the clean-up memory, then let N(v)
denote the closest neighbor of v, i.e. an element of the clean-

up memory that is most similar to v. If v has more than one

neighbor, then all subquestions during the test are asked to all

of v’s neighbors. In HRR, GAd (with the Hamming measure

of similarity) and GAc it is extremely unlikely for an element

of the clean-up memory to have more than one neighbor due

to the continuous nature of data in these architectures. Let

Qop
i,x,y = N(F op

i,x,y) for i ∈ {1, 2, 3, 4} and op ∈ {∗,+}.
During the test we asked subquestions concerning components

missing in F op
i,x,y and obtained the following (sets of) answers

qop1,x,y = N(Qop
1,x,y ♯ result), (49)

qop2,x,y = N(Qop
2,x,y ♯ operand), (50)

qop3,x,y = N(Qop
3,x,y ♯ operand), (51)

qop4,x,y = N(Qop
4,x,y ♯ operation). (52)

We assume that a missing component is identified correctly

if it is the only neighbor to appropriate answer qop·,x,y or it

belongs to the set of neighbors of qop·,x,y.

V. TEST RESULTS

The software for all tests was developed by A. Patyk-Łońska

in Java language. All tests were performed on an ordinary PC

with dualcore AMD processor with 2 GB RAM.

Tables II through IV compare scaling test results for

• GAc and HRR, both using dot-product as a similarity

measure.

• BSC using Hamming distance as a similarity measure.

Although BSC and HRR models need only n-dimensional

vectors, this is not quite the case for and GAc, which needs

1 + n(n−1)
2 numbers to represent multivectors of rank 2 over

R
n. We present recognitions test results close to 100% and

comment on vector length required for each model to achieve

such percentage. The real number of memory cells used up

by each model is given in brackets in the table headings.

The answers to subquestions Qop
2,x,y ♯ operand and

Qop
3,x,y ♯ operand were considered to be correct if any of the

two possible operands came up as the item most similar to

those subquestions. In case of other questions and subquestions

only exact answers were taken into consideration.

50 runs of the test were performed on each model. Unlike

in Plate’s test, x and y ranged from 0 to only 20. Hence, there

are 401 number vectors and 462 relation vectors.

The “zero problem” is clearly visible in each tested model,

as the recognition percentage of Q∗
3,x,y barely exceeds 90%.

Nevertheless, Q∗
3,x,y almost always contains at least one of the

operands from the original sentence S∗
x,y since the recognition

percentage of q∗3,x,y reaches 100% for sufficiently large data

size. On the whole, the recognition percentage of q∗2,x,y and

q∗3,x,y does not differ greatly from the recognition percentage

of q+2,x,y and q+3,x,y in any model.

Table entries marked with a “∆” indicate that despite the

wrong recognition of a fragmentary sentence, the missing com-

ponent has been identified correctly. In all tested models such

situations arise for sentences with one of the operands missing.

226 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

TABLE II
RECOGNITION PERCENTAGE FOR GAc.

Questions R10 R20 R30 R40

(46) (191) (436) (781)

Q∗

1,x,y 89.76% 99.98% 99.99% 100.0%

q∗1,x,y 39.44% 95.28% 99.58% 99.88%

Q∗

2,x,y 91.12% 99.73% 99.98% 100.0%

q∗2,x,y 36.24% 83.86% 97.92% 99.81%

Q∗

3,x,y 83.97% 91.15% 91.33% 91.34%

q∗3,x,y 41.27% 84.92% 98.05%∆ 99.82%∆

Q∗

4,x,y 98.90% 99.60% 99.63% 99.59%

q∗4,x,y 42.01% 95.56% 99.24% 99.52%

Q
+
1,x,y 89.39% 99.99% 100.0% 100.0%

q
+
1,x,y 39.09% 95.99% 99.76% 99.95%

Q+
2,x,y

86.96% 99.59% 99.96% 100.0%

q
+
2,x,y 35.32% 83.84% 97.97% 99.79%

Q
+
3,x,y 87.00% 99.63% 99.96% 100.0%

q
+
3,x,y 35.12% 83.84% 97.98% 99.79%

Q
+
4,x,y 99.05% 99.53% 99.51% 99.54%

q
+
4,x,y 45.84% 94.73% 99.14% 99.49%

TABLE III
RECOGNITION PERCENTAGE FOR HRR.

Questions N = 200 N = 300 N = 400 N = 500

Q∗

1,x,y 29.1% 27.06% 26.28% 28.51%

q∗1,x,y 31.08%∆ 30.03%∆ 30.30%∆ 32.23%∆

Q∗

2,x,y 54.72% 52.06% 53.10% 53.32%

q∗2,x,y 98.99%∆ 99.92%∆ 99.98%∆ 100.0%∆

Q∗

3,x,y 50.53% 47.93% 49.80% 51.21%

q∗3,x,y 98.92%∆ 99.90%∆ 99.97%∆ 100.0%∆

Q∗

4,x,y 89.23% 90.56% 90.51% 90.29%

q∗4,x,y 90.28%∆ 92.69%∆ 92.42%∆ 92.31%∆

Q
+
1,x,y 28.26% 29.46% 28.03% 28.81%

q+
1,x,y

27.32% 29.37% 28.02% 28.80%

Q
+
2,x,y 53.91% 54.48% 55.26% 54.68%

q
+
2,x,y 98.72%∆ 99.90%∆ 99.99%∆ 99.99%∆

Q+
3,x,y

53.73% 55.23% 55.34% 54.62%

q
+
3,x,y 98.67%∆ 99.91%∆ 99.98%∆ 100.0%∆

Q
+
4,x,y 98.70% 98.75% 98.66% 98.75%

q
+
4,x,y 97.16% 98.55% 98.64% 98.74%

TABLE IV
RECOGNITION PERCENTAGE FOR BSC.

Questions N = 200 N = 300 N = 400 N = 500

Q∗

1,x,y 86.71% 91.65% 93.78% 94.74%

q∗1,x,y 82.82% 90.62% 93.87%∆ 94.95%∆

Q∗

2,x,y 94.42% 97.60% 99.03% 99.44%

q∗2,x,y 99.68%∆ 99.97%∆ 99.98%∆ 100.0%∆

Q∗

3,x,y 86.87% 89.43% 90.50% 90.97%

q∗3,x,y 99.15%∆ 99.47%∆ 99.65%∆ 100.0%∆

Q∗

4,x,y 94.39% 95.58% 95.39% 95.50%

q∗4,x,y 90.78% 94.89% 95.22% 95.44%

Q+
1,x,y

86.38% 91.59% 93.65% 94.71%

q
+
1,x,y 81.71% 90.28% 93.27% 94.57%

Q
+
2,x,y 94.23% 97.77% 99.19% 99.52%

q
+
2,x,y 99.36%∆ 99.94%∆ 100.0%∆ 100.0%∆

Q
+
3,x,y 94.54% 97.39% 98.77% 99.48%

q
+
3,x,y 99.41%∆ 99.94%∆ 100.0%∆ 100.0%∆

Q+
4,x,y 95.40% 95.38% 95.65% 95.66%

q
+
4,x,y 91.81% 94.27% 95.02% 95.27%

AGNIESZKA PATYK=ŁOŃSKA ET AL.: SOME TESTS ON GEOMETRIC ANALOGUES 227

For HRR, however the missing item has been “accidentally”

correctly identified also in cases of missing operation∗times
and result ∗ timesx,y components. Such recognition did not

occur in cases of missing operation∗plus and result∗plusx,y
components, which is distressingly asymmetric.

HRR turned out to be the worst model during this exper-

iment. The recognition percentage of Q∗
1,x,y and Q+

1,x,y is

dangerously low when compared to other Q’s. Both Q∗
1,x,y

and Q+
1,x,y are retrieved from the clean-up memory given only

two operands and the operation type. Since we have only two

operation types, Q∗
1,x,y and Q+

1,x,y will not differ greatly from

each other. This phenomenon is also observable in BSC (but

not in GAc), where the recognition percentage of Q1’s is only

slightly lower than that of the other Q’s. Apart from that

weakness, BSC performs as well as GAc for adequate data

size.

VI. CONCLUSION

Authors developed a new model of distributed representa-

tions based on geometric algebra. Although the data represen-

tations of sentences encoded in this model may have varying

lengths (as opposed to HRR and BSC), it can be justified by

the fact that it is quite logical for sentences that hold more

information to have larger ”volume”.

Tedious calculations presented in Section 2 imply that the

GAc model is best applicable to sentences having a similar

or identical complexity structure, otherwise it may be hard to

make the process of asking questions and retrieving answers

automatic. Because of this limitation, this construction seems

to be a promising candidate for a holographic database.

ACKNOWLEDGMENT

This work was supported by grant G.0405.08 of the

Research Programme of the Research Foundation-Flanders

(FWO, Belgium)

REFERENCES

[1] D. Aerts and M. Czachor, “Tensor-product versus geometric-product
coding”, Physical Review A, vol. 77, id. 012316, 2008.

[2] D. Aerts, M. Czachor, and B. De Moor, “Geometric Analogue of
Holographic Reduced Representation”, J. Math. Psychology, vol. 53, pp.
389-398, 2009.

[3] D. Aerts, M. Czachor, and B. De Moor, “On geometric-algebra represen-
tation of binary spatter codes”. preprint arXiv:cs/0610075 [cs.AI], 2006.

[4] D. Aerts, M. Czachor, and Ł. Orłowski, “Teleportation of geometric
structures in 3D ”, J. Phys. A vol. 42, 135307, 2009.

[5] W.K. Clifford, “Applications of Grassmann’s extensive algebra”, Ameri-
can Journal of Mathematics Pure and Applied, vol. 1, 350–358, 1878.

[6] R. W. Gayler, “Multiplicative binding, representation operators, and
analogy”, Advances in Analogy Research: Integration of Theory and Data

from the Cognitive, Computational, and Neural Sciences, K. Holoyak, D.
Gentner, and B. Kokinov, eds., Sofia, Bulgaria: New Bulgarian University,
p. 405, 1998.

[7] H. Grassmann, “Der Ort der Hamilton’schen Quaternionen in der Aus-
dehnungslehre”, Mathematische Annalen, vol. 3, 375–386, 1877.

[8] P. Kanerva, “Binary spatter codes of ordered k-tuples”. In C. von der
Malsburg et al. (Eds.), Artificial Neural Networks ICANN Proceedings,

Lecture Notes in Computer Science vol. 1112, pp. 869-873, 1996.
[9] P. Kanerva, “Fully distributed representation”. Proc. 1997 Real World

Computing Symposium (RWC97, Tokyo), pp. 358-365, 1997.
[10] N.G. Marchuk, and D.S. Shirokov, “Unitary spaces on Clifford alge-

bras”, Advances in Applied Clifford Algebras, vol 18, pp. 237-254, 2008.
[11] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum

Information. Cambridge: Cambridge University Press, 2000.
[12] A. Patyk, “Geometric Algebra Model of Distributed Representations”,

in Geometric Algebra Computing in Engineering and Computer Science,
E. Bayro-Corrochano and G. Scheuermann, eds. Berlin: Springer, 2010.
Preprint arXiv:1003.5899v1 [cs.AI].

[13] T. Plate, Holographic Reduced Representation: Distributed Representa-

tion for Cognitive Structures. CSLI Publications, Stanford, 2003.

228 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

