
�

Abstract—Software components evolve and this evolution

often leads to changes in their interfaces. Upgrade to a new

version of component then involves changes in client code that

are nowadays usually done manually. We deal with the problem

of automatic update of client code when the client upgrades to a

new version of component. We describe a new flexible

refactoring tool for the Java programming language that

performs refactorings described by refactoring rules. Each

refactoring rule consists of two abstract syntax trees: pattern

and rewrite. The tool searches for the pattern tree in client-

source-code abstract syntax trees and replaces each occurrence

with the rewrite tree. The client-source-code abstract syntax

trees are built and fully attributed by the Java compiler. Thus,

the tool has complete syntactic and semantic information.

Semantic analysis and flexibility in refactoring definitions make

the tool superior to most competitors.

I. INTRODUCTION

VOLUTION of components often leads to changes in

their interfaces (API – application programming inter-

face). If a new version of API is not source compatible with

the old version, usually both old and new versions of API are

maintained in parallel, so that clients that compiled against

the old version can compile against the new version as well.

For example, if method enable() in version 1.0 evolves to

method setEnabled(boolean b) in version 2.0, both

methods will probably be present in version 2.0 and method

enable() will be marked deprecated. Upgrade from ver-

sion 1.0 to version 2.0 then involves changes in client code.

These changes are nowadays usually done manually which is

tedious and error-prone.

E

In this paper, we describe a new refactoring tool for the

Java programming language that enables automatic update of

client code so that it compiles against a new API. Upgrade to

a new component is not fully automatic because the tool ex-

pects refactoring rules that are assumed to be written by

component author. Although authoring rules is not easy, the

time spent with them may pay off because once we have the

rules, we can upgrade thousands of clients in very straight-

forward way.

�This work has been supported by research program MSM6840770014.

The rest of the paper is structured as follows: section II in-

troduces informally the rule language, section III describes

API changes and corresponding refactoring rules, section IV

discusses shortcomings of the tool, section V compares the

tool with competitors, and section VI concludes.

II. RULE LANGUAGE

In this section, we introduce the rule language in which we

describe source code transformation. Rather than stating the

exact syntax, we introduce the language informally on ex-

amples.

A refactoring rule defines transformation of one abstract

syntax tree (AST) to another AST. Each has the following

form: Pattern -> Rewrite. Pattern is an AST in original

source code and Rewrite is an AST which the original AST

will be rewritten to. For example, the rule that rewrites p =

null to p = 0 is as follows:
Assignment {

 Identifier [name: "p"],

 Literal [kind: NULL_LITERAL]

} ->

Assignment {

 Identifier [name: "p"],

 Literal [kind: INT_LITERAL, value: 0]

}

Pattern and Rewrite have the following structure:

Tree Attributes Content (attributes and content are optional).

Trees are named as ASTs in Oracle Java Compiler [2,3] and

attributes are named as their properties. Attributes are en-

closed in [and] and are comma-separated. They specify

additional information about the tree. For example, in
Literal [kind: NULL_LITERAL]

the kind attribute says that literal is the null literal. In Pat-

tern, the attributes that are not specified match to any value

in source code. For example, Identifier means any

identifier and Literal [kind: INT_LITERAL]

means any int literal. In Rewrite, the tree must be described

completely so that a new tree can be built. For example, each

Identifier in Rewrite must have the name attribute.

Content is a comma-separated list of children of the given

tree node enclosed in { and }. For example,
Binary [kind: PLUS] {

Semi-Automatic Component Upgrade with RefactoringNG

Zdeněk Troníček
Faculty of Information Technology

Czech Technical University in

Prague

Czech Republic

Email: tronicek@fit.cvut.cz

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 907–910

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 907

 Literal [kind: INT_LITERAL],

 Literal [kind: INT_LITERAL]

}

is addition of two int literals. Children of a given tree must

be of appropriate types and all of them must be specified if

the tree has any content. For example, Binary always must

have two children (operands) if it has any content and either

of them must be expression. If content of Binary is miss-

ing, the operands may have any value in source code. For ex-

ample, Binary [kind: MINUS] means any subtrac-

tion.

In place where a tree is expected, any subclass of that tree

may be used. For example, operands of Binary may be any

subclasses of Expression:
Binary [kind: MULTIPLY] {

 Identifier,

 Literal [kind: INT_LITERAL, value: 0]

}

The tree hierarchy is the same as in Oracle Java compiler

[2]. Tree attributes may have one or more values. If an attrib-

ute has more values, they are separated by |. For example,
Binary [kind: PLUS | MINUS]

is either addition or subtraction.

Each tree in Pattern may have the id attribute. The value

of this attribute must be unique in a given rule and is instru-

mental to referring to the tree from Rewrite. For example,
Assignment {

 Identifier [id: p],

 Literal [kind: NULL_LITERAL]

} ->

Assignment {

 Identifier [ref: p],

 Literal [kind: INT_LITERAL, value: 0]

}

rewrites p = null to p = 0 where p stands for any iden-

tifier.

References to attributes are written using #. For example,

b#kind refers to the kind attribute of b. The attribute ref-

erence can be used in Rewrite as attribute value.

Lists use the same syntax as generic lists in Java. List<T>

is a list of elements that are assignable to the T type. A list

can be used either at the highest level or as part of another

tree.

III. API CHANGES

In this section, we show how RefactoringNG can help

with adapting client code to a new API. We identified API

changes caused by refactoring that are suitable for Refactor-

ingNG. These changes are: Rename field, Rename method,

Move field, Move method, Add method argument, Delete

method argument, Reorder method arguments, Add type ar-

gument, Reorder type arguments, Delete type argument,

Change instance method to static, Change static method to

instance, Add annotation element, Delete annotation ele-

ment, Rename annotation element, Rename annotation type,

Delete annotation type, Nest top level type, and Unnest nes-

ted type. For all of them we found refactoring rules that up-

date client code so that it compiles against the updated API.

Below we discuss three of these rules.

A. Rename field

Let’s rename the x field in the Position class to dx. To

update the client code, we have to replace each occurrence of

x with dx. The appropriate refactoring rule is as follows:
MemberSelect [identifier: "x"] {

 Identifier [id: p,

 instanceof: "component.Position"]

} ->

MemberSelect [identifier: "dx"] {

 Identifier [ref: p]

}

B. Rename method

Let's rename the read method in the Input class to

readInt. The rule that replaces invocations of the read

method with invocations of the readInt method is as fol-

lows:
 MethodInvocation {

 List<Tree> { },

 MemberSelect [identifier: "read"] {

 Identifier [id: p,

 instanceof: "component.Input"]

 },

 List<Expression> { }

} ->

MethodInvocation {

 List<Tree> { },

 MemberSelect [

 identifier: "readInt"] {

 Identifier [ref: p]

 },

 List<Expression> { }

}

The argument list (List<Expression>) enables us to se-

lect a method in case of overloading. For example, to ad-

dress a method invocation with a single string-literal argu-

ment, we use the following argument list:
 List<Expression> {

 Literal [kind: STRING_LITERAL]

 }

C. Add method argument

Let's add an argument to the one-argument sail method

in the Ship class. The following rule replaces invocations of

the one-argument method with the two-argument one:
MethodInvocation {

 List<Tree> { },

 MemberSelect [identifier: "sail"] {

 Identifier [id: s,

 instanceof: "component.Ship"]

 },

 List<Expression> [id: args]

} ->

MethodInvocation {

 List<Tree> { },

 MemberSelect [identifier: "sail"] {

908 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

 Identifier [ref: s]

 },

 List<Expression> {

 ListItems [ref: args],

 Literal [kind: INT_LITERAL,

 value: 42]

 }

}

When adding a method argument, we are not restricted to the

last position in argument list. Using the begin and end at-

tributes at ListItems we can insert a new argument at ar-

bitrary position.

IV. EVALUATION

In this section, we discuss each rule stated in previous sec-

tion and describe its limits and shortcomings.

A. Rename field

Although we expect the rule is sufficient in many

situations, it has two serious shortcomings. First, it renames

references to method x as well and even though it is a bad

practice to have a field and method with the same name, it is

allowed in the Java programming language and thus we must

count with it. Second, this rule renames only references of

form p.x where p is a variable and there is no simple way

how to address references of form e.x where e is an

expression of the Position type or any subtype.

B. Rename method

There is no simple way how to address method invoca-

tions that have either a string literal or a variable as argument

in a single rule. We can address either a string literal by
 List<Expression> {

 Literal [kind: STRING_LITERAL]

 }

or a variable by
 List<Expression> {

 Identifier [

 instanceOf: "java.lang.String"]

 }

but we cannot address both in one rule. So, if we want to up-

date code in both cases, we need two rules.

Even worse situation is when the argument is an expres-

sion. There is no simple way how to address a method invoc-

ation with argument of specific type. This may cause prob-

lems if the method is overloaded:
 public class Input {

 public int read(int i) { ... }

 public int read(String s) { ... }

 }

If we want to rename read(int i) to readInt, there is

no simple way how to address all invocations of this read.

In addition, if the read method is declared with int and

Integer arguments as follows:
 public class Input {

 public int read(int i) { ... }

 public int read(Integer i) { ... }

 }

there is no way how to distinguish between these two meth-

ods. Note that the following list of arguments matches either

of them:
 List<Expression> {

 Identifier [

 instanceOf: "java.lang.Integer"]

 }

Overriding causes problems too. For example, given

classes Input and ExtInput:
 public class Input {

 public int read() { ... }

 }

 public class ExtInput extends Input {

 public int readInt() { ... }

 }

and the rule that renames read() to readInt(), we may

end up with a program that is semantically wrong because

we unintentionally redirect a method call to readInt() in

ExtInput.

Another problematic situation is when we call a method

only by name:
 public class ExtInput extends Input {

 public int m() {

 return read();

 }

}

There is no simple way how to address such method call.

C. Add method argument

The shortcoming here is that the tool does not check

existence of a method with the same signature as the

resulting method. If such method exists, it may happen that

we unintentionally redirect the method call to this method.

For example, if client declares the ExtShip class as

follows:
 public class ExtShip extends Ship {

 public void sail(int direction,

 int speed) { ... }

 }

we may end up with a result that is semantically wrong.

Many of these shortcomings have a common cause: miss-

ing check whether the refactoring is valid in client context.

This is why we strongly recommend inspecting the code be-

fore applying changes. For that purpose, the proposed

changes are displayed in the standard NetBeans refactoring

window and user may decide which of them they confirm.

Concerning a tool support to facilitate rule definition, Re-

factoringNG contains generator that for a given source code

generates AST in RefactoringNG syntax. The output can be

used as a base for a rule definition. The rules can be pre-

pared in context-aware editor.

V. RELATED WORKS

Code refactoring is an area that is described extensively in

literature. For example, Fowler, Beck, Brant, Opdyke, and

ZDENEK TRONICEK: SEMI-AUTOMATIC COMPONENT UPGRADE WITH REFACTORINGNG 909

Roberts [1] describe many refactorings in detail. Refactoring

is used in many programming languages and programmers

usually spend some time doing refactoring every day, either

manually or by refactoring tools. For that purpose, every

Java IDE offers some kind of refactoring, such as rename or

encapsulate, in their menu.

The API evolution has already been investigated too. Dig

and Johnson [5] conducted a study of API changes of five

frameworks. In all the cases, more than 80% of the API

breaking changes were identified as refactorings.

Concerning the projects similar to RefactoringNG, we

found the Jackpot project [8] that is part of NetBeans IDE

[4]. Jackpot has a simple language for description of code

transformation. The language is more intuitive but less ex-

pressive than the language in RefactoringNG. For example,

in Jackpot, you cannot distinguish between a local variable

and a field. In RefactoringNG, we can use the

elementKind attribute for this.

IntelliJ [10] offers ‘Structural search and replace’. You

declare here two code fragments: one for searching and one

as replacement. In some sense it is similar to RefactoringNG.

As for differences, use of Structural search and replace is

easier because the code fragments are described in almost

pure Java. It also has a few features (e.g. regular expres-

sions) that are not implemented in RefactoringNG. On the

other hand, it lacks some RefactoringNG's features (e.g. at-

tributes elementKind and nestingKind) and does not

have batch processing.

As far as we know, no tool for automatic component up-

grade is commonly used in Eclipse [11].

The problem of automatic upgrade to a new version of

API has been investigated by several researchers. Chow and

Notkin [6] describe an approach in which a library author an-

notates changed library functions with rules. These rules are

then used to generate tools that can update client code auto-

matically.

Henkel and Divan [7] describe the CatchUp! tool. The

main idea behind the tool is to record and replay refactoring

actions. The tool captures refactoring actions when de-

veloper evolves API and enables to replay them later. Re-

playing is used for updating client code. The tool supports

only a few low-level refactorings that all can be done in Re-

factoringNG.

Balaban, Tip, and Fuhrer [12] present a framework for

automatic migration between library classes. The framework

is implemented as Eclipse plugin and uses a special language

for specifying migrations. As for functionality, the frame-

work provides only a subset of RefactoringNG.

Tansey and Tilewich [13] present a tool that infers trans-

formation rules from two versions of a class, one before and

one after upgrading. These rules are then used by transform-

ation engine to refactor the application source code. It

provides automatic inference of transformation rules and the

rule language is more intuitive and readable but less

powerful than the language in RefactoringNG.

Nguyen et al. [14] present a tool that learns how to adapt

the client code to a new API. The tool identifies the API lib-

rary changes and compares client codes before and after lib-

rary migration. The comparison serves to identify adaptation

patterns that are subsequently applied to other clients. The

main limitation of this tool is that it requires a set of source

codes that already migrated to a new API.

VI. CONCLUSION

Evolution of software components often leads to changes

in their API. When a new version of API is released, usually

both old and new APIs are maintained in parallel so that cli-

ents that compile against the old API are not broken when

they replace the old component with the new one. This ap-

proach to API evolution has two shortcomings: (i) maintain-

ing several versions of API is tedious and (ii) it inhibits API

evolution because API designers are restricted by the re-

quirement for backward compatibility. Since the old API

must be maintained until all clients migrate to the new API,

it is desirable to speed the migration up. In this paper, we de-

scribed the tool that facilitate code migration to a new API.

Although several similar tools exist, none of them is widely

used and code changes are usually done manually. This is

quite surprising because several researchers already showed

that many of these adaptations can be done automatically.

ACKNOWLEDGMENT

Denis Stepanov deserves thanks for his contribution to Re-

factoringNG. He attached the project to NetBeans infrastruc-

ture and implemented the rule editor.

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.

Refactoring: Improving the design of existing code. Addison-Wesley,

1999.

[2] JSR 199: Java Compiler API. http://www.jcp.org/en/jsr/detail?

id=199.

[3] JSR 269: Pluggable annotation processing API.

http://jcp.org/en/jsr/detail?id=269.

[4] NetBeans IDE. http://www.netbeans.org.

[5] D. Dig and R. Johnson. How do APIs evolve? A story of refactoring.

Journal of Software Maintenance and Evolution: Research and

Practice, Volume 18, Issue 2, pp. 83–107, 2006.

[6] K. Chow and D. Notkin. Semi-automatic update of applications in

response to library changes. International Conference on Software

Maintenance, pp. 359–368, 1996.

[7] J. Henkel and A. Diwan. CatchUp!: capturing and replaying

refactorings to support API evolution. International Conference on

Software Engineering, pp. 274–283, 2005.

[8] Jackpot project. http://wiki.netbeans.org/Jackpot.

[9] RefactoringNG project. http://kenai.com/projects/refactoringng.

[10] IntelliJ IDE. http://www.jetbrains.com/idea.

[11] Eclipse IDE. http://www.eclipse.org.

[12] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for class library

migration. OOPSLA, pp. 265–279, 2005.

[13] W. Tansey and E. Tilevich. Annotation refactoring: inferring upgrade

transformations for legacy applications. OOPSLA, pp. 295–312,

2008.

[14] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen, M. Kim,

and T. N. Nguyen. A graph-based approach to API usage adaptation.

OOPSLA, pp. 302–321, 2010.

910 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

