

Abstract—Multi-agent based simulations (MABS) of real

world scenarios are attracting growing interest. Complex real

world scenarios require deep knowledge and expertise which

can only be provided by specialists in the application area.

However, it cannot be expected that such experts understand

agent-based technology and simulation. Consequently, tools are

required, which deliver a high level, easy usable interface.

In this article we propose a new simulation framework based

on the JADE framework. Besides extensions to deal with the

time aspect, agent/environment interaction, visualization and

load balancing, we also address the usability of the tool for

specialists from different domains. For this, our framework,

called Agent.GUI, provides an easy to use, customizable

graphical user interface. Overall, Agent.GUI is a powerful tool

for the development of multi-agent based simulations.

I. INTRODUCTION

ulti-agent based simulation (MABS) has been

receiving increasing interest in the recent years. One

reason for this can be seen in the fact that the agent-paradigm

allows the mapping of real world entities to autonomous

software agents as a first approximation. Exploiting further

skills of an agent, like the ability to communicate, learn or

reason, can result in further benefits and new solutions [6],

[18]. In fact, MABS as a sophisticated alternative to

traditional simulation techniques attracts growing interest in

a broad range of disciplines. Examples for their practical as

well as scientific deployment are traffic simulations [16],

crisis management, energy markets or scheduling problems

[10], [15], [11].

But complex scenarios from different domains often bring

their own complexity with them. It can not be assumed that

these domain-specific experts can understand, build or even

control the execution of an agent-based simulation - simply

due to its inherent complexity.

In this article we propose a new simulation framework that

is based on JADE [2]. On the one hand, JADE is extended

by specific functionalities for simulation purposes like time

and agent synchronization, agent/environment interaction,

visualization and load balancing in order to simplify the

work for an agent-based developer on such concerns as much

as possible.

On the other hand, a main focus is on users, who are not

familiar with multi-agent systems or distributed simulations.

Here our framework provides a multi-language based GUI

that can easily be customized to domain specific

requirements.

In this paper we will focus on two important aspects of our

framework, the ability for extending the frameworks

graphical user interface and the bidirectional interaction of

agents with their environment by using our adapted service

for simulations.

This article is structured as follows. The next section will

give some background information and will motivate our

work, while section 3 will present the above mentioned

capabilities of our framework. In section 4 we will show an

application, which compares the use of our simulation

service to the use of ACL for the agent/environment

interaction. Section 5 presents the related work. Finally,

section 6 concludes the paper.

II. BACKGROUND AND MOTIVATION

Agents can be regarded as autonomous, problem-solving

computational entities with social abilities that are capable of

effective proactive behavior in open and dynamic

environments. There are a number of definitions for agents

(e.g. [17], [12]) and most of them are associating the

properties autonomy, social ability, reactivity, proactively

and intelligence to agents.

Considering reactive or proactive behaviors of agents,

agents can exhibit different levels of sophistication.

Literature discusses different types of sophistication (e. g.

deliberative, learning or simple reactive one) which we do

not want to repeat here.

A Multi-agent system (MAS) is a loosely coupled set of

agents which were composed in order to solve problems that

monolithic systems (or single agents) can not solve. In order

to find the solution of a problem, the agents have to rely on

communication, collaboration, negotiation, responsibility

delegation and trust Also this subject is discussed in detail in

the literature [18].

M

Agent.GUI: A Multi-agent Based Simulation Framework

Christian Derksen

DAWIS

University of Duisburg-Essen,

Schützenbahn 70,

45127 Essen, Germany

Email:

christian.derksen@icb.uni-due.de

Cherif Branki
School of Computing,

 University of the West of

Scotland, Scotland

Email: cherif.branki@uws.ac.uk

Rainer Unland
DAWIS

University of Duisburg-Essen,

Schützenbahn 70,

45127 Essen, Germany

Email:

rainer.unland@icb.uni-due.de

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 623–630

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 623

A. JADE - Java Agent DEvelopment Framework

JADE
1
 is a Java-based framework, which allows

developers to implement agent-based systems. JADE is

designed as a middleware platform that provides the runtime

environment for implemented agents.

The framework provides relevant basic classes that are to

be extended to adapt it to the specific need of the application

in question. For example the base element agent can hold

states and knowledge, which can be internally changed by

using pluggable behaviors of different base types. These

base behaviors in turn, can be composed to complex parallel

or sequential behaviors, which can be hierarchically

organized.

For communication purposes JADE provides a FIPA-

based message mechanism, which relies on an

asynchronously working message-box mechanism at the

receiver of a message. Message contents can be composed

by using simple textual information, complex but serializable

content-objects or parts of individual ontologies. The latter

can be built in order to provide a domain specific vocabulary

for the involved agents [2], [5].

JADE offers several optional services, which can be

configured by explicitly addressing their use in the parameter

set for the platform start. Here are for instance services

available for agent mobility, fault tolerance or the FIPA
2

compliant DirectoryFacilitator. JADE services can be

considered as an intermediate layer between platform and the

abode of the agent and are especially useful if information

have to be shared over the whole platform. For more specific

requirements JADE allows to build individual services.

Agents reside in so called agent-containers on the top of

the platform. With the initial start of JADE the Main-

Container will be started as well. In order to extend the

platform to a distributed system, an administrator can start

other JADE instances on remote systems. Defining the

necessary set of parameters, the remotely started JADE

instance will join the platform during runtime by adding a

new container to it, which results to the fact that control over

the remote system is required.

With respect to our work, we would like to mention here

that JADE does not provide any specific support for MABS

like for example the definition of a central and synchronized

environment model or the measurements of the current

system load. To use JADE for the development of such a

system means to start from scratch.

B. Modeling activities for a Multi-agent based simulation

The modeling activities that developer has to face in order

to provide an MABS to end users are manifold. In order to

not overload this subject, the most important aspects are

discussed here. For a comprehensive discussion it is referred

to the literature [3], [7], [8].

1 http://jade.tilab.com/ and [2]
2 http://www.fipa.org/

Figure 1 below provides a rough overview to the elements

on which developers have to work on. It is to recognize, that

the development has to focus on several main parts. These

are, in order to their importance and their influence on a

simulation: the environment model, the scheduling of the

simulation and the Multi-Agent system itself.

Since agents, by its definition, acting in their environment,

one of the first things to be developed for a MABS is the

environment model. According to the suggestions of Russel

and Norvig [14] environments can be classified into different

types considering aspects like accessibility and determinism.

Furthermore they can be static or dynamic, discrete or

continuous and episodic or non-episodic.

These classifications imply already the presents (or the

absence) of time and shows the close relationship between

the scheduling of a simulation in conjunction with the

environment. Independently of whether this model has to be

visualized or not - which additionally increases the

developing effort - the type and the data model for it has to

be defined first.

Additional modeling effort is also required for the

scheduling of the simulation, which can be in principle event

based, time-driven or a mixture of them. Furthermore, time

dependent simulations can be either continuous, discrete or

hybrid. In case of continuous simulations, each time step is

very small, which results de facto in a continuous system

behavior. Parts of the simulated system can be for example

modeled and described through differential equations, which

can be used in order to calculate a time dependent system

reaction. Discrete simulations are using the time to look for

statistically or randomly sized time intervals to cause certain

events. These events will determine the (next) state of the

system. Additionally, a simulation can be seen as hybrid, if

the model has properties which are either continuous or

discrete [6], [10], [13].

After defining the environment model and deciding which

scheduling strategy has to be used, the Multi-Agent system

has to be built. Every autonomous entity, object and

relationship between them has to be modeled and, later on, to

be implemented. From the MAS-specific perspective this

means that:

• agents have to be identified and their types have to be

laid down (e. g. deliberative or learning agent as well as

predator or pray agent),

• necessary agent behaviors and their compositions have to

be defined,

• communication and all other protocols have to be set as

well as a specific ontology,

• negotiation and collaboration have to be considered.

One of the last points to be mentioned here is the

interaction between environment and agent. Since an agent

can act in its environment, the environment, in turn, may

react or respectively act on the agent. If this is an inherent

624 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

point of a simulation, it has to be modeled and implemented

as well.

Beside this and considering a simulation, which is usable

for experts of different domains, developers have also to

focus on graphical user interfaces for the configuration and

the interaction with the simulation.

C. Execution of distributed Simulations

The main intention for distributing a simulation is

scalability and reduction of local workloads, in order to

speed up the simulation, or to allow the simulation to be

bigger in terms of the number of calculating nodes and

agents. Thus, on the one hand, a simulator needs to be able

to spread its simulation to an arbitrary number of computers

while, on the other hand, the load over all nodes needs to be

balanced in a meaningful way.

This is basically a statement that indicates a further aspect

of our tool. The inherent problem of load balancing is widely

discussed and not only a subject in the field of simulations.

The number of publications is very high so that its treatment

requires a separate discussion, which can not be covered in

this presentation of our framework.

D. Usability for Developers and end users

Building simulation software that enables end users to

work with Multi-agent based simulations, results in dealing

with a set of further requirements, which exceeds the needs

for “simply” providing a development framework. While a

framework and its elements are to be well and transparently

documented for developers, the end user application

additionally has to be extendable, in order to match the

user’s demand. Also it should be easy to understand and use.

However, neither usability studies [9] nor agent-human

interaction will be discussed in this paper. Nevertheless, it

needs to be mentioned, that one motivation for the tool is to

be seen in finding an optimum between a support for MAS

or MABS developers while, additionally, keeping the

predefined user interface as open as possible for all kinds of

applications.

Overall we described here the difficulties and the

enormous effort, which developer has to face in order to

build a MABS from the scratch and providing such

simulations to end users.

From this point of view it is certainly not possible, that we

present a full description of our framework in this paper.

Consequently, in the next section we focus on a general

description of our framework, explanations on how the user

application can be extended and the use of our simulation

service, which is build for a bidirectional agent/environment

interaction.

III. AGENT.GUI - INFRASTRUCTURE AND USAGE

Agent.GUI enables developer to create a JADE-based

MAS application, which can be directly used by the end

users through the prearranged application window of our

framework. This end user application is able to control

JADE, which means that end users can manage the JADE

platform and their agents as well as the developed MABS.

The Agent.GUI end user application is based on Java-

Swing. This multi language tool allows the handling of

JADE agencies by considering the developed MAS and its

resources as an encapsulated system, called project. Such a

project can be configured within the application and can

afterwards be executed and distributed.

A. General Functionalities for agent projects

Agent.GUI handles a JADE MAS and its resources as a

project. Starting from an already fully developed multi-agent

system with agents that are able to meet demands placed on

them, the application requires only some information

relevant for the handling of the MAS and its resources. To

Interaction / Negotiation / Collaboration !

MAS

actionsperceptions

Agent

Knowledge

Rules

Behaviours

Scheduling / Timing

Agent-Types !

MAS - Platform

Node 1 Node 2 Node n...Node 3

Distribution ! Load Balancing !

Application / GUI

End-User Functionality
- Setup-Configuration (Open File)

- Start Simulation / Execution

- Pause Simulation

- Interact with Simulation
- Stop Simulation (Save File)

- Analysis

Visualization
- Environment Model

- Domain specific Information

…

Distribution
- Load Measurement
- Node control

- Balancing

Environment / Virtual Reality

A

A

A

A A

A

A

A

A

A

A

A

A

A

A

A

A

Sensor Actuator

Figure 1: Elements in MABS

CHRISTIAN DERKSEN, CHERIF BRANKI, RAINER UNLAND: AGENT.GUI: A MULTI-AGENT BASED SIMULATION FRAMEWORK 625

get control over these resources, an Agent.GUI project has to

be defined and configured initially. In the context of a

software lifecycle, we see this as the final step, which has to

be done by the developer of the MABS. After this the system

should be ready for use by the end user.

 Besides assigning a general project name and some

textual information the final configurations that a developer

has to provide can be done as follows:

• The framework offers the usage of one of two predefined

environment model types. This can be, up to now, either

a continuous two-dimensional environment or a graph

that can act as a central environment model. Both models

have already a tailored visual representation which will

appear according to its selection. This topic we are

planing to discuss in a different presentation.

• External Resources can be picked from the local file

system. There it can be chosen between compiled jar-

files or complete folders (e.g. bin-Folders of an IDE),

which will be added dynamically to the Java-Classpath at

runtime.

• Extending and customizing the PlugIn-class of our

framework, the developer can add her/his own GUI

elements to a project (see pargraph B of this section).

• From our point of view an ontology can be more than just

the central element for the communication of agents. It

can also provide comprehensive domain models for a

simulation. To use them within the application, the

developer can select and add them to the project.

Agent.GUI offers a reflective, graphical access to

selected subparts of the ontology, so that classes can be

initialized and filled with specific values. The ontology is

to be created by the BeanGenerator of Protégé3 .

• JADE-Agents can be run by using start arguments.

During the instantiation of an agent they can be passed to

it as a simple array of objects. Knowing the required

object types and their order for a single agent, the

developer can assign this information to the project-

definition for later use by the end users. The object types

can be selected from the underlying ontologies for the

project.

• During the JADE-Configuration the needed base services

are to be identified and the definition of the port for the

JADE middleware is to be done.

After these above mentioned configurations the MABS

should be ready to use for end users and the work for

developer is done. Since an end user is meant to use the

JADE Multi-agent System for her/his own purpose

Agent.GUI enables her/him to configure different start setups

for the agency. Furthermore, if selected, one of the

predefined simulation environments can be configured in

order to apply the project agents to different situations and

environments.

3 http://protege.stanford.edu/

B. Programming interfaces for developer

Developers can use Agent.GUI and their libraries with

their IDE simply by adding the core jar-file to their own

project as an external library. From here on, the

programming interfaces for customizing a MABS and its

visualization can be separated into three types: interfaces of

the Agent.GUI framework, external interfaces that are

coming “naturally” with the application, because they are

integral components of the Agent.GUI project (e. g. the

JADE libraries) and external resources, which can be

individually added to the MABS during the development

phase. Such external resources have to be added by selecting

them as a part of the IDE and, then, configuring them as jar-

resources in the specific Agent.GUI project.

In order to access the object structure of our framework

the singleton class agentgui.core.application.Application can

be used. Starting from this point, developer can access

everything the framework provides. Additionally, the

framework provides a translation interface in order to allow

developers the use of the language of their choice in the

source code. The API as well as some tutorials are available

with the framework resources.

In case of a needed customization of the visible program,

Agent.GUI allows the extension of the main application

window and its elements as well as the extension of the

project window for the MABS. For this, our PlugIn-

mechanism and the extendable PlugIn-class were designed.

The PlugIn-class provides access to menus, the main toolbar

and allows adding further tabs to the project window. If the

customized PlugIn-class is configured in the project, the

tailored elements will be automatically added to the visual

program. The following screenshot in Figure 2 shows the

example of an extended application window and some

additional tabs which were added to the project window.

Beside this developers can react on application events. For

this the project data model and its visual representation was

designed by using the common MVC pattern. Individual tabs

for the project window as well as the configured PlugIn

classes will be informed about changes in the project settings

or if a simulation is to be started.

Figure 2: Extended GUI for MABS

Project Window

Application Window

626 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

C. Simulation Service

One motivation to build our Simulations Service can be

seen in the handling of agencies, with a large number of

agents. Such scenarios can be found for example in the

current research topic of smart grids and intelligent power

supply. Here a big number of participants can be found due

household, industrial consumer and power producers. They

all rely on an interconnected network, which can be seen as

their environment. Analyzing the connection between the

participants, seen as agents, and their physical connection to

the grid, it is obvious that not only the agents are working in

their environment, by consuming electrical power. In turn,

the grid delivers the electrical power or, if the supply doesn't

meet the user demand, the generation can collapse. For an

agent/environment interaction this leads immediately to a

situation where an environment acts on agents too, which

shows this bidirectional relationship. Testing such interaction

with a large number of agents by using ACL messages, we

found out that the JADE platform became overloaded, so

that we had to find a different solution (see also section IV).

Based on an extended JADE base service we designed our

Simulation Service for a bidirectional interaction between

agent and environment, taking into account that scheduling

strategies can differ, depending on the kind of simulation.

Therefore we equipped the simulation service, which is

particularly used in order to transport the environment model

information to the agents, with a set of methods, which can

be individually used depending on the specific simulation

schedule.

In general we assume that at least one entity, in our case

an agent, has to manage the information about the

environment. This agent is to be assumed as the

SimulationMangerAgent. Other agents, which are acting in

this environment, our so called SimulationAgent’s, have to

be connected to the environment due our SimulationSevice

and its inherent sensor/actuator functionalities. Figure 2

shows this relationship and the herein used classes.

Figure 3: Classes used for the agent/environment interaction

Every agent is equipped with a so called ServiceSensor.

This applies for the SimulationMangerAgent as well as for

the other agents. Using the SimulationService, this sensor

can be connected with the ServiceActuator on site; this is in

fact the ServiceSlice of the JADE agent container, in which

the agent is currently located. Colloquially as a metaphor,

one could consider this as the insertion of a plug into an

electrical outlet.

In case that a discrete simulation steps forward or an event

based notification for an agent occurs, an actuator can

transport a new environment model or notifications to the

connected sensor of the agent. In order to prevent the loss of

the autonomy of the agents, we designed this stimulus in an

asynchronous way.

There are several opportunities for the manager agent in

order to schedule or organize the simulation process. There

are for example methods available that are allowing to run

the system in an episodic way (see example in section IV),

while other methods allow to address single notifications to

agents, which is relevant for event based simulations.

Furthermore the SimulationService provides synchronized

time to all (distributed) containers on the JADE platform;

this can be used for timed simulations. The kind of

scheduling is therefore still subject of the agent design and is

not limited through our framework.

As a generalized environment Agent.GUI provides a class

structure that consists basically of three sub parts, which

allows describing the state of the environment. They are: (i)

a timeModel, (ii) a domain specific abstractEnvironment and

(iii) a displayEnvironment. In this a time model can be a

simple counter, which steps forward with every state of the

environment model (called TimeModelStroke) or it can be a

concrete time, which can be changed for every state of the

environment. The latter two attributes of the model are

simple Object types, which allow applying a variety of

structures to them. Hereby the abstract model should be used

for general structures as they can be defined by ontologies,

while the latter attribute should contain model information,

which can be also displayed. Furthermore, using the so

called TransactionMap, the simulation service is able to

manage different states of the simulation over the simulated

time.

IV. APPLICATION: TESTING THE SIMULATION SERVICE

Since Agent.GUI is build on top of JADE its overall

performance depends mainly on the JADE implementation.

Nevertheless, a few optimizations were conducted because

the simulation service relies on method execution instead of

sending ACL messages for the agent/environment

interaction. This let to a significant increase in the simulation

speed, which was validated through the following small

experiment.

Two MAS for a Game of Life (GoL) were implemented

that consists of simple cellular automata (Figure 4). In order

to evaluate the efficiency of our simulation service, one

implementation used ACL messages for the

agent/environment interaction; the other one used our

SimulationsService introduced in the previous section.

SimulationService

ServiceActuatorManager

ServiceActuator ServiceSensor

ServiceSensorManager
Simulation

Manager-Agent

Simulation

Agent

CHRISTIAN DERKSEN, CHERIF BRANKI, RAINER UNLAND: AGENT.GUI: A MULTI-AGENT BASED SIMULATION FRAMEWORK 627

Figure 4: Game of Life in the Agent.GUI application window

In both cases a single agent represented one field while

one agent was the manager of the environment, which in turn

consisted of all area-agents of the playing field. At

initializing of the GoL, the simulation manager created the

visual representation first, which allows user to define the

initial game situation, before actually starting the game.

Executing the ‘simulation’ by the manager agent then starts

the cyclic simulation of the GoL as shown in the next sketch

below.

S
im

u
la

tio
n
-

S
e

rv
ic

e

Simulation-Manager Agent 1 Agent 2 Agent n

send environment model

do changes

collect changes

wait

build new environment model

Restart

Figure 5: Simulation Cycle for the Game of Life

Collecting all changes from the visual representation and

take them over into the private environment model of the

‘Simulation-Manager’, this model was send as new

environment state to every agent. Knowing the name of the

agents in the neighborhood, the field agents were able to get

these states and calculate their own next state. This new state

was send back to the manager agent, who builds up the new

environment model and started the next generation of the

Game of Life again. The grey line in Figure 5 indicates the

use of the SimulationService instead of ACL messages in our

benchmark study.

For this comparison the following system was used:
CPU: 2 x 2527MHz (Intel® CoreTM 2 Duo CPU P8700)

RAM: 3539 MB RAM

OS: Windows XP 5.1

Java: jdk1.6_014

Executing between 20 up to 3000 field-agents in a single

JADE-container, 5000 simulation cycles (generations) were

done according to the sequence showed above. The time for

the simulation cycles was measured and smoothed within the

SimulationManager.

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500 3000

number of agents

c
y
c

le
s

 p
e

r
s
e

c
o

n
d

 [
1
/s

]

cycle/s while using the simulations service

cycle/s while using ACL Message-Transfer

Figure 6: Simulation cycles and number of agents for

agent/environment interaction

The measured increase for the agent/environment

interaction was 9 times in average. Figure 6 above shows this

comparison. Further tests showed that using ACL messages

for the agent environment interaction leads more quickly to

an overloaded system.

V. RELATED WORK

To the best of our knowledge there are only very few

extensions or tools with similar objectives than Agent.GUI

for the JADE platform. We distinguish between those tools

that are also based on JADE as agent platform and those that

are providing their own agent concepts, but similar core

functionality. To the first category belongs SIMJADE [10]

or DisSimJADE [4].

SIMJADE is an extended BaseService for the JADE

platform. It supports distributed simulations by providing an

optimistic Time Warp based synchronization scheme.

Furthermore, SIMJADE comes with some basic classes that

can be extended to cater for individual needs. This is similar

to our time and environment synchronization concepts.

However, in contrast to SIMJADE, we have implemented no

concrete synchronization process but open interfaces for

different schedule mechanisms. Topics like load balancing,

automated distribution of simulations, visualization

techniques or usability for end users were not addressed with

SIMJADE.

DisSimJADE was introduced by Gianni et al in 2009. This

simulation framework enables the incorporation of

distributed simulation facilities into agent-based systems. It

was build on top of JADE. By using the general purpose

architecture HLA (High Level Architecture), this framework

enables the interaction (distribution of data and the

synchronization of actions) between different simulation

628 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

systems that follow the IEEE standard
4
. In case of a

distributed simulation DisSimJADE does not use the

interfaces and infrastructure for distribution which JADE

already provides. Instead, the standardized HLA-based

communication structure is used for the interaction between

distributed agencies. This was basically motivated by the

interoperability to other simulation systems with similar

interfaces.

The comparison of Agent.GUI to these two approaches for

MABS shows that the idea of using JADE for simulation is

not new. However, until now it was never implemented

consistently in a comprehensive framework.

The category of general framework and end user aspects

contains a big number of available tools for agent-based

systems. Here we concentrate on programs, which consider

an environment as an important factor for a MABS.

Especially for such systems, Arunachalam et al [1] pointed

out four main criteria for a comparison of such tools. These

are in short:

• The design criteria, specified through the definition of an

environment, the environment distribution and the

coupling of agent and environment.

• For the model specification they rated the ease of

specifying the environment, what features a system offers

to define the environment and what knowledge an agent

can have about this environment.

• With respect to the model execution the quality of

visualization and the possibility of property modifications

during runtime were considered to be most important.

• Finally, the quality of the available documentation was

investigated.

On the basis of these categories NetLogo, MASON, Ascape,

RePast Simphony (RePastS) and DIVas were examined. For

a more extensive survey on tools for “Agent Based Modeling

and Simulation Tools” (ABMS), we refer to the website of

Ron Allan
5
.

The direct comparison to such frameworks and to the

above mentioned JADE extensions discloses that there is still

a lot of space for improvements for us. But in relation to the

above mentioned criteria’s it is our opinion, that Agent.GUI

can be seen as a competitive framework with some unique

features. Table I, on the right, shows the result of our own

assessment in comparison to the mentioned frameworks

discussed in [1].

Since Agent.GUI was designed as a general purpose tool

for MABS and because those kinds of developments are

highly domain specific tasks, some of our ratings can not be

clearly applied in the sense of the tool comparison of [1].

This applies for example at the agent and environment

4 IEEE Standard 1516: Standard for Modeling and Simulation High

Level Architecture
5 http://www.grids.ac.uk/Complex/ABMS/ABMS.html

coupling at the design criteria’s for environments. While our

framework offers a generalized environment model (A.1.)

that can be used in a distributed manner for more or less any

kind of environment model, by using the SimulationService

(A.2.), the coupling given through the bidirectional

sensor/actuator relationship implies to be a very high one

(A.3.). In the sense of the tool comparison this seems to

result to the lowest rating possible there. As a developer,

however, is free in the decision to use our service or not, we

argue that this is essentially a question of the applied

domain, the chosen MAS architecture and last but not least

the desired agent/environment interaction. For this, with

Agent.GUI, a MABS can be designed with a very low

coupling between agent and environment as well, which

would finally result to a rating of “Very High”.

TABLE I

SELF-RATING OF THE AGENT.GUI FRAMEWORK

Criteria Rating

A. Design Criteria

 1. Environment structured complexity Very High

 2. Environment distribution Very High

 3. Agent and Environment coupling -

B. Model Specification Criteria (P2D / NM 6)

 1. Specification features offered High / Very High

 2. Programming skill of end user Low / Low

 3. Environment knowledge in agents High / High

C. Model Execution

 1. Quality of visualization High / Very High

 2. Simulation view Low / Low

 3. Model property modification Medium / High

D. Documentation

 1. Quality of documentation Medium

 2. Effectiveness of the documentation -

 With our framework the responsibility for providing tools

for the definition of an environment is basically up to the

developer. Nevertheless, since Agent.GUI provides two

predefined environment model types (a continuous 2D model

and a network model consisting of nodes and arcs), we rated

criteria B.2. for both models in all conscience. As it is one of

our main intentions that developers provide end-user

applications, the aspect of programming skills for end users

(not developers) is rated to “Low”. In relation to the above

mentioned point of the agent/environment coupling, the

aspect of the agent’s knowledge about the environment was

rated to “High”. This basically depends also on our

predefined environment model types and will differ

depending on the concrete application.

Regarding the model execution in C., our framework uses

basically the same classes and types for the visualization of a

simulation as they were used for the definition of an

6 P2D: Physical 2D environment / NM: Network Model

CHRISTIAN DERKSEN, CHERIF BRANKI, RAINER UNLAND: AGENT.GUI: A MULTI-AGENT BASED SIMULATION FRAMEWORK 629

environment; for this standardized interfaces are used. This

is why we have here the same evaluation as in B.1 which

relies on the connection with our predefined environment

types. A 3D or toroidal simulation view, as it was asked for

in the comparison of [1] (C.2.), can not be provided by our

framework until now. Our rating in relation to the model

modification during runtime has also to be seen in

connection to our two environment models. Additional it

should be mentioned here, that for the Game of Life agency

for example this aspect must be rated with “Very High”, as a

modification at runtime was even desirable, which shows

again the strong dependencies to the domain.

The aspect of documentation under D. is one of the next

important tasks for the development of our framework, as

indicated by the relatively low rating (D.1.). Since outside of

our group so far only a very few developers have worked

with Agent.GUI, it is not possible to evaluate the

effectiveness of the documentation at this time.

Due to the fact that Agent.GUI is based on JADE, our

framework is compliant to FIPA standards too. The above

mentioned design criteria is extensively addressed;

especially in an active and bidirectional relationship between

agent and environment. Regardless of our two predefined

environment model types, we see a big advantage in the fact

that Agent.GUI provides open interfaces for any kind of

environment model and simulation scheduling, which allows

a nearly unrestricted development (e.g. for 3D-models etc).

Another benefit comes with the functionalities regarding the

customizable load balancing approach, which we could not

find in any other tool or framework for MABS.

VI. CONCLUSION

In this paper we introduced a framework for Multi-agent

based simulations called Agent.GUI that is built on top of

the JADE platform. Based on our frameworks base-GUI it

allows the programmer to realize a domain specific end user

application for Multi-Agent based simulations. For this

purpose Agent.GUI provides open and adaptive interfaces.

An example scenario that illustrates the efficiency of our

bidirectional simulation service in comparison to the use of

ACL messages for the agent/environment interaction was

shown and discussed.

Beside an in-depth comparison study of our framework to

other agent frameworks, it is already planned to present

further aspects of our framework in the near future. Here we

would like to discuss the load balancing abilities of

Agent.GUI for distributed large scale simulations.

Furthermore the usage of predefined environments for smart

energy networks will be shown soon. Currently, work is in

progress to use Agent.GUI for simulations of intelligent and

self configuring high pressure gas grids.

REFERENCES

[1] S. Arunachalam, Rym Zalila-Wenkstern, and Renee Steiner.

Environment mediated multi agent simulation tools. In SASO

Workshops, pages 43–48. IEEE Computer Society, 2008.

[2] Fabio L. Bellifemine, Giovanni Caire, and Dominic Greenwood.

Developing Multi-Agent Systems with JADE. Wiley, April 2007.

[3] Jacques Ferber Fabien Michel and Alexis Drogoul. Multi-agent

systems and simulation: A survey from the agent community’s

perspective. 2009.

[4] Daniele Gianni, Andrea D’Ambrogio, and Giuseppe Iazeolla.

Dissimjade: a framework for the development of agent-based

distributed simulation systems. In Olivier Dalle, Gabriel A. Wainer,

L. Felipe Perrone, and Giovanni Stea, editors, SimuTools, page 21.

ICST, 2009.

[5] Thomas R. Gruber. A translation approach to portable ontology

specifications. KNOWLEDGE ACQUISITION, 5:199–220, 1993.

[6] Alexander Helleboogh, Tom Holvoet, Danny Weyns, and Yolande

Berbers. Extending time management support for multi-agent

systems. In Paul Davidsson, Brian Logan, and Keiki Takadama,

editors, MABS, volume 3415 of Lecture Notes in Computer Science,

pages 37–48. Springer, 2004.

[7] B. Logan and G. Theodoropoulos. The distributed simulation of

multiagent systems. Proceedings of the IEEE, 89(2):174 –185,

February 2001.

[8] Charles M. Macal and Michael J. North. Tutorial on agent-based

modelling and simulation. J. Simulation, 4(3):151–162, 2010.

[9] Jakob Nielsen. Usability engineering. In Allen B. Tucker, editor, The

Computer Science and Engineering Handbook, pages 1440–1460.

CRC Press, 1997.

[10] Dirk Pawlaszczyk and Ingo Timm. A hybrid time management

approach to agent-based simulation. In Christian Freksa, Michael

Kohlhase, and Kerstin Schill, editors, KI 2006: Advances in Artificial

Intelligence, volume 4314 of Lecture Notes in Computer Science,

pages 374–388. Springer Berlin / Heidelberg, 2007. 10.1007/978-3-

540-69912-5_28.

[11] Evangelos Pournaras, Martijn Warnier, and Frances M. T. Brazier. A

distributed agent-based approach to stabilization of global resource

utilization. In Leonard Barolli, Fatos Xhafa, and Hui-Huang Hsu,

editors, CISIS, pages 185–192. IEEE Computer Society, 2009.

[12] Anand S. Rao and Michael P. Georgeff. Bdi agents: From theory to

practice. In Victor R. Lesser and Les Gasser, editors, ICMAS, pages

312–319. The MIT Press, 1995.

[13] Reuven Y. Rubinstein and Benjamin Melamed. Modern Simulation

and Modeling. Wiley & Son, 1998.

[14] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern

Approach (3. internat. ed.). Pearson Education, 2010.

[15] J. Vázquez-Salceda, W. W. Vasconcelos, J. Padget, F. Dignum,

S. Clarke, and M. Palau Roig. Alive: an agent-based framework for

dynamic and robust service-oriented applications. In Proceedings of

the 9th International Conference on Autonomous Agents and

Multiagent Systems: volume 1 - Volume 1, AAMAS ’10, pages 1637–

1638, Richland, SC, 2010. International Foundation for Autonomous

Agents and Multiagent Systems.

[16] Junwei Wu and Xiaojun Cao. Intelligent traffic simulation grid based

on the hla and jade. In Wu Zhang, Zhangxin Chen, Craig C. Douglas,

and Weiqin Tong, editors, HPCA (China), volume 5938 of Lecture

Notes in Computer Science, pages 456–464. Springer, 2009.

[17] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents:

Theory and practice. Knowledge Engineering Review, 1994.

Submitted to Revised.

[18] Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley

& Sons, 2nd edition, July 2009.

630 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

