
Abstract—An approach for resource scheduling based on
multiagent model with distributed queue is discussed. Algo-
rithms of functioning agents for distributed Grid scheduling are
presented

I. INTRODUCTION

RID-technologies [1] provide program solutions for

creating Grids as certain class of networks. The main

requirements for Grid environment in Joint Supercomputer

Center RAS (JSCC RAS) are: raising the capacity of aggre-

gate resources by eliminating the situation when some re-

sources are idle while other resources are overloaded, and

providing computational resources exceeding capacity of in-

dividual systems for execution of large scale parallel pro-

grams which can be efficiently implemented on several com-

putational systems (CS).

G

Each CS contains control computer (CC). Control com-

puters of all CS are integrated by network, they can transfer

programs and data and execute remote programs.

Basic modules (BM or nodes) of several CS can be inte-

grated with one or more high-speed networks like Infiniband

for data transfers while program execution [2]. For each sys-

tem in Grid a local batch system operates on CC. Usage of

batch system in every CC allows using a single pool of com-

putational modules. Batch system allocates jobs on nodes,

terminates, delivers results to users and provides access con-

trol.

To include CSs under different administration into Grid

without changing software and functioning the middleware

software is used which implements functions of management

system (MS) of Grid environment. MS of Grid enables sub-

mitting user’s jobs to single queue, running jobs on one or

several CS using middleware, monitoring Grid environment,

providing fault tolerance and access control.

Management systems based on centralized resource shar-

ing model are most studied and implemented. In this model

user jobs are submitted to a single queue, which is shared by

all processors of parallel system. When the processor is free,

it takes a job from the queue, or it is made by a system

process, tracking the processors status. This model is used in

metadispatcher in GridWay project [5, 6]. However in Grid

with multiple CS and significantly different bandwidth be-

tween and inside CS it is impossible to achieve in reasonable

time the complete and accurate description of the current

state of resources and jobs. So, in large GRIDs it is neces-

sary to use distributed metaschedulers based on distributed

queuing system model. This paper describes an approach to

release Content Addressable Network [4] as multiagent sys-

tem to resource scheduling based on distributed single queue

model and implementation its algorithms of functioning dis-

tributed Grid scheduler in JSCC RAS [7, 8]

The paper has the following structure. In second section

architecture of Grid management system is presented. The

third section discusses a several heuristic algorithms of de-

centralized job scheduling. The fourth section contains re-

sults of experiments on efficiency of proposed decentralized

management system of Grid.

II.DISTRIBUTED MULTIAGENT METASCHEDULER

Submitted user’s jobs must be registered in one of queues

of distributed queuing system. Each queue is served by its

own agent –local scheduler which accepts one of three deci-

sions for each job: job can be scheduled for execution on re-

sources of one or several CS, can be left in queue for further

scheduling or transferred to another queue. Developing a dis-

tributed multiagent metascheduler, it is necessary on one

hand to enable independent simultaneous scheduling of jobs

in different queues by local schedulers, on the other hand us-

age of Grid resources must be coordinated.

Approach in this article suggests a resolution of this con-

tradiction by allocation of Grid resource domain for each

queue for independent scheduling by agent – local domain

scheduler. If you allocate resources in separate domains of

each CS in Grid and create one extra domain which includes

resources of all CSs, then a hierarchy of queues is formed. In

this hierarchy it is possible to coordinate the allocation of re-

sources between jobs within the following algorithm of the

agent with queues: the transfer of jobs between the queues of

the lower level of the hierarchy is possible only through the

upper level queue, which is used only for scheduling be-

tween lower level queues.

Each dedicated domain is managed by Grid CS compo-

nent that is CS manager. Manager contains data structure

necessary for local scheduler:

— information system (IS) containing resources table of

managed domain and description of general Grid environ-

ment state;

— queue of jobs to be scheduled.

The basic functional processes of the manager are:

Multiagent Distributed Grid Scheduler

Victor Korneev , Dmitry Semenov, Andrey
Kiselev

Nii “Kvant”, Moscow, Russia
Email: {korv@rdi-kvant.ru, sdvbox@gmail.com,

a_v_k@rambler.ru}

Boris Shabanov, Pavel Telegin
Joint Supercomputer Center RAS, Leninsky pr. 32a,

Moscow, 119991, Russia
Email: {shabanov, telegin }@jscc.ru}

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 577–580

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 577

— its own local scheduler, which makes decisions on allo-

cation of jobs on resources or transfer jobs to another queue

based on IS data and queue state;

— process supporting current state of IS data to be coher-

ent with IS of other schedulers;

— service processes which provide fault tolerance hierar-

chy of the managers and information security (protection

against unauthorized access to resources).

CS manager, local scheduler of which makes decisions on

allocation of jobs to CS resources we will call the manager

М1 or 1-st level manager. Manager, scheduler of which allo-

cates jobs between local schedulers, will be called M2 or the

2-nd level manager. M1 managers transfer jobs to batch sys-

tem queue or to M2 manager. CC of each CS always exe-

cutes a M1 manager. Number of M2 managers can be one or

more depending on required reliability and throughput of

management system of Grid. MS managers can run on CS

control computers or on additional dedicated computers. In-

formation links between managers form an acyclic graph.

Managers are interacting using IP-addresses and port num-

bers.

Different algorithms can be used in local schedulers and

MS managers: from solving optimization problems to heuris-

tic algorithms, that allows taking into account specific het-

erogeneity of the Grid components.

A protocol for parallel resource allocation by hierarchy

structure managers is suggested in [9]. For this protocol it is

proved that there are no deadlocks caused by interlocking

because of partial simultaneous allocation resources by dif-

ferent managers, and inability to continue jobs due to lack of

resources for a job without releasing of resources by another

job.

Hierarchy organization of CS managers in Grid allows:

— Ensure absence of deadlocks during distributed execu-

tion of scheduling algorithms and resources allocation;

— Take into account the specifics of managing heteroge-

neous objects, combining similar objects (CSs, domains) un-

der control of single manager. Combining CSs to domain can

be done using different similarity criteria: architecture, hard-

ware and software platform, administration policy, geograph-

ical location, ownership of organization, etc.;

— Control MS managers in the same domain by single or-

ganization providing their support, and use scheduling algo-

rithms common for given domain;

— Reduce number and variety of control object types for

each manager, this simplifies formulation and implementa-

tion of management decision and reduces the uncertainty of

complex multiprogramming case, determining and fixing the

number of parameters for the higher level.

III. ALGORITHMS FOR DISTRIBUTED SCHEDULING.

Let us consider that job can be executed on any CS from

Grid and development of control solutions in the local man-

ager uses two job parameters: required number of computa-

tional nodes and required time. In practice more parameters

are used [8], but these two are sufficient for understanding

the idea.

The following characteristics of jobs and batch systems

are used for description of computational resources:

— Area of user job, it equals to product of requested num-

ber of nodes and requested time;

— Summary area of jobs on certain CS, it equals to sum

of areas of jobs, which are queued or executed on this CS;

— Load, it equals to the ratio of the summary area of jobs

on CS to the total number of computational nodes, which can

execute user’s programs. This characteristic describes mean

time that nodes will be busy executing jobs;

— Upper load bound of CS, it limits CS load.

Current difference between bound and load is total area of

jobs, which can be submitted to batch system on given CS.

M1 managers submit user jobs to batch system queue

without exceeding upper load bound. It should be noted that

in some cases, the batch system imposes a restriction on the

maximum time user jobs. So, area of jobs which can be sub-

mitted is limited either by difference between bound and cur-

rent load or by value equal to product of requested number

of nodes to maximum allowed execution time for given batch

system. Local scheduler takes into account this feature and

will not schedule job with area exceeding this limit. Chang-

ing upper load bounds one can redistribute jobs between

batch systems queues and CS managers queues.

As it is shown in [9], with appropriate objective function

like deviation of load values of computational node from

mean load value in local neighborhood, it is possible to mini-

mize of the objective function through the development of

local management decisions for CS load balancing.

Scheduling strategy is based on principle of making sub-

optimal decision in a coherent interaction between MS man-

agers. Managers, which are distributed over a network, make

local decisions, forming parts of global decision. Decision

on resource allocation for user job is made only by MS man-

ager controlling the given resource as it has most accurate in-

formation about allocated resource, that allows to make deci-

sion on the basis of actual data.

Let us explain using Fig. 1 how system of Grid managers

functions. One can see Grid consisting of 7 CSs, each of CC

executes manager M1i, i =1, . . . , 7 . Each M1i manager

stores in its resource table a row contains value received

from the batch system of corresponding CSi is recorded.

M2 managers have a set of enumerated logical channels

ports, which link them with M1 and M2 managers. For each

port M2 manager stores a raw in resource table with values

of areas of jobs which can be submitted to batch systems,

and their M1 managers can be reached by acyclic graph of

logical channels from the given M2 manager. E.g., for M24

manager resource table raw for port 1 contains information

about CS3 and CS4, in raw for port 2 information about CS1

and CS2, in raw for port 3 information about CS5, CS6 and

CS7.

Termination of jobs, failure of CS and communication

channels, recovery of CS and communication channels, con-

nection of new CS to Grid result corresponding changes in

resource tables. In general, each M2 manager contains com-

plete information about Grid resources, but different man-

agers have their own tables.

578 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Jobs queue of MS manager uses FIFO strategy. Each time

when resource table is changed or after a specified time in-

terval manager attempts to schedule jobs from its queue.

First of all list of CS in resource table is analyzed. In accor-

dance with the applicable scheduling algorithm a CS with

sufficient number of nodes for job execution is selected. If

there are no appropriate CS found in resource table of MS

manager, search is made by records corresponding to adja-

cent MS managers.

When requested resources found in system job is trans-

ferred to corresponding adjacent MS manager. When there

are no resources available job goes to the end of MS manag-

er queue, and manager allocates the next job. The set of all

MS managers’ queues forms a single global queue for aggre-

gated resources of the Grid.

It is obvious that the transfer of jobs between managers

may result infinite residence in queues of managers. To pre-

vent this, a label is assigned to job, which allows or prohibits

job rescheduling. If rescheduling is prohibited then local

scheduler transfers job to manager which resources are allo-

cated for job execution. Of course, this transfer is possible

only if there is place in that M1 manager, otherwise job waits

for possibility of transfer. Setting label prohibiting

rescheduling may be result of excess of limit of reschedul-

ings, or expiration of time interval of job stay in Grid.

Fig. 1. Grid managers

The same label is used for scheduling parallel job on

nodes of different CS. Parts of one job allocated on different

CS are represented as separate labeled jobs, this guarantees

reception of these jobs in the assigned CSs.

In some studies, particularly [10], of scheduling jobs in

the tree-shaped queue algorithms leveling the number of jobs

in queues are used. However, it seems that algorithms, taking

into account the load of Grid resources, would be more ap-

propriate.

The article investigates heuristic algorithms based on prin-

ciples of minimal load and minimal sufficiency [3].

According to the minimal load principle a job is sent to

the CS with least difference of upper load bound and load of

CS, i.e. job is allocated to less busy system or in case of

equal load to the system with minimum required number of

units of a free resource. This algorithm provides dynamic

leveling of computational load for CSs, so we call it balanc-

ing algorithm.

Alternative is usage of minimal sufficiency principle: job

is scheduled to CS with sufficient for an immediate start job

number of units of a free resource. Two modifications of

minimal sufficiency algorithm were investigated. In the first

modification jobs were assigned to Grid recourses in turn, in

the second modification jobs were assigned when possible

without regard to priority: as soon as required number of

computational nodes became free in cluster CS, the first job

able to be executed there was job was extracted from man-

agers’ queue. This allows to better load of CS, but order of

jobs is violated.

Let us explain functioning of MS managers using example

of scheduling on Grid in Fig. 1. In these examples allocation

strategy with minimal sufficiency is shown.

Example 1. Job running on CS7 requires 4 resource units.

Job will be transferred from M17 to M23 and later according

to resource table to M24, then to M22 and finally to M14.

M14 manager allocates job at CS4 which it controls. Job al-

location on CS4 will change resource tables of managers

M17, M23, M24 and M14 (number 4 will be excluded from

all resource tables). Due to the fact that level 2 managers

have aggregate information, decision on resource allocation

can be taken only by level 1 manager or adjacent level 2

manager.

Example 2. Job requiring 8 resource units, running on any

of the M1 managers will be suspended by the adjacent M2

until there is sufficient number of free nodes.

In managers’ resource tables predicted values of free Grid

resources for a given scale of time in the future can be

formed. Managers can make decisions basing on these pre-

dicted values.

IV. INVESTIGATION OF EFFICIENCY OF DISTRIBUTED
SCHEDULING ALGORITHMS.

A set of experiments was performed: once formed test

jobs flow was fed to the Grid containing of two CS called

next and neo, and operating under developed Grid environ-

ment [8].

Test flow consists of 2 parts, 25 jobs each and represents

typical jobs flow for MVS-1000 system. In a separate series

of experiments test the flow of jobs ran independently on

each CS in the Grid.

In further experiments these flows were fed to the Grid

management system simultaneously. In Table results of ex-

periments are presented. In experiments A1-A5 balancing al-

gorithm with different values of bound parameter.

In experiments B1 and B2 scheduling algorithm based on

minimal sufficiency is used. In experiment B1 data jobs were

VICTOR KORNEEV, DMITRY SEMENOV, ANDREY KISELEV, BORIS SHABANOV, PAVEL TELEGIN: MULTIAGENT DISTRIBUTED GRID SCHEDULER 579

allocated in turn, in B2 jobs were allocated whenever possi-

ble, without regard to priority.

TABLE 1.

EXPERIMENTAL RESULTS

CS Number of
jobs

Wall time

independent next
neo

25
25

02:43:54
05:3:58

A1, no limit next
neo

42
8

03:47:35
03:36:18

A2, bound = 80 next
neo

41
9

03:21:11
03: 18:29

A3, bound = 70 next
neo

26
24

03:31:46
03: 04:30

A3, bound = 60 next
neo

32
18

04:58:01
02:32:39

A3, bound = 50 next
neo

29
21

03:14:21
04:23:49

B1 in turn next
neo

33
17

03:38:32
03:54:27

B2, no priority next
neo

28

22

02:56:17

03:06:31

In experiments A1 with infinite upper load bound jobs

were allocated to resources without staying in managers’

queues. It is needed to note that if jobs flow is distributed to

two identical systems the way that there is the same load lev-

el at initial moment then times of execution of parts of jobs

flow will vary because of differences of real execution times.

On the “next” CS part of jobs flow was executed faster and

CS was idle while the other CS was executing the rest of its

jobs. This can be seen in results of experiments with infinite

bound. However, it should be noted that due to more rational

distribution of jobs (CS with more resources received greater

part of flow) it was possible to reduce maximum of jobs pro-

cessing times compared to execution of the flows on inde-

pendent CSs.

In Table 1 one can see trend deterioration in quality of

scheduling jobs flow with bound less than 80.With big

bound values results of experiments tend to results with infi-

nite bound. When bounds are lower it happens that jobs with

small number of requested nodes and high requested time

contribute significantly to the CS workload/ thus increasing

load bound, while there are free nodes in CS. In cases like

this idle time of nodes is high resulting summary time of exe-

cutions.

It should also be noted that for all experiments MS [8]

demonstrated stable operation both in normal mode and in

high load mode: all jobs were scheduled and executed.

REFERENCES

[1] Foster I., Kesselman C., Tsudik G., Tuecke S. A security architecture
for computational grids // Proc. 5th ACM Conference on Computer
and Communications Security. San Francisco: ACM Press, 1998. 83–
92.

[2] Корнеев В. В. Вычислительные системы. М.: Гелиос АРВ, 2004.
[3] Корнеев В. В, Киселев А. В., Семенов Д. В., Сахаров И .Е.

Управление метакомпьютерными системами // Открытые
системы. 2005. № 2. 11–16.

[4] Lee J., Keleher P., and Sussman A. “Decentralized resource
management for multi-core desktop grids,” in 24th IEEE
International Parallel & Distributed Processing Symposium, Atlanta,
Georgia, USA, 2010.

[5] Богданов С. А., Коваленко В. Н., Хухлаев Е. В., Шорин О. Н.
Метадиспетчер: реализация средствами метакомпьютерной
системы Globus. Препринт ИПМ № 30. Москва, 2001.

[6] GridWay Metascheduler: Metascheduling Technologies for the Grid.
URL: http://gridway.org.

[7] Савин Г. И., Корнеев В. В., Шабанов Б. М., Телегин П. Н.,
Семенов Д. В., Киселев А. В., Кузнецов А. В., Вдовикин О. И.,
Аладышев О. С., Овсянников А. П. Создание распределенной
инфраструктуры для суперкомпьютерных приложений// Про-
граммные продукты и системы. 2008. № 2. 2–7.

[8] Руководство программиста грид (http://www.jscc.ru/informat/
grid1.zip).

[9] Корнеев В. В. Архитектура вычислительных систем с
программируемой структурой. Новосибирск: Наука, 1985.
(http://andrei.klimov.net/reading/1985.Korneev.- .Arkhitektura.
vychislitel’nykh.sistem.s.programmiruemoi.strukturoi.zip)

[10] Houle M., Symvonis A., Wood D. Dimension-exchange algorithms
for token distribution on tree-connected architectures // J. of Parallel
and Distributed Computing. 2004. № 64. 591–605.

580 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

