
Decomposition of SBQL Queries for Optimal
Result Caching

Piotr Cybula
Institute of Mathematics

and Computer Science

University of Lodz, Poland

Email: cybula@math.uni.lodz.pl

Kazimierz Subieta
Institute of Computer Science

Polish Academy of Sciences, Poland

Polish-Japanese Institute of Information

Technology, Warsaw, Poland

Email: subieta@ipipan.waw.pl

Abstract—We present a new approach to optimization of query
languages using cached results of previously evaluated queries.
It is based on the stack-based approach (SBA) which assumes
description of semantics in the form of abstract implementation of
query/programming language constructs. Pragmatic universality
of object-oriented query language SBQL and its precise, formal
operational semantics make it possible to investigate various
crucial issues related to this kind of optimization. There are
two main issues concerning this topic - the first is strategy
for fast retrieval and high reuse of cached queries, the second
issue is development of fast methods to recognize and maintain
consistency of query results after database updates. This paper
is focused on the first issue. We introduce data structures and
algorithms for optimal, fast and transparent utilization of the
result cache, involving methods of query normalization with
preservation of original query semantics and decomposition of
complex queries into smaller ones. We present experimental
results of the optimization that demonstrate the effectiveness of
our technique.

I. INTRODUCTION

C
ACHING results of previously evaluated queries seems

to be an obvious method of query optimization. It as-

sumes that there is a relatively high probability that the same

query will be issued again by the same or another application,

thus instead of evaluating the query the cached result can be

reused. There are many cases when such an optimization strat-

egy makes a sense. This concerns the environments where data

are not updated or are updated not frequently (say, one update

for 100 retrieval operations). Examples are data warehouses

(OLAP applications), various kinds of archives, operational

databases, knowledge bases, decision support systems, etc.

Conceptually, the cache can be understood as a two-column

table, where one column contains cached queries in some

internal format (e.g. normalized syntactic query trees), and

the second column contains query results. A query result can

be stored as a collection of OIDs, but for special purposes

can also be stored e.g. as an XML file enabling further quick

reuse in Web applications. A cached query is created as a side

effect of normal evaluation of user query. A transparency is

the most essential property of a cached query. It implies that

programmers need not to involve explicit operations on cached

results into an application program. In contrast to other query

optimization methods, which strongly depend on the semantics

of a particular query, the query caching method is independent

of a query type, its complexity and a current database state.

Our research is done within the stack-based approach (SBA)

to object-oriented query/programming languages. SBA is a

formal theory and a universal conceptual frame addressing this

kind of languages, thus it allows precise reasoning concerning

various aspects of cached queries, in particular, query seman-

tics, query decomposition, query indexing in the cache, and

so on. We have implemented the caching methods as a part of

the optimizer developed for the query language SBQL in our

last project ODRA (Object Database for Rapid Application

development) devoted to Web and grid applications [1]. In [2]

we have described how query caching can be used to enhance

performance of applications operating on grids.

There are two key aspects concerning the development of

database query optimization using cached queries. The first

concerns the organization of the cache enabling fast retrieval

of cached queries (for optimal queries selection and rewriting

new queries with use of cached results) and optimal, fast and

transparent utilization of the cache, involving methods of query

normalization with preservation of original query semantics

(enabling higher reuse of cached queries for semantically

equivalent but syntactically different queries), decomposition

of complex queries into smaller ones and maintenance of

assigned resources by removing rarely used results. The sec-

ond problem is development of fast methods to recognize

consistency of queries and automatic incremental altering

of cached query results after database updates (sometimes

removing or re-calculating).

In this paper we deal mainly with the first issue of the

optimization method. The second aspect is widely researched

in [3], [4]. The paper is organized as follows. Section II

discusses known solutions that are related to the contributions

of the paper. In section III we briefly present the Stack-Based

Approach. Section IV shortly describes the architecture of

the caching query optimizer. Sections V and VI contain the

description of optimization strategies - query normalization,

decomposition and rewriting rules. Section VII presents ex-

perimental results and Section VIII concludes.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 841–848

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 841

II. RELATED WORK

Cached queries remind materialized views, which are also

snapshots on database states and are used for enhancing

information retrieval [5], [6], [7]. The papers assume some

restrictions on a query language expressions and cached struc-

tures. Such materialized views are currently implemented in

popular relational database systems as DB2 and Oracle [8], [9],

[10], [11]. Materialization of query results in object-oriented

algebras in the form of materialized views is considered in [12]

and [13]. Some solutions for view result caching at client-side

in object and relational databases and for optimal combination

of materialized results in cache to answer a given query are

presented in [14] and [15]. In [16] and [17] a solution for

XML query processing using materialized XQuery views is

proposed.

There are, however, two essential differences between

cached queries and materialized views. The first one concerns

the scale. One can expect that there will be at most dozens of

materialized views, but the number of cached queries could

be thousands or millions. Such scale difference implies the

conceptual difference. The second difference concerns trans-

parency: while materialized views are explicit for software

developers, cached queries are an internal feature that is fully

transparent for them. Our research is just about how this

transparent mechanism can be used to query optimization,

assuming no changes to syntax, semantics and pragmatics of

the query language itself.

New Oracle 11g database system [11] offers also caching of

SQL and PL/SQL results. The cached results of SQL queries

and PL/SQL functions are automatically reused while subse-

quent invocation and updated after database modifications. On

the other hand, in opposition to our proposal, materialization

of the results is not fully transparent. Query results are cached

only when query code contains a comment with a special

parameter result_cache, so the evaluation of old codes

without the parameter is not optimized.

Query cache is also implemented in MySQL database

[18], where only full SELECT query texts together with the

corresponding results are stored in the cache. In the solution

caching does not work for subselects and stored procedure

calls (even if it simply performs a SELECT query). Queries

must be absolutely the same - they have to match byte by byte

for cache utilization, because of matching of not normalized

query texts (e.g. the use of different letter case causes insertion

of different queries into the query cache).

There is in Microsoft .NET query language LINQ [19] some

kind of query result caching as an optimization technique

for often requested queries, but it is also not transparent for

programmers. They have to explicitly place the results of

queries into a list or an array (calling one of the methods

ToList or ToArray) and in a consequence each subsequent

request of such query will cause getting its results from the

cache instead of the query reevaluation.

But there is not any result caching solutions implemented

in current leading commercial and non-commercial object-

oriented database systems. Most of them bases their query

languages on OQL (Object Query Language) proposed as a

model query language by ODMG (Open Database Manage-

ment Group) [20]. Only a cache of objects is introduced in

some implementations for fast access of data in a distributed

database environment.

III. OVERVIEW OF THE STACK-BASED APPROACH (SBA)

The Stack-Based Approach (SBA) along with its query

language SBQL are thoroughly described in [21], [22], [23].

SBA assumes that query languages are a special case of

programming languages. The approach is abstract and uni-

versal, which makes it relevant to a general object model. The

SBQL language has several implementations - for the XML

DOM model, for OODBMS Objectivity/DB, and recently for

the object-oriented ODRA system [1]. SBQL is based on an

abstract syntax and the principle of compositionality: it avoids

syntactic sugar and syntactically separates as far as possible

query operators. In contrast to SQL and OQL, SBQL queries

have the useful property: they can be easily decomposed into

subqueries, down to atomic ones, connected by unary or binary

operators. The property simplifies implementation and greatly

supports query optimization. The SBQL operational semantics

introduces two stacks, ENVS responsible for scope control and

for binding names and QRES known as query result stack

for storing temporary and final query results. The two stacks

architecture is the core of SBA. The syntax of SBQL is as

follows:

• A single name or a single literal is an (atomic) query. For

instance, Student, name, year, x, y, "Smith", 2,

2500, etc., are queries.

• If q is a query, and σ is a unary operator (e.g. sum,

count, distinct, sin, sqrt), then σ(q) is a query.

• If q1 and q2 are queries, and θ is a binary operator (e.g.

where, .(dot), join, +, =, and), then q1 θ q2 is a

query.

• There are not other queries in SBQL.

SBQL, unlike SQL and other query languages, avoids big

syntactic and semantic patterns. Atomic queries are single

names and literals. Nested queries can be arbitrarily composed

from atomic and nested queries by unary and binary operators,

providing they have a sense for the programmer and do not

violate typing constraints. Classical query operators, such as

selection, projection/navigation, join, quantifiers, etc. are also

binary operators, but their semantics involves ENVS. For this

reason they are called "non-algebraic" - their semantics cannot

be expressed by any algebra designed in the style of the

relational algebra. Below we present the exemplary operational

semantics for one of the often used "non-algebraic" operator

of projection (dot operator):

1) Initialize an empty bag (eres).

2) Execute the left subquery.

3) Take a result collection from QRES (colres).

4) For each element el of the colres result do:

a) Open new section on ENVS.

842 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Fig. 1. Class diagram of the example database

b) Execute function nested(el).

c) Execute the right subquery.

d) Take its result from QRES (elres).

e) Insert elres result into eres.

5) Push eres on QRES.

Step 4b) employs a special function nested which formalizes

all cases that require pushing new sections on the ENVS,

particularly the concept of pushing the interior of an object.

This function takes any query result as a parameter and returns

a set of binders.

For the operator of selection (where) all steps are the same

except for 4e) and a new 4f):

e) Verify whether elres is a single result (if not exception

is raised).

f) If elres is equal to true add el to eres.

For the navigational join operator (join) the steps are:

e) Perform Cartesian Product operation on el and elres.

f) Insert obtained structure into eres.

For SBQL optimization examples presented in next sections

we assume the class diagram in Fig. 1. The schema defines

five classes (i.e. five collections of objects): Training,

Student, Emp, Person and Dept. The classes Training,

Student, Emp and Dept model students receiving trainings,

which are supervised by employees of departments organizing

these trainings. Person is the superclass of the classes

Student and Emp. Emp objects can contain multiple com-

plex prev_job subobjects (previous jobs). Names of classes

(as well as names of attributes and links) are followed by

cardinality numbers, unless the cardinality is 1.

IV. QUERY OPTIMIZER ARCHITECTURE

In most commercial client/server database systems (c.f.

SQL processors) all the query processing is performed on

the server. In SBA majority of query processing is shifted

to the client side, to avoid server overloading and primarily

to meet the orthogonal persistence principle, which implies,

in particular, that a state involves persistent (server-side) and

volatile (client-side) data on equal rights. Fig. 2 presents query

processing architecture in SBA. Firstly, similarly to indices,

the query cache registry is stored at the server. Hence the

client-side query optimizer looks up in this registry before

starts optimization and processing a given query. Secondly,

Fig. 2. Query optimization steps

in opposite to the traditional approaches, because only the

client knows the form of the query and its result, the client

is responsible to send the pair <query, result> to the server

in order to include it within the query cache registry. The

registry indexes cached queries with search keys being query

texts, normalized using some sophisticated techniques men-

tioned in the next section. Non-key values of the index are

references to nodes storing meta-information (MB_ID) and

data (DB_ID), mainly compiled query and results, of cached

queries.

The scenario of the optimization using cached queries in

query evaluation environment for SBA is as follows (step

numbers as in Fig. 2):

1) A user sends a query to a client-side database interface.

2) The parser receives it and transforms into a syntactic

tree.

3) The tree is statically evaluated for type checking with

the use of the static stacks (ENVS and QRES) and a

database schema stored in the metabase at the server-

side. After successful static evaluation the nodes of the

query tree are augmented with type signatures for easier

optimization reasoning.

4) The tree is sent to the cache optimizer being one in

a sequence of optimizers employed at the client-side

database system.

5) The cache optimizer rewrites it using strategies pre-

sented in next two sections including the precise al-

gorithms for the most important methods of query

normalization and decomposition. The optimizer em-

ploys the server-side cache manager which proposes

optimal matching of results cached in the query cache

registry, performs proper steps for a new query caching

if suggested by the optimizer and maintains cache usage

statistics for optimal cache utilization and cleaning. For

each new cached query the manager generates additional

structures, which describe a subset of involved objects

PIOTR CYBULA, KAZIMIERZ SUBIETA: DECOMPOSITION OF SBQL QUERIES FOR OPTIMAL RESULT CACHING 843

for maintenance purposes. The system updates cached

results after changes in the database [3], [4].

6) The optimized query evaluation plan is produced and

sent to query interpreter.

7) The plan is evaluated by the query interpreter. Some

parts of the plan rewritten by the cache optimizer suggest

taking the cached results from the server-side object

store instead of reevaluation of them. For new queries

being candidates for caching the interpreter generates

their results and sends it to the cache manager for storing

at the database server.

V. QUERY NORMALIZATION

To prevent from placing in the cache queries with different

textual forms but the same semantic meaning we introduce

several query text normalization methods. These methods are

applied in a way of reconstructing a query text from early

generated query syntactic tree or directly by change some

nodes or their order within the tree.
Alphabetical ordering of operands: The method is suit-

able for operators, which for a succession of operands is not

substantial, such as comparing operators (=, 6=, ≤, <, >, ≥),
arithmetic operators (+, −, ∗, /), logical operators (or, and),
operators of sum and intersection of sets, structure constructor

(struct), i.e. a query:

Emp where salary >= 1100 or salary = 1000

is normalized to:

Emp where 1000 = salary or 1100 <= salary

The general algorithm of the method is presented on Algorithm

1.
Ordering of operators: Sum and multiply operations

are put before subtractions or divisions [3], i.e. an arithmetic

expression is transformed as follows:

a / b / c * d / e

is normalized to:

a * d / b / c / e

Unification of auxiliary names: Auxiliary names used

by the programmer for as or group as operator are unified,

but only if such an operator doesn’t finalize the evaluation of

the query (it is not the root of the syntactic tree, which case

is easy to recognize based on query result signature evaluated

earlier by the static evaluator), i.e. a query:

(((Emp where salary > 900) as e) join

(e.works_in.Dept as d)).(e.name, d.dname)

is normalized to:

(((Emp where salary > 900) as $cache_aux1)

join ($cache_aux1.works_in.Dept

as $cache_aux2)).($cache_aux1.name,

$cache_aux2.dname)

Algorithm for normalization of auxiliary names is presented

on Algorithm 2.

Algorithm 1 alphaNormalize(Q)

for all non-leaf depth-first node N in query syntax tree with

the root node Q do

if N.op ∈ {"<", "≤", ">", "≥"} then
alphaNormalize(N.left);
alphaNormalize(N.right);
if text(N.right) < text(N.left) then
N.op← ">", "≥", "<", "≤"; {respectively}
swap(N.left, N.right);

end if

else if N.op ∈ {"=", " 6="} then
alphaNormalize(N.left);
alphaNormalize(N.right);
if text(N.right) < text(N.left) then
swap(N.left, N.right);

end if

else if N.op = "struct" then {possibility of more than

two child nodes}

queue← empty alphabetically-sorted queue

for all node child ∈ N.childs do

alphaNormalize(child);
queue.push(text(child));

end for

while queue 6= ⊘ do

child← queue.pop();
N.childs.push(child);

end while

else if N.op ∈ {"+", "−", "∗", "/", "and", "or", "union",
"intersect"} then
queue← empty alphabetically-sorted queue

alphaNormalize(N.right);
queue.push(text(N.right));
L← N.left;
while L is non-leaf and L.op = N.op do

alphaNormalize(L.right);
queue.push(text(L.right));
L← L.left;

end while

alphaNormalize(L);
if L.parent.op 6∈ {"−", "/"} then
queue.push(text(L));
L← L.parent;
L.left← queue.pop();

end if

while queue 6= ⊘ do

L.right← queue.pop();
L← L.parent;

end while

end if

end for

844 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Algorithm 2 auxNormalize(Q)

resultList← empty sorted list;

nameMapList← empty sorted mapping list;

for all static binder n(x) ∈ result signature of the query

with the root node Q do

resultList.push(n);
end for{the list remains empty for the above example query

(without any binder in its result)}
counter← 1;
for all non-leaf depth-first node N in query syntax tree with

the root node Q do

if N.op ∈ {"as", "group as"} then
if N.name 6∈ resultList then
nameMapList.push(N.name,
"$cache_aux" + text(counter));
N.name← "$cache_aux" + text(counter);
counter← counter + 1;

end if

else if N.op is name expression then

if N.name ∈ nameMapList then
N.name←
nameMapList.getMappedValue(N.name);

end if

end if

end for

VI. QUERY DECOMPOSITION AND REWRITING

After normalization phase query is virtually decomposed,

if possible, into one or many simpler candidate subqueries.

Query decomposition is a useful mechanism to speed up

evaluating a greater number of new queries. If we materialize

a small independent subquery instead of a whole complex

query, then the probability of reusing of its results is risen. In

addition, a simple semantic of the decomposed query reduces

the costs of its updating. Each isolated subquery and finally

a whole query is independently analyzed in context of the set

of cached queries defined in the query cache registry and if it

hasn’t yet cached, it becomes a new candidate for caching.

Too simple queries (without object names or non-algebraic

operators) are omitted. While analyzing, query is converted to

the text form and the optimizer performs search process using

query index stored in the query cache registry. If found, the

tree of the query is replaced with a call of a special cache

function parameterized with unique references to nodes of

matched cached query in the metabase and the object store

(these MB_ID and DB_ID parameters are non-key elements

of cached query index mentioned earlier). Each not yet cached

candidate query is also replaced with a call of the cache

function - new cached query is placed into the query index.

In this case a query node in the object store doesn’t contain

query results - it is marked as "not fully cached" and will be

populated with its results while the first need of use (when

the interpreter will evaluate it). The analyzing algorithm is

presented on Algorithm 3.

Algorithm 3 analyze(Q, resultT ype)

if resultT ype = FULL then

(MB_ID,DB_ID)← searchCache(text(Q));

if MB_ID 6= 0 then {cached query found}

Q← new tree with function call

"$cache_fun(MB_ID,DB_ID)";

end if

else {PARTIAL}

if Q.op = "." and Q.right.op ∈ {"sum", "avg", "min",

"max", "count"} then
if Q.left.op is name expression and Q.left.name is

class object then

Q.op← "join";

(MB_ID,DB_ID)← searchCache(text(Q));

if MB_ID 6= 0 then

name← Q.left.name;
Q← new tree with function call

"$cache_fun(MB_ID,DB_ID, name)";
end if

end if

end if

end if

if Q is not a call of function "$cache_fun" then {cached

query not found}

(MB_ID,DB_ID) ← insertCache(Q); {new cached

query}

Q← new tree with function call

"$cache_fun(MB_ID,DB_ID)";

end if

return Q

Factoring out independent subqueries: The concept of

query idependence is thoroughly investigated in [3], [21], [22].

Instead of caching such a complex query as:

Emp where salary <

((Emp where name = "Smith").salary)

we isolate an internal independent query:

(Emp where name = "Smith").salary

and transform the whole query to the following form:

(((Emp where name = "Smith").salary)

group as v).(Emp where salary < v)

The independent query is matched and proposed as cached

query uniquely identified by its node references MB_ID and

DB_ID, and finally the original query is rewritten to:

Emp where salary <

$cache_fun(MB_ID, DB_ID)

Algorithm of the method is presented on Algorithm 4 (as-

suming the existence of a special function isIndependent

checking the independence and if need changing the query

in an appropriate manner).

PIOTR CYBULA, KAZIMIERZ SUBIETA: DECOMPOSITION OF SBQL QUERIES FOR OPTIMAL RESULT CACHING 845

Algorithm 4 independDecompose(Q)

if isIndependent(Q) then {query has been transformed and

starts with dot operator}

left← analyze(Q.left.left, FULL); {analyzing idepen-

dent query without auxiliary name}

if left.op is function call and

left.name = "$cache_fun" then {query cached}

for all non-leaf depth-first node N in query syntax tree

with the root node Q.right do
if N.op is name expression and

N.name = Q.left.name then {auxiliary name}

N ← left;
end if

end for

Q← Q.right;
end if

end if

Q← analyze(Q, FULL);

Factoring out aggregations: Aggregating functions

(avg, min, max, sum, count) are in many cases time

consuming queries. Such functions can be interpreted as virtual

materialized attributes of database objects of some classes, i.e.

query:

Dept join avg(employs.Emp.salary)

is cached as a group of cached queries for each Dept object

instance which becomes an additional third parameter of cache

function $cache_fun. Thus another query:

Emp where salary >

works_in.Dept.avg(employs.Emp.salary)

is decomposed by isolating cached query:

Dept.avg(employs.Emp.salary)

and rewriting the whole query as follows (Fig. 3):

Emp where salary >

works_in.$cache_fun(MB_ID, DB_ID, Dept)

Algorithm of the method is presented on Algorithm 5.

Removing path expressions: Reference paths finalizing

query evaluation are isolated, but only if they are quickly

evaluable (thanks to referential nature of object-oriented

database). If a query is finalized with a sequence of nav-

igational operators (dot) or the constructor of a structure

(struct) containing such sequences, and all the objects

within such expressions are unique subobjects or reference

objects (with cardinality 1 or 0..1), the longest expressions

fulfilling this condition are cut forming simpler independent

query for caching, i.e. query:

(Training where count(received_by) > 12).

(subject, duration,

supervised_by.Emp.salary)

Fig. 3. Sample query optimization

Algorithm 5 aggDecompose(Q)

for all non-leaf depth-first node N in query syntax tree with

the root node Q do

if N.op = "." and N.right.op ∈ {"sum", "avg", "min",

"max", "count"} then
if N.left.op is name expression and N.left.name is

class object then

if N = Q then

N ← analyze(N , FULL);

else

N ← analyze(N , PARTIAL);

end if

else if N.left.op = "." then

if N.left.right.op is name expression and

N.left.right.name is class object then

left← N.left.left;
N.left← N.left.right;
N.right← analyze(N , PARTIAL);

N.left← left;
end if

end if

end if

end for

Q← analyze(Q, FULL);

is ended with an implicit structure constructor with a path

expression. Each expression has the cardinality 1, so all

expressions (and in consequence structure constructor, too) are

ignored while isolating the query:

(Training where count(received_by) > 12)

and finally rewriting the input query to:

$cache_fun(MB_ID, DB_ID).

(subject, duration,

supervised_by.Emp.salary)

In case of another query:

(Dept where dname = "Database").

employs.Emp.prev_job

846 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Algorithm 6 pathDecompose(Q)

done← false;

if Q.op = "." then

if Q.right.op is name expression then

if cardinality(Q.right.name) ≤ 1 then

pathDecompose(Q.left);
done← true;

else if Q.left.op is name expression

and cardinality(Q.left.name) ≤ 1 then

pathDecompose(Q.left);
done← true;

end if

else if Q.right.op = "struct" then

proper ← true;

for all node child ∈ Q.right.childs do

if child.op is name expression then

if cardinality(child.name) > 1 then

proper ← false; break

end if

else if child.op = "." then

pathDecompose(child);
if child.op is name expression then

if child.childs 6= ⊘
or cardinality(child.name) > 1 then

proper ← false; break

end if

else

proper ← false; break

end if

else

proper ← false; break

end if

end for

if proper then

pathDecompose(Q.left);
done← true;

end if

end if

end if

if not done then

Q← analyze(Q, FULL);

end if

both prev_job (subobject) and employs (reference object)

attributes have cardinality 0..∗, so the optimal solution is to

cache the whole query. Algorithm of the method is presented

on Algorithm 6.

Transforming queries involving logical and set-based

expressions: Thanks to the distributivity property of the

selection operator in SBQL (where), it is possible to decom-

pose queries with complex predicates containing some logical

operators (or, and, not) into two or more simpler queries

joined by set operators (union, intersect, minus) on

bags of results. For instance, the complex query:

Algorithm 7 setDecompose(Q)

for all non-leaf depth-first node N in query syntax tree with

the root node Q do

if N.op = "where" and N.right.op ∈ {"or", "and",

"not"} then
left← empty tree;

right← empty tree;

right.op← "where";

right.left← N.left;
if N.right.op ∈ {"or", "and"} then
left.op← "where";

left.left← N.left;
left.right← N.right.left;
right.right← N.right.right;

else {"not"}

left← N.left;
right.right← N.right.left; {left is the only node}

end if

left← analyze(left, FULL);
right← analyze(right, FULL);
N.op← "union", "intersect", "minus"; {respectively}

N.left← left;
N.right← right;

end if

end for

Q← analyze(Q, FULL);

Emp where (job = "clerk") or

(job = "consultant")

is transformed into query:

(Emp where job = "clerk") union

(Emp where job = "consultant")

and finally into:

$cache_fun(MB_ID1, DB_ID1) union

$cache_fun(MB_ID2, DB_ID2)

Algorithm of the method is presented on Algorithm 7.

VII. EXPERIMENTAL RESULTS

We have tested the performance of the optimizer by cal-

culating response times for 100 subsequent requests using

a set of queries retrieving data from database containing

over 100000 objects being instances of Dept or Emp class

according to the schema presented in Fig. 1. Input queries with

the same semantics were syntactically different but after the

normalization or decomposition they became unified. We have

compared four optimization strategies: without optimization

(NoCache), caching in volatile memory (TMP), caching in

persistent memory (DB) and mixed caching (TMP+DB). The

results presented in Fig. 4 show that in case of the TMP

strategy average response time is more than 10 times shorter

than response without using of the cache. In many cases, es-

pecially for more complex queries (using multi-parameterized

predicates or aggregations), responses were 100 times faster.

PIOTR CYBULA, KAZIMIERZ SUBIETA: DECOMPOSITION OF SBQL QUERIES FOR OPTIMAL RESULT CACHING 847

VIII. CONCLUSIONS AND FUTURE WORK

We have presented an approach to optimization of query

execution using caching of the results of previously answered

queries. Our solution addresses the stack-based approach to

object-oriented query languages. The cached queries method

as a tool for optimization ensures short and scalable response

time to any user request types. Proper structures and strategies

for fast retrieval and high utilization of cached queries results

have been proposed. We have presented the architecture of

the query cache optimizer for optimal query selection and

rewriting new queries with the use of cached results. Methods

of query normalization were developed, with preservation

of the original query semantics (enabling higher reuse of

cached queries for semantically equivalent but syntactically

different queries). Query decomposition of complex queries

into smaller ones was presented. Some experimental results

of the optimization were introduced that demonstrate the

effectiveness of our method.

The work on cached queries is continued. There are many

open research areas concerning this optimization method. The

main areas concern some additional features of SBA and

SBQL not mentioned in this paper, such as inheritance and

dynamic object roles. Another open issue is recognizing some

parts of the cached results helpful for answering other queries

and combining many cached queries while producing a result

of one wider query. In general, the problem is practical rather

than theoretical, hence much effort should be devoted to

experiments with different strategies of caching queries and

keeping in sync their stored results.

REFERENCES

[1] “ODRA (Object Database for Rapid Application development), Descrip-
tion and programmer manual.” http://sbql.pl/various/ODRA/ODRA_
manual.html.

[2] P. Cybula, H. Kozankiewicz, K. Stencel, and K. Subieta, “Optimization
of distributed queries in grid via caching,” in Proceedings of the On

the Move to Meaningful Internet Systems 2005, OTM GADA Workshop,
vol. 3762 of LNCS, pp. 387–396, Springer, 2005.

[3] P. Cybula, Cached Queries as an Optimization Method in the Object-

Oriented Query Language SBQL. PhD thesis, Institute of Computer
Science, Polish Academy of Sciences, Warsaw, 2010. In Polish.

[4] P. Cybula and K. Subieta, “Query optimization through cached queries
for object-oriented query language SBQL,” in Proceedings of SOFSEM

2010, vol. 5901 of LNCS, pp. 308–320, Springer, 2010.

Fig. 4. Efficiency of optimization using cached queries

[5] J. A. Blakeley, P. Larson, and W. Tompa, “Efficiently updating materi-
alized views,” in Proc. of ACM SIGMOD, pp. 61–71, 1986.

[6] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim, “Opti-
mizing queries with materialized views,” in Proc. of Intl. Conf. on Data
Engineering, pp. 190–200, 1995.

[7] C. M. Chen and N. Roussopoulos, “The implementation and perfor-
mance evaluation of the ADMS query optimizer: Integrating query result
caching and matching,” in Proc. of Intl. Conf. On Extending Database

Technology, 1994.
[8] “IBM DB2 Universal Database SQL Reference.” http://www.ibm.com/

software/data/db2/udb, Vol. 2, Version 8, 2002.
[9] “Faster federated queries with MQTs.” http://www.db2mag.com/db_

area/archives/2003/q3, DB2 Magazine, Vol. 8, No. 3, 2003.
[10] “Oracle 9i materialized views, An Oracle White Paper.” http://www.

oracle.com/database, May 2001.
[11] “On Oracle Database 11g,” Oracle Magazine, Vol. XXI, No. 5, 2007.
[12] M. A. Ali, A. A. A. Fernandes, and N. Paton, “MOVIE: An incremental

maintenance system for materialized object views,” in Proc. of Data and
Knowledge Engineering, vol. 47, pp. 131–166, 2003.

[13] A. Kemper and G. Moerkotte, “Access support in object bases,” in Proc.

of ACM SIGMOD, pp. 364–376, 1990.
[14] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, and M. Tan,

“Semantic data caching and replacement,” in Proc. of VLDB, 1996.
[15] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham, “Materialized

view selection and maintenance using multi-query optimization,” in
Proc. of ACM SIGMOD, pp. 307–318, 2001.

[16] L. Chen and E. A. Rundensteiner, “ACE-XQ: A CachE-ware XQuery
Answering System,” in Proc. of WebDB, pp. 31–36, 2002.

[17] M. El-Sayed, L. Wang, L. Ding, and E. A. Rundensteiner, “An algebraic
approach for incremental maintenance of materialized XQuery views,”
in Proc. of WIDM, 2002.

[18] “MySQL 5.4 reference manual, chapter 7.5.5: The MySQL query cache.”
http://www.mysql.com, 2009.

[19] “LINQ: .NET Language-Integrated Query,” http://msdn.microsoft.com/
pl-pl/library/bb308959(en-us).aspx, Microsoft Corporation, 2007.

[20] R. G. G. Cattell, and D. K. Barry (eds.), “The Object Data Standard:
ODMG 3.0,” Morgan Kaufmann, 2000.

[21] K. Subieta, “Theory and practice of object query languages,” Polish-
Japanese Institute of Information Technology, 2004. In Polish.

[22] K. Subieta, “Stack-Based Approach (SBA) and Stack-Based Query
Language (SBQL),” http://www.sbql.pl/overview/, 2008.

[23] K. Subieta, C. Beeri, F. Matthes, and J. W. Schmidt, “A Stack Based
Approach to query languages,” in Proc. of 2nd Springer Workshops in
Computing, 1995.

848 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

