
Testing and Remote Maintenance of Real Future Internet Scenarios

Towards FITTEST and FastFix Advanced Software Engineering

Alessandra Bagnato

Corporate Research Divisions, TXT e-solutions

alessandra.bagnato@txt.it

Anna I Esparcia-Alcázar

S2 Grupo, 46022 Valencia

 aesparcia@s2grupo.es

Tanja E.J. Vos

Centro de Métodos de Producción de Software (ProS)

Universitat Politècnica de València

tvos@pros.upv.es

Beatriz Marín

Centro de Métodos de Producción de Software (ProS)

Universitat Politècnica de València

bmarin@pros.upv.es

José Oliver Murillo

Infoport Valencia

joliver@infoportvalencia.es

Salvador I. Folgado

BULL Spain

salvador.folgado@bull.es

Auxiliadora Carlos Alberola
INDRA

acarlosa@indra.es

Abstract—In recent years, software testing and maintenance

services are key factors of customers’ perception of software

quality. Nowadays, customers are more demanding about these

services, while contribution of maintenance and testing services

to products total cost of ownership should be reduced. Reduc-

ing these costs is even more crucial for SME’s. To do this, new

methods and techniques that will be aligned with the needs of

companies are required. This paper presents the preliminary

results of an interactive workshop celebrated by researchers

and three companies. In the workshop, researchers present the

advanced software engineering methods proposed by FastFix1

and FITTEST2 European projects. After that, discussions

about their potential use in three application scenarios at Info-

port Valencia, BULL Spain, and INDRA were performed and

some lessons were learned.

Index terms—testing; maintenance; practical experience.

I. INTRODUCTION

N RECENT years, software testing and maintenance ser-
vices are key factors of customers’ perception of software

quality. Therefore, companies are more demanding about
these services, while contribution of maintenance and testing
services to products total cost of ownership should be re-
duced. Reducing these costs is even more crucial for SME’s,
which has limited resources to spend in testing and mainte-
nance of their products.

I

The Future Internet (FI) aims at reducing developing,
testing and maintenance services through a common space

1 FastFix (Monitoring Control for Remote Software

Maintenance) (FP7-25810) is an FP7 project.

2 FITTEST (Future Internet Testing) (FP7-257574) is an FP7

project.

where different services can be combined to produce soft-
ware reducing their total cost. Thus, it can be anticipated that
the Future Internet will be a complex interconnection of ser-
vices, applications, content, and media; all of which will in-
crease with semantic information. Also, it can be foreseen
that future web applications will offer a rich user experience,
extending and improving current hyperlink-based naviga-
tion.

Thus, future internet applications are expected to be
complex applications, which present the following character-
istics: self-modifiability, autonomic behavior, low observ-
ability, asynchronous information, time- and load-dependent
behavior; a huge feature configuration space, and ultra-large
scale. Since current maintenance and testing techniques are
not suitable to future internet applications, FastFix and
FITTEST projects are developed to face the challenges of
these applications.

The overall purpose of FastFix is to provide software ap-
plications with a maintenance environment featuring the
highest time efficiency at the lowest cost and the strongest
accuracy. To this effect, FastFix will develop a platform and
a set of tools that will monitor on-line customer environ-
ments, collecting information on program execution and user
interaction, with the objective of identifying symptoms of
execution errors, performance degradation or changes in user
behaviour. By use of correlation techniques, the platform
will also allow failure replication in order to identify incor-
rect execution patterns, patch generation, and patch deploy-
ment.

The overall aim of the FITTEST project is to address the
testing challenges that arise in Future Internet Systems due
to the complexity of the technologies involved. To this end,
FITTEST will develop an integrated environment for auto-
mated testing, which can monitor the Future Internet appli-
cations under test and adapt the testing to the dynamic

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 925–932

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 925

changes observed. The environment will implement continu-
ous post-release testing since a Future Internet application
does not remain fixed after its release. Services and compo-
nents could be dynamically added by customers and the in-
tended use could change significantly. The environment will
integrate, adapt and automate various techniques for continu-
ous Future Internet testing (e.g. dynamic model inference,
model-based testing, log-based diagnosis, oracle learning,
combinatorial testing, concurrent testing, regression testing,
etc.).

In order to make sure that both projects are aligned with
what is needed in industry with regard to testing and mainte-
nance, a joint FITTEST & FastFIX workshop was organized
in June 2011 during which the following research questions
were posed:

Question 1: Can Future Internet Maintenance and Testing
support real scenarios?

Question 2: Are the approaches proposed by FastFix and
FITTEST interesting to the real end-user needs?

Question 3: How much effort has to be put into creating
new tools to support the expressed needs?

The rest of the paper is organized as follows: Section II
presents the FastFix Project and Section III presents the
FITTEST Project. Sections IV, V and VI describe the IN-
DRA, BULL and Infoport Valencia Scenarios, respectively.
Lessons learned are addressed in Section VII. Finally, Sec-
tion VIII presents some conclusions and outlines future
work.

II. FASTFIX PROJECT

Maintenance and support services that are time and cost
efficient is the driving goal of the FastFix project [2], which
started in June 2010. This is to be achieved by monitoring
software applications, replicating execution failures, and au-
tomatically generating patches.

Among the results of the project will be a platform and a
set of tools that will monitor online customer environments.
This will gather information on program execution and user
interaction, aiming to identify symptoms of execution errors,
performance degradation or changes in user behaviour. The
platform will also allow the replication of failures by means
of correlation techniques; the purpose of this feature is to
identify incorrect execution patterns and facilitate patch gen-
eration and deployment.

In order to achieve this, mechanisms will be developed
and set up to gather the required information on application
execution, errors, context, and user behaviour. These mecha-
nisms will be applicable to both new and existing applica-
tions; they should also be non-intrusive and pose a minor,
acceptable burden on performance.

Information thus gathered will be sent in real time to a
support centre, via the Internet. Hence, special care will be
required with regard to security and privacy.

At the support centre, information will be used to repli-
cate errors, by means of correlation techniques and error on-
tologies which will allow the identification of behavioral
patterns and possible causes of error. At its best, the FastFix
platform will be able to generate patches for the errors in an
automated way. These patches will consist on application

modifications, changes in the system configuration or pa-
rameterization or even a limitation in functionality in order
to avoid system or application crashes. Patches will be sent
back to the application’s runtime environment and will be
deployed automatically, resulting in a self-healing software
application.

Figure 1 illustrates the components of the FastFix Archi-
tecture.

Figure 1. FastFix architecture for software maintenance

Four main lines of research converge in the FastFix
project and constitute the core of innovation activities:

• Context elicitation and user modeling: determines
which information on execution and interaction is
going to be gathered independently from the appli-
cation and its environment, and how this is to be
done.

• Event correlation: allows drawing conclusions
about the kind of problems the application is under-
going and their possible causes, based on the infor-
mation gathered.

• Fault replication: provides the platform that allows
replicating faults, which mimic the real circum-
stances as much as possible.

• Patch generation and self-healing: determines
which patches are going to be generated and how
this is to be done, plus the way they will be de-
ployed to the application at the runtime environ-
ment. An approach based on control theory that al-
lows for fast and reliable maintenance fixes is men-
tioned in [3], this approach aims to disable faulty or
vulnerable system functionalities and requires to in-
strument the system before deployment so that it can

926 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

later be monitored and interact with a supervisor at
runtime.

FastFix will provide innovation in any of its four main
research area,s namely event correlation, fault replication,
patch generation, and context elicitation.

Event correlation techniques will be used within FastFix
in the field of software defect detection and cause identifica-
tion. Developments in this area have mostly focused on sys-
tem software [9]. Thanks to the event correlation FastFix
will be also able to determine the type and level of monitor-
ing that must be exercised in each execution instance.

Failure information will consider privacy concerns asso-
ciated with the release of failure information providing novel
data obfuscation techniques which will preserve the program
re-execution's accuracy. Analysis techniques operating at
source code [12][13] and binary level [10][11] are taken as
a starting point for this research.

In FastFix, autonomous system principles and methods
focusing on assessing the viability of auto-generating patch-
es [14][15][16] will be applied.

As opposed to current approaches [17] [18] [19], in
which collected data related to context describes only the us-
age of a particular tool, context elicitation in FastFix will be
carried out independently from the monitored application
and the usage domain,

III. FITTEST PROJECT

The FITTEST project (September 2010-2013) is being
carried out by eight partners: Universitat Politècnica de
València, University College London, University of Utrecht,
Fondazione Bruno Kessler, Berner&Mattner System technic,
Sulake, Soft-Team, and IBM Israel.

Existing literature on web testing (such as [20][21][22])
is focused on client-server applications which implement a
strictly serialized model of interaction, based on <form sub-
mission, server response> sequences. Testing of Ajax and
rich client web applications has been considered only more
recently [23][24]. The differences between Ajax and more
traditional web testing are discussed in [25]. Even though
there are some recent works that consider testing of dynamic
web applications, they are not addressing the testing chal-
lenges of future web applications mentioned in [5]. For this
reason, we consider the development and evaluation of an
integrated environment for continuous evolutionary automat-
ed testing, which can monitor the FI application and adapt it-
self to the dynamic changes observed.

FITTEST testing will be continuous post-release testing
since the application under test does not remain fixed after
its release. Services and components could be dynamically
added by customers and the intended use could change.
Therefore, testing has to be performed continuously after de-
ployment to the customer.

The FITTEST testing environment will integrate, adapt
and automate various techniques investigated in the project
for continuous FI testing, providing a user friendly way to
activate and parameterize them. See Figure 2 for a global
picture of the testing environment.

Figure 2. Global Picture of the FITTEST Testing environment

The underlying engine of the FITTEST environment, that
will make it possible to automate undecidable problems and
cope with the testing challenges like dynamism, self-adapta-
tion and partial observability, will be based on search-based
testing [4].

The impossibility of anticipating all possible behaviours
of FI applications suggests a prominent role for evolutionary
testing techniques, because it relies on very few assumptions
about the underlying problem that is attempting to solve. In
addition, stochastic optimisation and search techniques are
adaptive and, therefore, able to modify their behaviour when
faced with new unforeseen situations. These two properties –
their freedom from limiting assumptions and their inherent
adaptiveness – make evolutionary testing approaches ideal
for handling FI applications testing, with their dynamism,
self-adapting, autonomous and unpredictable behaviour.
Since evolutionary testing is unfettered by human bias, mis-
guided assumptions and misconceptions about possible ways
in which the components of the system may combine,
FITTEST avoids the pitfalls that are found with humans-in-
nate inability to predict that which lies beyond their conceiv-
able expectations and imagination. Moreover, evolutionary
techniques are well understood techniques for solving gener-
al undecidable problems and will constitute a robust and sta-
ble foundation upon which to build FITTEST.

To achieve this overall aim, FITTEST will address a set
of objectives that directly map to the identified challenges.

Objective 1: Search based testing approach. To cope with
dynamism, self-adaptation and partial observability that
characterize FI applications, we will use search-based soft-
ware testing. Evolutionary algorithms themselves exhibit dy-
namic and adaptive behaviour and, as such, are ideally suited
to the nature of the problem. Moreover, evolutionary algo-
rithms have proved to be very efficient for solving general
undecidable problems and provide a robust framework.

Objective 2: Continuous, automated testing approach.
Since the range of behaviours is not known in advance, test-
ing will be done continuously; feedback from post-release

ALESSANDRA BAGNATO ET AL: TESTING AND REMOTE MAINTENANCE 927

executions will be used to co-evolve the test cases for the
self-adaptive FI application; humans alone cannot achieve
the desired levels of dependability, so automation is re-
quired.

Objective 3: Dynamic model inference. Self-adapting appli-
cations with low observability demand for dynamic analysis;
models will be inferred continuously rather than being fixed
upfront.

Objective 4: Model based test case derivation. Behavioural
models inferred from monitored executions will be the basis
for automated test case generation. Paths in the model asso-
ciated with semantic interactions will be regarded as interest-
ing execution sequences. To support continuous, extensive
testing of FI applications, test case generation will proceed
fully unattended, including the generation of input data and
the verification of feasibility for the test adequacy criteria of
choice.

Objective 5: Log-based diagnosis and oracle learning.
Since correct behaviour cannot be fixed upfront, executions
will be analysed to identify atypical ones, indicating likely
faults or potential vulnerabilities.

Objective 6: Dynamic classification tree generation. The
huge configuration space will be dealt with by testing com-
binatorially, using dynamically and continuously automated
generated classification trees.

Objective 7: Test for concurrency bugs. Toward successful
concurrency testing and debugging of FI applications, we
will develop a mechanism to control and record factors like
communication noise, delays, message timings, load condi-
tions, etc, in a concurrent setup.

Objective 8: Testing the unexpected. Due to the high dy-
namism, it is impossible to define the expected interactions
upfront; we will use genetic programming to simulate unpre-
dicted, odd, or even malicious interactions.

Objective 9: Coverage and regression testing. Novel cover-
age and regression testing criteria and analytical methods
will be defined for ultra-large scale FI applications, for
which the standard criteria and analysis techniques are not
applicable since they just do not scale.

Objective 10: General methodological evaluation frame-
work for FI testing. Large scale case studies will be per-
formed using realistic systems and software testing practi-
tioners. The studies will be executed using an instantiation
and/or refinement of the general methodological evaluation
framework to fit specific software testing techniques and
tools and evaluation situations.

IV. INDRA SCENARIO

INDRA [6] is a global company of technology, innova-
tion, and talent, leader in solutions and services for Transport
and Traffic, Energy and Industry, Public Administration,
Healthcare, Finance, Insurance, Security and Defense, Tele-
com and Media sectors.

At INDRA Valencia, one thousand of professionals are
working in different markets. Indra main activity (65%) is on
health care, followed by other activities in Public administra-
tion and energy industry, representing the 21% and 6% of
INDRA total work, respectively.

Health care software is then the most relevant sector at
Valencia. In particular it consists of the following products:

• Abucasis, a web application that connects together the

entire primary assistance system, including electronic

prescriptions.

• INDRAHealth Solution, an integrated hospital and

primary assistance web application.

• Medas, different modules that ingrate different specific

applications as for example: blood transfusion center, or

emergency management

INDRAHealth solution is a project that involves a huge
amount of health professionals and developers, so it was
necessary to define a clear development methodology to
have success in the project.

The methodology defined at INDRA has been adapted to
perform testing. In INDRA methodology, testing activity
starts after the working tasks are assigned to the developers,
meaning that testing is done in parallel with the development
team. With this methodology, we have obtained quite an ef-
ficient distribution of work load. Thus, testing is not only
performed by testers. Developers are also assigned a set of
test activities that are performed before the source code is re-
leased.

INDRA´s testing methodology is organized in three dif-
ferent stages:
1. The first stage include test definition and planning, and

is performed in parallel with code development

2. The second stage is performed after developers have

finished, and include test execution and fault

registration.

3. Once the faults are solved, they are tested again and,

finally a regression test is performed.

The automated tests are launched when nobody is work-
ing on the application with a clean database. Finally, when
the application is stable, INDRA starts the performance tests.
The purpose of performance testing is to simulate the normal
use of the system before it passes to production, in order to
find potential problems and correct them.

In the simulation, it is possible to predict how INDRA
Helath Solution will behave with a specific load. In a broad
sense: the system capacity is verified to be adequate for the
demands of work supports, and the potential bottlenecks and
inefficiencies are identified by providing the necessary infor-
mation for correct them.

Every semester INDRA calculates the following mea-
sures in order to improve their testing process:

• Test coverage

• Effectiveness of tests

• Number of faults detected per KLOCs

• Number of faults resolved per KLOCs

• Percent of faults resolved

928 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

The principal testing problems at INDRA are:

• No economic resources allocated to testing

• Little understanding of the test work from the

developers’ part.

• Changes in functionality are implemented at the final

stages of projects.

• There is low stability in modules, but is not possible to

automate everything. Thus, more automation is needed.

• Sometimes, the communication between teams is slow.

Thus, in the future, INDRA would like to show the man-
agers that test is a necessary part of the software process de-
velopment. Also INDRA has to make developers understand
that test can be a useful tool to help them in the software de-
velopment. As web applications may present large changes
in a short time, INDRA needs an easy and fast way to test,
which means less manual test.

V. BULL SCENARIO

As the only European player that covers the whole of the
IT value chain, BULL [7] is ideally placed to help its cus-
tomers build value-creating information systems. In an open
and fast-changing world, Bull helps companies and adminis-
trations to liberate themselves from technological shackles,
enabling them to radically gear up their innovative capabili-
ties. In its relentless quest for safe, cost-effective, sustain-
able, open-critical infrastructures, BULL cultivates cut-
ting-edge know-how, teams up with top-tier partners, and
develops a broad, powerful, and modular range of products
and services.

By consistently offering customers the fruit of innova-
tive, purpose-designed, high-performance ideas, BULL has
earned worldwide recognition and enjoys a leading position
in Europe.

At the Software Quality department at BULL Spain S.A.
(BULL QA), assessing the quality of Service-Oriented Ar-
chitectures (SOA) through a specialization of the testing en-
vironment is particularly interesting.

SOA, by its nature has the following characteristics: self-
contained; highly modular and independently deployed; con-
sists of distributed components that are available over the
network; has a published interface; only needs to see the in-
terface; stresses interoperability; different implementation
languages and platforms are involved; is discoverable; needs
a directory of services that are registered and located; is dy-
namically bound; and can locate services and bind them at
runtime.

An Enterprise Service Bus (ESB) is a logical architec-
tural component that provides an integration infrastructure
consistent with the principles of SOA. The most effective
way to test SOA environments is through a systematic ap-
proach following the V testing model. All components that
are part of the architecture first need to be tested indepen-
dently and then in integration with other components and
systems involved.

SOA test design should follow a top down approach, and
the test execution should follow a bottom up approach, start-
ing at individual service (or component) level. The following
characteristics must be considered when testing:

Functionality. Since there are no user interfaces, a “formal
contract” to reach adequate testing quality must be used. Key
business stakeholders and users should be more actively in-
volved in all project lifecycle. Regression testing must be
made more efficient and should be automated.

Interoperability. It is necessary to focus on interfaces, and
assure that interface behavior and information sharing be-
tween services are working as specified. Integration testing
should include communication, network protocols, transfor-
mations, etc.

Compliance. It is necessary to satisfy standard (law) more
formal and more accurately.

Backward Compatibility. BULL needs to assure that SOA
architecture continuously work successfully even when any
modification is done in any component/service, BULL needs
to assure “Loose Coupling”.

Security. SOA provide access and potential modification of
services (data) from different physical locations, over the
WAN. Thus, How safe is the data? Business requirements
must include security requirements. BULL must perform a
security risk analysis during design and will need formal re-
views to assure that the organization security standard is sat-
isfied. Penetration security test must be planned and execut-
ed.

Performance. Is the most degraded quality characteristic the
designer must take care of when doing SOA design. The fol-
lowing specific characteristics that would impact the perfor-
mance at SOA must be considered in order to perform a cor-
rect performance testing:

o Distributed computing. Services are normally located in

different containers, most often in different machines.

o Heterogeneous message and protocols. Transformation

must be managed and transform inside ESB.

o Different platforms. Involves different technologies,

different behaviors, BULL must be care with the “The

Weakest Link” effect.

o XML intensive. XML message can be 10 or 20 times

larger than equivalent binary representation, so

transmission over a network takes longer. XML uses

text format, so it must be processes before any

operation is performed (Parsing, Validation and

Transformation) are CPU and MEMORY intensive.

o Scalability (vertical, horizontal). Because service users

know only about service interface and not its

implementation, providing scalable solutions requires

little overhead.

ALESSANDRA BAGNATO ET AL: TESTING AND REMOTE MAINTENANCE 929

o Latency. Distributions means interconnections, between

networks and its service quality, conventional TCP is a

guaranty delivered protocol. TCP has a direct inverse

relationship between latency and throughput, then,

massive message at ESB implementation could increase

latency.

o Not data oriented. ESB is not a final data oriented

solution, however governance produces a significant

data quantity to be managed, as accounting, auditing,

service location, etc.

In this context, for SOA testing at BULL the following
conclusions and challenges are listed:

• SOA testing is different from other applications

testing.

• SOA implementations are a combination of any

kind of components.

• SOA testing is more complex than traditional

testing (granularity, systems, messages, etc.)

• Functionality has less risk than others quality

characteristics.

• Early testing (design, unit testing) is highly

recommended to assure a proper SOA architecture.

• Testing approach strategy depend on SOA

implementation (test design top-down approach,

test execution bottom-up approach)

• The SOA design and implementation will provide

the critical main quality characteristics to satisfy

• Performance characteristics could be impacted in a

SOA Approach.

VI. INFOPORTVALENCIA SCENARIO

Infoport Valencia [8] is an information technology and
communications service provider. The company has been
working on development and software maintenance projects
since its creation, more than 10 years ago.

One of the projects Infoport is working on is a set of IT
operations and testing service for Valencia Port Community
System (PCS), which is an information system that offers
services for managing port, sea, and land logistic operations,
tracking, and other operations with more than 400 organiza-
tions as users, including private enterprises and public insti-
tutions as Valencia Port Authority.

PCS platform allows electronic data interchange over the
Internet between organizations involved in port logistics ac-
tivity. The system is fully developed with Microsoft .NET
technology. More than 30 IT professionals belonging 4 dif-
ferent companies work on development and operations tasks

of the platform. Technical infrastructure includes more than
20 servers between physical and virtual ones.

PCS project started more than 7 years ago and goes on
launching new services and functionalities every year. This
means a continuous flow of software development and main-
tenance packages that require a high level coordination and
well-defined processes to guarantee an agile evolution of the
system.

The software development, testing and deployment pro-
cesses for new functionalities and maintenance packages
make use of four different environments (development, test-
ing, pre-production, and production). Obviously, a package
that does not pass the tests and validation process in one en-
vironment will not be deployed in the next one.

Software maintenance requires an environment mainte-
nance and synchronization too, at data and code levels, and a
common planning including all software packages depen-
dencies, timing, and resources. A common problem is when
a package does not pass the acceptance (or any other) tests
and other packages planned to be deployed after that pack-
age with dependencies on that one need to be replanned.

Once a package is deployed in production environment
two kinds of maintenance operations are needed: one adap-
tive (or preventive) for dealing with changes in the software
environment or user requirements, and a corrective mainte-
nance to deal with incidents found and fix them.

Infoport has defined an incident lifecycle with a 3-tier
support: first, a user reports an incident to the user’s support
center, where operators may attend and solve functional re-
quests. If an incident requires a technical analysis, it is as-
signed to the second support level, where a technician may
decide to fix an incident in production environment with a
hotfix, depending on its impact and priority. If the incident is
not critical or requires a major modification to be fixed, then,
it is assigned to the third support level, where developers
will fix and prepare a new package to be delivered.

The testing process at Infoport requires a planning prior
to deliver a release. At this stage, information about depen-
dencies with other packages, priority, and resources are de-
fined. Next step is to deliver the required documentation to
testing and operations teams (as functional and technical de-
sign and requirements). These documents are reviewed in or-
der to check its completeness and used them as an input to
prepare the test cases (scenarios, data set and expected re-
sults). Once the release is delivered, it is built, and software
verification and validation is done. If the package is accept-
ed, it is deployed in the testing environment, and test cases
are executed. A report containing the results of the executed
test cases is created. If faults have been found, these are sent
to development teams to fix them in a new package. This
process is repeated as many times as needed until the pack-
age passes all test cases. Sometimes, this means several iter-
ations and delays in planning.

In order to improve this, Infoport is evaluating now some
changes in the process to anticipate functional testing to an
early stage and reduce the number of iterations that a pack-
age requires to pass tests, and therefore, be deployed in pro-
duction environment.

A common problem in the testing process is the time re-
quired to prepare and execute test cases. Data sets need to be
prepared with so many combinations as exist. If this is a

930 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

manual process, it is highly time-costly and usually data sets
do not cover all possible cases. If testing tools are used, time
may be reduced in some parts of the process but on the other
hand it is increased in others, as testing tool needs to be pre-
pared too. Infoport combines the use of manual and automat-
ed testing. Usually, Infoport testing process is a manual
process, but in some cases software simulators are developed
to test specific parts.

In this context, Infoport’s main challenges to improve
their testing and maintenance processes are:

• Automation. Vulnerability to failure because most

of the testing process is manual. Currently Infoport

is evaluating the use of testing tools as VS2010 and

Lab Management 2010 to automate part of the

process.

• Number of test-error-fix iterations. Impact of

replanning testing tasks and delays in production

environment deployments. To mitigate this,

Infoport has created testing teams to execute

functional tests in early stages of the process,

before delivery to the operations team.

• Environments synchronization

• Requirements detail level. Sometimes

requirements definition and functional design is not

enough for testing teams to create the test cases.

Infoport is evaluating the use of Microsoft Team

Foundation Server for quality assurance and

requirements management.

VII. LESSONS LEARNED

Question 1, “Future Internet Maintenance and Testing
can support real scenarios?” and Question 2 “Are the ap-
proaches proposed by FastFix and FITTEST interesting to
the real end-user needs?” have been positively answered by
the companies during the workshop. As researchers and ex-
perts agreed, it has been acknowledged that the relative cost
for software testing, maintenance, and management of its
evolution represents around the 70% of the total cost.

FastFix could help significantly reduce time used in fail-
ure cause identification, patch generation, and deployment
meeting end-user needs and expectances.

Maintenance encompasses all the costs incurred to fix
faults ("corrective maintenance"), maintain the engineering
integrity of the application ("adaptive maintenance"), change
the structure of the application to meet changing business
needs ("perfective maintenance"), and stop predictable faults
in the future ("preventive maintenance"). FastFix could help
in corrective maintenance by identifying the failure and its
context, and partially in adaptive and preventive mainte-
nance by identifying failures and patching the system, at
least, providing temporary patches.

Even in cases where FastFix will not be able to automati-
cally identify causes or generate patches, it has been consid-

ered as very valuable the fact that FastFix could provide
valuable context information, both on execution environment
and in user interaction, which will facilitate the task for a
software engineer.

The outcomes of the FITTEST project will support
companies with their test automation needs. Moreover, the
FITTEST continuous testing approach will help them to
cope with changing requirements and dynamic nature of the
Internet applications.

In particular:

• INDRA will see how advances in FITTEST and
FastFix projects can help in the automation of test
cases and in the improvement of the testing work in
place.

• The objectives of the FITTEST and FastFix projects
were considered as extremely important for Info-
port, as their lines of research and results may help
Infoport to incorporate some improvements to their
testing and maintenances processes to make them
more efficient, particularly to automate part of the
process and reduce the number of test-error-fix itera-
tions.

• During the workshop it became clear that the FITTEST
project’s objectives tackle many of BULL’s SOA test-
ing challenges. BULL will see how the advances in the
FITTEST and FastFix projects could help in providing
an integrated framework capable of analyzing and eval-
uating the quality of SOA.

Question 3 “How much effort has to be put into creating
new tools to support the expressed needs?” had to be post-
poned to the next conference event that will be organized in
a year time by FITTEST and FastFix projects. The two
projects are in the early phases of their research efforts, and
currently they are working in building their first prototypes
and could not provide a precise estimation.

A very positive aspect that was remarked by the involved
researchers was how close to the business needs of the in-
volved SMEs the two projects are. This is an incentive to
pursue further the collaboration among FITTEST and Fast-
Fix projects, and to the organization of the second
“FITTEST & FastFIX joint workshop - Conference Testing
and Remote Maintenance of the Future Internet workshops”
2012.

VIII. CONCLUSION AND FUTURE WORK

 In this article, we have summarized the needs and the
feedbacks gained by introducing the FastFix and FITTEST
advanced research ideas to three different industrial environ-
ment and scenarios context. The results of the potential of
the tools developed within the two projects are promising
and it was acknowledge that their adoption would allow im-
proving the current practice in real industrial scenarios. Us-
ing FastFix and FITTEST tools, software can be tested and
maintained with improved quality and in a faster way.

It has been considered as very important for the accep-
tance of the produced tools the fact that testers and mainte-
nance engineers could be able to easily use the tools in the
testing phase and in the maintenance phase of the software
development lifecycle.

ALESSANDRA BAGNATO ET AL: TESTING AND REMOTE MAINTENANCE 931

It was evident from the discussions carried out that
SMEs needs to take full advantage of an adequate on-site
customer support for maintenance as the one proposed with-
in FastFix. Software vendors need a system to remotely pro-
vide a high quality support service to their customers, im-
prove user experience and facilitate corrective, adaptive and
preventive maintenance – of both new and existing software
products.

It was also evident from the discussions carried out that
SMEs need testing techniques and tools that perform auto-
matically the testing process of their applications. This is
precisely the main result of FITTEST project, which consist
in a set of testing techniques and tools that allows the auto-
matic generation and execution of test cases for future inter-
net applications. At this stage, the difficulties related to the
selection, usage and adaption of different available testing
tools in the different contexts remain an issue to be treated
case by case.

As future work, the two projects (i.e., FastFix and
FITTEST) plan to host another conference in a year time
when more results will be available.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community`s Seventh Framework
Programme (FP7/2007-2013) under the grant agreement
FP7-258109 FastFix and FP7-257574 FITTEST.

REFERENCES

[1] FITTEST Project Consortium. Web Site. http://www.facebook.com/
FITTESTproject

[2] FastFix Project Consortium. Web Site http://www.fastfix-project.eu/

[3] Gaudin B., Bagnato A. (2011). Software Maintenance through
Supervisory Control. SEW-34, the 34th Annual Ieee Software
Engineering Workshop Proceedings Limerick, Ireland, 21 June 2011

[4] Mark Harman. The current state and future of search based software
engineering. In 2007 Future of Software Engineering, FOSE ’07,
pages 342–357. IEEE Computer Society, 2007.

[5] Tanja E. J. Vos, Paolo Tonella, Joachim Wegener, Mark Harman,
Wishnu Prasetya, Elisa Puoskari, and Yarden Nir Buchbinder. Future
internet testing with fittest. Software Maintenance and Reengineering,
European Conference on, 0:355–358, 2011.

[6] INDRA Web site http://www.indracompany.com/

[7] BULL Web site http://www.bull.es

[8] InfoPort Valencia Web site http://www.infoportvalencia.es

[9] Viliam Holub, LERO et alter. "Run-Time Correlation Engine for
System Monitoring and Testing". ICAC‘09. June 2009

[10] Newsome, J., Brumley, D., Franklin, J., and Song, D. 2006. Replayer:
automatic protocol replay by binary analysis. In Proceedings of the
13th ACM Conference on Computer and Communications Security
(USA, October 30 - November 03, 2006). CCS '06. ACM, New York,
NY, 311-321.

[11] David Brumley, Juan Caballero, Zhenkai Liang, James Newsome,
and Dawn Song. Towards Automatic Discovery of Deviations in
Binary Implementations with Applications to Error Detection and
Fingerprint Generation. Proceedings of USENIX Security
Symposium, Aug 2007.

[12] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil. Carving
differential unit test cases from system test cases. In Symp.
Foundations of Software Engineering, pages 253–264, 2006.

[13] Xu, G., Rountev, A., Tang, Y., and Qin, F. 2007. Efficient
checkpointing of java software using context-sensitive capture and
replay. In Proceedings of the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering ESEC-FSE
'07. ACM, New York, NY, 85-94.

[14] G. Williamson, D. Cellai, S. Dobson, and P. Nixon, “Self-
management of routing on human proximity networks,” in In
Proceedings of International Workshop on Self-Organising Systems,
Springer Verlag Lecture Notes in Computer, 2009.

[15] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F.
Massacci, P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, “A
survey of autonomic communications,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 1, pp. 223–259, December
2006.

[16] B. Gaudin, P. Nixon, K. Bines, F. Busacca, and Casey, “Model
bootstrapping for auto-diagnosis of enterprise systems,” in
Proceedings of the International Conference on Computational
Intelligence and Software Engineering (CiSE), p. to appear, IEEE
Press, December 2009.

[17] W. Maalej, Task-First or Context-First? Tool Integration Revisited, In
24th ACM/IEEE International Conference On Automated Software
Engineering, 2009

[18] W. Maalej and H.J. Happel, From Work to Words: How do Software
Developers Describe Their Work, in Proceedings of the 6th IEEE
Conference On Mining Software Repositories, IEEE CS, 2009

[19] W. Maalej, H.J. Happel, A. Rashid, When Users Become
Collaborators: Towards Continuous and Context-Aware User Input,
In companion of ACM OOPSLA 2009.

[20] F. Ricca, P. Tonella, Analysis and Testing of Web Applications, in:
International Conference on Software Engineering (ICSE), 2001, pp.
25-34.

[21] S.G. Elbaum, G. Rothermel, S. Karre, M. Fisher, Leveraging User-
Session Data to Support Web Application Testing, IEEE Trans.
Software Eng. , vol. 31 nº 3 (2005), pp. 187-202.

[22] S. Sampath, S. Sprenkle, E. Gibson, L.L. Pollock, A.S. Greenwald,
Applying Concept Analysis to User-Session-Based Testing of Web
Applications, IEEE Trans. Softw Eng., vol. 33 nº 10 (2007), pp.
643-658.

[23] A. Mesbah, A. van Deursen, Invariant-based automatic testing of
AJAX user interfaces, in: International Conference on Software
Engineering, 2009, pp. 210-220.

[24] A. Marchetto, P. Tonella, F. Ricca, State-Based Testing of Ajax Web
Applications, in: ICST, 2008, pp. 121-130.

[25] A. Marchetto, F. Ricca, P. Tonella, A case study-based comparison of
web testing techniques applied to AJAX web applications, STTT,
vol. 10 nº 6 (2008), pp. 477-492.

932 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

