
Identification of Patterns through

Haskell Programs Analysis

Ján Kollár, Sergej Chodarev, Emília Pietriková and L’ubomír Wassermann

Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics

Technical University of Košice, Slovak Republic

E-mail: {jan.kollar, sergej.chodarev, emilia.pietrikova, lubomir.wassermann}@tuke.sk

Abstract—Usage of appropriate high-level abstractions is very
important for development of reliable and maintainable pro-
grams. Abstractions can be more effective if applied at the level
of language syntax. To achieve this goal, analysis of programs
based on the syntax is needed.

This paper presents Haskell Syntax Analyzer tool that can
be used for analysis of Haskell programs from the syntactic
perspective. It allows to retrieve derivation trees of Haskell
programs, visualize them and perform their statistical analysis.
We also propose approach for recognition of recurring patterns in
programs that can be used as a basis for automated introduction
of abstractions into the language.

I. INTRODUCTION

A
BSTRACTION is one of the fundamental concepts in

computer science. Abstraction allows expressing things

more simple by defining new more abstract concepts, that

encapsulate complex expressions. This allows to hide imple-

mentation details.

For example, expression −b+
√
b2−4ac
2a

for computing one

root of quadratic equation ax2 + bx+ c = 0 can be simplified

by introducing new abstract concept – discriminant (D). This

form can be even more simplified by defining abstraction

corresponding to the whole expression (see Fig. 1).

As a disadvantage of domain-specific languages (DSLs), the

price of understanding DSL technology is often referred [1],

[2]. This is caused by necessity of knowledge of the language

design field and of the problem domain. In case of identi-

fication of software system field of where it is appropriate

to deploy DSL, it is important to design the language suitably

(syntax and notations). To increase the usability of a new DSL,

the use of terminology and concepts of the target domain is

essential.

The purpose of this work is not to derive a grammar from

samples of different languages, but taking the full grammar of

a language (in our case Haskell), it is evaluated.

II. ABSTRACTION BASED ON PROGRAM PATTERNS

To achieve the mentioned goals, first we need to solve the

problem of recognition of recurring patterns in a code. Manual

analysis of the code may be hard and tedious task. On the other

hand, tools for automatic patterns recognition can greatly help

in this task. Moreover, the recognition needs to be done at the

level of program syntax.

Program patterns mean code fragments extracted from a

set of sample programs that have equivalent syntactic, and

hence, also semantic structure. Patterns can also contain parts

that are different in each program. These parts can be called

syntactic variables. After introduction of new abstraction based

on a pattern, syntactic variables will become parameters of the

abstraction.

Expressiveness of the language can be improved by the

recognition of program patterns and introduction of abstrac-

tions based on them. Moreover, it allows more natural and

strain-forward expression of programs.

This approach can be also useful for development of

domain-specific dialects of programming languages. In order

to implement this transition from general purpose language

to its domain-specific dialect, it is necessary to reflect the

fundamental differences between the domain-specific dialect

and the corresponding GPL. The main differences lie in the

following points:

• focus on a particular domain,

• use of concepts from a domain,

• higher abstraction.

To achieve a connection with particular domain and a shift

towards domain specificity, it is suitable to analyze existing

programs (or program fragments) of written in the GPL

solving various problems from the domain. On the basis of

this analysis, a shift from GPL to domain-specific dialect can

be achieved.

The goal of this article is to propose a solution for au-

tomatized introduction of new language abstractions based on

patterns found in a code.

III. HASKELL SYNTAX ANALYZER TOOL

To achieve the goal, Haskell Syntax Analyzer tool has been

used. The aim of creating Haskell Syntax Analyzer tool is

to gather needed information from Haskell programs to get a

proper knowledge about used constructs in analyzed programs.

As a result of the program analysis, derivation tree is produced,

consisting of used rules of Haskell grammar [3]. Architecture

of Haskell Syntax Analyzer tool consists of two parts –

generating infrastructure and analyzing infrastructure.

The goal of generating infrastructure is to prepare tools

that are used during the analysis of Haskell programs by the

analyzing infrastructure.

The analyzing infrastructure contains lexer and parser of

Haskell programs, intended for analysis of Haskell programs

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 891–894

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 891



/

+ *

b -

^ *

b 2 4 a c

- sqrt 2 a

/

+ *

b D

ba c

- sqrt 2 a

x

ba c

Abstraction Abstraction

Fig. 1. Simplification of expression structure using abstraction.

into lexical units and then processing them into derivation

trees.

Derivation trees are produced in the XML format, subse-

quently visualized using the Graphviz (Graph Visualization

Software) tool [4] and further processed to retrieve statistical

data on Haskell programs and to recognize common language

patterns.

A. Haskell 98 Syntax

Haskell is a general purpose, purely functional program-

ming language that provides higher-order functions, non-strict

semantics, static polymorphic typing, user-defined algebraic

data types, pattern-matching, list comprehensions, a module

system, a monadic I/O system, and a rich set of primitive

data types, including lists, arrays, arbitrary and fixed precision

integers, and floating-point numbers [5].

In [6], Haskell syntax was processed into HTML format.

This form was chosen as a basis for development of the

parser. It uses extended Backus-Naur Form with the following

additions:

• parentheses for grouping symbols,

• optional symbols marked using question mark (?),

• 0..n repetition marked with star (*),

• 1..n repetition marked with plus (+).

To speed-up the development, it is necessary to use a parser

generator tool. The choice of the appropriate parser generator

depends on a class of the processed grammar. In Haskell

grammar, it is possible to find several cases using the left

recursion, e.g.:

aexp ::= qvar

| gcon

| literal

| (exp)

| (exp (,exp)+)

| [exp (,exp)*]

| [exp (,exp)?..(exp)?]

| [exp | qual (,qual)*]

| (exp_i qop)

| (qop exp_i)

| qcon ( fbind (,fbind )* )?

| aexp fbind (,fbind )*

As the goal of the Haskell Syntax Analyzer tool is not to

transform the language grammar but to process it in its original

form, and because of the mentioned left recursion, Haskell

grammar has been treated as the LR type.

In the grammar, reduce/reduce conflicts may be found,

regarding several rules sharing the same right side. Thus, it is

difficult for a parser to choose the right nonterminal to reduce.

According to the above facts, it is appropriate to use GLR

parser generator, as it is capable of parallel reduce of each

nonterminal, trying to proceed with multiple possibilities.

In compliance with the project architecture, Haskell Gram-

mar has been transformed into XML form in order to provide

better representation of the grammar. The transparent form

(XML) of the Haskell grammar is suitable for further pro-

cessing, including generation of input for a parser generator.

As the parser generator, Bison [7] has been chosen, because

of its ability to generate a GLR parser.

The Haskell language allows to use an indentation to define

blocks of code. On the other hand, it still allows to define

the blocks using braces and to separate the statements using

semicolons. For this reason, it is required to introduce a sepa-

rate step into lexical analysis, during which the layout defined

by the white space characters is replaced by semicolons and

braces.

Lexical analyzer is generated by the Flex tool [8] that is

based on the specification produced according to the Haskell

lexical grammar. After this step, the white space characters in

the program are analyzed following the algorithm specified in

Haskell 98 Report [3]. Based on this analysis, stream of tokens

is extended by tokens corresponding to braces and semicolons.

B. Transformation of Haskell 98 Grammar

To be able to process the grammar programmatically, it

is required to transform HTML form of grammar to more

suitable representation. To transform the Haskell grammar to

the appropriate form, a grammar transformer was created.

This tool first transforms HTML representation of Haskell

98 grammar to XML representation that is more suitable for

further processing.

XML grammar is then processed to create Java object model

where XML elements are mapped to the instances of the

grammar model classes. Java object model of Haskell grammar

892 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011



provides a better way of how to manipulate and operate on the

Haskell grammar.

Mapping is shown in the example of a grammar rule:

gdrhs ::= gd = exp ( gdrhs )?

This rule is then transformed to the following XML frag-

ment:

<nonterm id="n1" label="gdrhs">

<sequence id="seq1">

<nonterm id="n2" label="gd"/>

<term id="equals" label="="/>

<nonterm id="n3" label="exp"/>

<option id="opt1">

<nonterm id="n1" label="gdrhs"/>

</option>

</sequence>

</nonterm>

Java object model of Haskell grammar is then used to

generate grammar specification in a format suitable for the

Bison parser generator. During this process, grammar rules

need to be transformed from EBNF form info BNF accepted

by Bison. For this reason, new helper nonterminals are intro-

duced. They correspond to constructs that can not be expressed

directly in BNF, like repetition or optional expression. These

nonterminals are specially marked according to their meaning,

so it is possible to create derivation tree corresponding to

original form of the grammar.

C. Grammar Ambiguity

Meanwhile the parsing, several ambiguities were detected.

For example, rule pat_i of Haskell 98 grammar is defined

as:

pat_i ::= pat_i ( qconop pat_i )?

| - ( integer | float )

| pat_10

After pat_10 was reduced to pat_i (3rd alternative), it

was possible to reduce pat_i to pat_i again (1st alterna-

tive). GLR parser generator, that is used within the Haskell

Syntax Analyzer tool, disjoined at the mentioned point. As

both ways led to the same nonterminal, they joined again.

However, the parser was not capable to determine which way

to use/throw away.

The problem was solved after modification of the critical

rule:

pat_i ::= pat_10 ( qconop pat_i )?

A branch with ‘-’ was moved to pat_10:

pat_10 ::= apat

| gcon ( apat )+

| - ( integer | float )

Another rule exp_i was changed by analogy of the previ-

ous rule. Original form:

exp_i a ::= exp_i ( qop exp_i )?

| - exp_i

| exp_10

After modification:

exp_i a ::= exp_10 ( qop exp_i )?

| - exp_i

After such modifications, parser was able to process sim-

ple Haskell programs. Moreover, number of conflicts in the

grammar were decreased.

D. Fixity Resolution

Another problem, that had been needed to be solved, was

a resolution of fixity and precedence of operators. In Haskell

98 Report [3], operators precedence levels were defined using

separate grammar rules (like expi for 0 ≤ i ≤ 9). In the

version of the grammar that had been used as a source for the

transformation, the indexed rules were replaced by a single

rule exp_i.

On the other hand, Haskell 2010 Report [9] defines expres-

sions in a different way. It defines a single rule infixexp for

all the precedence levels and associativities. The resolution of

expressions is then performed after parsing. This approach is

also appropriate for our purposes.

So after the parsing, resulting derivation trees are processed.

All occurrences of the exp_i element are resolved using the

algorithm described in the Haskell 2010 Report [9].

IV. CODE STATISTICS

Using the developed tool, it was possible to compute some

interested statistics based on a set of about 300 Haskell sample

programs. Result of the analysis of a program is its derivation

tree according to the language grammar. The derivation tree

consists of terminal and nonterminal symbols in the grammar,

where terminal symbols represent leaves of the tree. The

derivation tree also contains helper nodes corresponding to

EBNF features like repetition or optional elements.

One of the parameters, that may be investigated, is a relative

occurrence of symbols in derivation trees. Relative occurrence

of a symbol in a program is defined as:

rsym =
nsym

N

where nsym means a number of occurrences of the sym

symbol in the derivation tree of a program and N represents

a number of all symbols/nodes of the derivation tree.

Table I represents average occurrences greater than 0.01 of

particular symbols in all programs of our sample. As it can

be expected, variable names and expressions have the greatest

frequency of all symbols.

It is possible to make such statistics for especially selected

sample of programs for a specific domain. It will show which

language elements are used in programs of the domain and

which elements can be omitted from the domain-specific

dialect.

Statistical analysis can also be used to partition a sample

of programs into groups based on a usage of the language

elements.

JAN KOLLAR ET AL.: IDENTIFICATION OF PATTERNS THROUGH HASKELL PROGRAMS ANALYSIS 893



TABLE I
PROPORTION NUMBER OF SYMBOL OCCURRENCES

Symbol Occurrence Symbol Occurrence

varid 0,093855 aexp 0,092660
fexp 0,092660 exp_10 0,063059
qvar 0,051154 exp_i 0,049428
exp 0,044523 var 0,037632
apat 0,033349 conid 0,026202
( 0,019259 ) 0,019259
= 0,018341 decl 0,017526
; 0,017277 qop 0,016620
topdecl 0,016484 rhs 0,016164
pat_i 0,016099 pat_10 0,016099
qvarop 0,015110 gcon 0,014879
atype 0,013402 varsym 0,012450
qcon 0,011951 btype 0,011516
, 0,011309 funlhs 0,010876
type 0,010080

V. PATTERNS RECOGNITION

To find patterns in the program derivation tree, a sim-

ple algorithm can be used that is based on the function

findPatterns defined below:

parents← allParents(elements)
groups← findGroups(parents)
if groups is empty then

return [groups]
else

for all group ∈ groups do

Add findPatterns(group) to foundGroups

end for

return mergeGroups(foundGroups)
end if

Function findPatterns takes a list of the tree elements and

recursively examines their parents to find a set of groups of

subtrees that have a similar structure. It uses helper functions

with the following meaning:

• allParents – returns a set of parents of all tree elements

in a group;

• findGroups – given a set of tree elements, returns list

of groups of elements with similar subtrees;

• mergeGroups – merges list of lists of groups into a

single list.

To initiate the algorithm, the findPatterns function is

called on terminal symbols of the tree. Then it tries to walk

up to the root of the tree while it can find groups of subtrees

with similar structure.

Result of the algorithm is a list of groups of subtrees, where

each group corresponds to a found pattern and contains all

occurrences of the pattern.

VI. CONCLUSION

Set of tools called Haskell Syntax Analyzer that has been

developed within this paper is intended to analyze programs

based on the language syntax, resulting in providing appro-

priate derivation trees. In this paper, usage statistics of the

Haskell syntactic symbols are provided, creating a vision of

the language application within specific domains of use.

Moreover, the analysis made possible to accomplish pattern

recognition in program codes, with the perspective of deve-

lopment of new language dialects, both general-purpose and

domain-specific. The term of program patterns has been used

for syntactically, and hence, also semantically equal program

fragments occurring in a set of program samples.

The most significant contribution, that we expect based on

the partial results presented in this paper, is the contribution

for automated software evolution. Clearly, this would mean

to shift from a language analyzer to the language abstracter,

associating concepts to formal language constructs [10], [11],

and formalizing them by means of these associations. In

this way, we expect to integrate programming and modeling,

associating the general purpose and domain-specific languages

[12], [13], [14].

ACKNOWLEDGMENT

This work was supported by VEGA project No. 1/0015/10

“Principles and methods of semantic enrichment and adap-

tation of knowledge-based languages for automatic software

development.”

REFERENCES

[1] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp.
316–344, 2005.

[2] M. Crepinsek, M. Mernik, B. Bryant, F. Javed, and A. Sprague, “Infer-
ring context-free grammars for domain-specific languages,” Electronic

notes in theoretical computer science, vol. 141, no. 4, pp. 99–116, 2005.
[3] S. Peyton Jones, Haskell 98 Language and Libraries – The Revised

Report. Cambridge, England: Cambridge University Press, 2003.
[4] J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull,

“Graphviz – open source graph drawing tools,” in Graph Drawing,
ser. Lecture Notes in Computer Science, P. Mutzel, M. Jünger, and
S. Leipert, Eds. Springer Berlin / Heidelberg, 2002, vol. 2265, pp.
594–597.

[5] B. O’Sullivan, J. Goerzen, and D. Stewart, Real World Haskell, 1st ed.
O’Reilly Media, Inc., 2008.

[6] P. Hercek, “Haskell 98 report,” Available: http://www.hck.sk/users/peter/
HaskellEx.htm, 2007.

[7] C. Donnelly and R. Stallman, Bison: The Yacc-compatible Parser

Generator, 2010, available: http://www.gnu.org/software/bison/manual/.
[8] V. Paxson, W. Estes, and J. Millaway, Lexical Analysis With Flex, 2007,

available: http://flex.sourceforge.net/manual/.
[9] S. Marlow, “The Haskell 2010 Language Report,” Available: http://www.

haskell.org/onlinereport/haskell2010/, 2010.
[10] J. Porubän and P. Václavík, “Extensible language independent source

code refactoring,” in AEI ’2008 : International Conference on Applied

Electrical Engineering and Informatics, Greece, Athens, September 8-

11. Košice: FEI TU, 2008, pp. 58–63.
[11] J. Porubän and M. Sabo, “Jessine: Integrating rules in enterprise software

applications,” Journal of Information, Control and Management Systems,
vol. 7, no. 1, pp. 81–88, 2009.

[12] M. Sabo and J. Porubän, “Preserving design patterns using source code
annotations,” Journal of Computer Science and Control Systems, vol. 2,
no. 1, pp. 53–56, 2009.

[13] P. Václavík, “Application domain name-based analysis,” Journal of

Computer Science and Control Systems, vol. 2, no. 2, pp. 66–69, 2009.
[14] I. Luković, P. Mogin, J. Pavićević, and S. Ristić, “An approach to

developing complex database schemas using form types,” Software

Practice & Experience, vol. 37, no. 15, pp. 1621–1656, 2007.

894 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011


