
Abstract—This  article  describes  a  straightforward  and 
structure-preserving  coding  pattern to  encode arbitrary  non-
circular  attribute  grammars  as  syntax-directed  translation 
schemes for  bottom-up parser generation tools.  According to 
this  pattern,  a  bottom-up  oriented  translation  scheme  is 
systematically  derived  from the  original  attribute  grammar. 
Semantic  actions attached to each syntax  rule are written in 
terms of a small repertory of primitive  attribution  operations. 
By providing alternative implementations for these attribution 
operations, it is possible to plug in different semantic evaluation 
strategies in a seamlessly way (e.g.,  a  demand-driven  strategy, 
or a data-driven one). The pattern makes it possible the direct 
implementation of attribute grammar-based specifications using 
widely-used  translation  scheme-driven  tools  for  the 
development  of  bottom-up  language  translators  (e.g.  YACC, 
BISON, CUP, etc.). As a consequence, this initial coding can be 
subsequently  refined  to  yield  final  efficient  implementations. 
Since these implementations still  preserve the ability of being 
extended with new features described at the attribute grammar 
level, the advantages from the point of view of development and 
maintenance become apparent. 

I. INTRODUCTION 

TTRIBUTE grammars, which were introduced by Don-

ald E. Knuth [8] as an extension of context-free gram-

mars for describing the syntax and semantics of context-free 

languages,  are  widely-used  as  a  high-level  specification 

method for the first stages of the design and implementation 

of a computer language [1][11]. 

A

In order to make an attribute grammar – based specifica-

tion executable, it is possible to use one of the many special-

ized tools  supporting the formalism (see,  for  instance,  [3]

[10][11]).  However,  regardless  the  realized  advantages  of 

these tools,  in practice,  traditional implementations of lan-

guage processors are rarely based on artifacts directly gener-

ated  from  attribute  grammars.  On  the  contrary,  attribute 

grammars are taken as initial specifications of the tasks to 

carry out, while final implementations are usually achieved 

by using scanner and parse generators (e.g., ANTLR, CUP, 

Flex, Bison…), general-purpose programming languages, or 

a suitable combination of both techniques [1]. The process of 

transforming the initial specification in a final implementa-

tion is usually ill-defined, and usually depends solely on the 

programmer's art, who many times discards formal specifica-

tions while directly hacks the final implementation. It seri-

ously hinders  systematic  development  and  maintenance of 

language processors. 

In  order  to  bridge  the  gap  between  attribute  gram-

mar-based specifications and final implementations, we pro-

pose  to  articulate  the  language  processor  development 

process as the explicit transformation of the initial attribute 

grammar-based  specification  to  the  final  implementation. 

According to our proposal, the first step to convey during the 

implementation stage is to explicitly encoding the attribute 

grammar in the input language of the development tool (usu-

ally, a parse generator like Bison or CUP). It  will make it 

possible  to  yield  an  initial  running implementation,  which 

subsequently can be refined to achieve greater efficiency. In 

addition, since the refined implementation still supports the 

explicit incorporation and subsequent refinement of attribute 

grammar – based features, the incremental development and 

subsequent  maintenance of  the  language processor  can  be 

largely facilitated.

This paper is focused on the first step of our proposal, i.e. 

how to code an attribute grammar in terms of the input lan-

guage  supported  by a  conventional  parse  generation  tool. 

More precisely, we will focus on bottom-up parse generators 

of the YACC and CUP type. Unlike to works in LR-attrib-

uted grammars [2] and similar approaches (e.g., [6]), our ap-

proach will support the implementation of arbitrary non-cir-

cular  attribute grammars.  In  addition, the encoding pattern 

will be independent of the final evaluation style chosen. In-

deed, attribute grammars will be coded using a small reperto-

ry of attribution operations. Finally, by providing alternative 

implementations for these operations, it will be possible to 

set up the semantic evaluation style finally used.

The structure of the rest of the paper is as follows: section 

II describes the encoding pattern itself. Sections III and IV 

show how to plug in different evaluation styles by providing 

suitable implementations of the attribution operations. Final-

ly, section V concludes the paper and outlines some lines of 

future work. 
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II. ENCODING THE ATTRIBUTE GRAMMARS 

In this section we introduce our coding pattern. In order to

make it as general as possible, we will not compromise with

any particular generation tool, and we will use pseudo-code

comprising very simple and standard procedural interfaces

and imperative constructs. In addition, we will use a YACC-

like notation [1] to refer to semantic values of symbols in the

parse stack. In subsection II.A we describe the basic attribu-

tion operations allowed in the syntax rules’ semantic actions.

In sections II.B and II.C we describe the coding pattern it-

self, and in section II.D we exemplify it.

TABLE I.
ATTRIBUTION OPERATIONS  

Operation Intended Meaning

mkCtx(n) It creates and initializes a list of n attribute 
instances for a symbol in the parse stack. 

mkDep (a
0
, a

1
) It sets a dependency between two attribute 

instances. Indeed, it declares the attribute 
instance a0 depends on the attribute instance 

a
1
.

inst(a,f) It instruments the attribute instance a by 
establishing f as the semantic function to be 
applied during evaluation (f is actually an 
integer identifier of such a semantic function) 

release(as) It invokes garbage collection on the list of 
attribute instances as. 

release(a) It invokes garbage collection on the attribute 
instance a 

set(a,val) It fixes the value of the attribute instance a to 
val.

val(a) It retrieves the value of the attribute instance a. 

A. Attribution operations

Our coding pattern is largely based on the explicit descrip-

tion of the attribution structure of each grammar rule. For

this purpose, we introduce the repertory of basic attribution

operations outlined in Table 1. This table shows both the

procedural interfaces of the operations and their intended

meanings. 

As such a description makes apparent, the purpose of

these operations is to provide the developer with the neces-

sary tools to describe how the attribute dependency graph

associated with a sentence can be built conforming this sen-

tence is analyzed by the parser. In addition, it also lets the

developer indicate the semantic functions for computing

each attribute instance. It does not necessarily means the

graph must be fully stored in memory: depending on the ac-

tual implementation of the attribution operations, it will be

possible to optimize, to a greater or lesser extent, the heap

overhead (see sections III and IV).

B. Writing the translation scheme

The actual encoding of the attribute grammar requires

writing a translation scheme describing how to build the

aforementioned attribute dependency graph for each pro-

cessed sentence. It can be done in a straightforward way by

applying the following guidelines to each rule of the attribute

grammar: 

� First at all, we need to create the semantic value for

the rule left-hand side (LHS). It is done by using an

mkCtx operation. We only need to indicate the

number of semantic attributes for the LHS. 

� Next, we need to describe the dependencies

between the attribute instances. Such dependencies

are directly determined by examining the semantic

equations, and they must be stated using the mkDep

operation.

� Once it has been done, it is necessary to instrument

the synthesized attribute instances in the rule’s

LHS, as well as the inherited attribute instances of

the symbols in the rule’s right-hand side (RHS).

Once more, the code is straightforward: an inst

operation for each equation. Notice we need to en-

code the semantic functions with integer identifiers,

which can be interpreted by a semantic function

manager (see subsection II.C). 

� Finally, we need to release the attribute instance

lists for the symbols in the rule’s RHS.

Concerning the allocation of lexical attribute instances, it

must be performed by the scanner, which will return the cor-

responding attribute instance list using a suitable field in the

token. Also, notice the underlying context-free grammar

must belong to the kind of grammars supported by the parser

generation tool. Since we are using bottom-up parse genera-

tion translators, which usually support LALR(1) grammars

[1], in practice it does not suppose a serious limitation. 

C. Writing the Semantic Function Manager

In addition to the translation scheme, we need to code an-

other auxiliary component, the semantic function manager,

supporting the execution of the semantic functions. This

component can be conceived as a procedure that, taking the

semantic function’s identifier and the sequence of attribute

instances as input, returns the result of applying the function

to the attribute instances. 

D. Example

To illustrate the pattern we will consider the attribute

grammar in Fig. 1. It models a very simple processor that

makes it possible to evaluate simple arithmetic expressions

involving addition and multiplication. To store the value we

use a val synthesized attribute. Additionally, the processor

can use a memory of predefined constants, which is propag-

ated using an env inherited attribute.

Fig. 2 shows the translation scheme for this attribute gram-

mar. In order to make the encoding more readable, we intro-
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duce some constants for attribute instance indexes and for se-

mantic function integer identifiers. 

E ::= E + T

  E
1
.env↓ = E

0
.env↓

  T.env↓ = E
0
.env↓

  E
0
.val↑ = E

1
.val↑ + T.val↑

E ::= T

  T.env↓ = E.env↓

  E.val↑= T.val↑

T ::= T * F

  T
1
.env↓ = T

0
.env↓

  F.env↓ = T
0
.env↓

  T
0
.val↑ = T

1
.val↑ * F.val↑

T ::= F

  F.env↓ = T.env↓

  T.val↑ = F.val↑

F ::= n

  F.val↑ = toNum(n.lex↑)

F ::= id

  F.val↑ = valOf(F.env↓,id.lex↑)

F ::= ( E )

  E.env↓ = F.env↓

  F.val↑= E.val↑

Fig 1. Example attribute grammar. To improve readability, synthesized 
attribute occurrences are suffixed with ↑, and inherited occurrences are 

suffixed with ↓ .

In this translation scheme, the first rule (which is not

present in the original grammar) plays the role of initiating

the processing. Indeed:

� It sets env in the root of the parse tree (we suppose

the environment is returned by the getEnv extern-

al procedure).

� Then, it prints the value of val in such a root. 

� Finally, it releases the root’s attribute instance list. 

The other rules are obtained by a step-by-step application

of the guidelines described in the previous subsection. For

instance, the encoding (shadowed in Fig. 2) of the first rule

of the attribute grammar (shadowed in Fig. 1) is obtained as

follows:

� Since E, the rule’s LHS, has two semantic attributes

(env and val), we need to invoke mkCtx with 2

as the number of attributes to be allocated. Notice

that the resulting attribute instance list is assigned to

$$, which in YACC-like notation is the pseudo-

variable for the semantic value  of the rule’s LHS.

� From the first equation, we get E1.env depends on

E
0
.env. This dependency is declared by

mkDep($1[env],$$[env]), since (i) $1

refers, in YACC-like notation, to the semantic value

of E
1
, and (ii) $$ refers, as said before, to the se-

mantic value of E0.

� In a similar way, the other three mkDep actions are

derived from the other two equations. Notice that

the third equation yields two mkDep actions, since,

according to it, E
0
.val depends on two different

attributes: E
1
.val and T.val.

� In their turn, each equation yields an inst action.

For doing so, firstly we need to identify the semant-

ic function used in the equation. It can require some

intermediate analysis. For instance, to make the se-

mantic function apparent, E
1
.env↓ = E

0
.env↓

must be actually read as E
1
.env↓ =

λv(v)E
0
.env↓. Thus, we can assign an integer

code to this λv(v) semantic function (in Fig. 2,

this code is given by the IDEN constant). A similar

technique can be used for equations sides involving

more complex expressions. For instance, E
0
.val↑

= E
1
.val↑ + T.val↑ can be actually read as

E
0
.val↑ = λv

0
(λv

1
(v

0
+v

1
))E

1
.val↑

T.val↑, which leads to identify

λv
0
(λv

1
(v

0
+v

1
)) as the semantic function (it is

identified by the ADD constant in Fig. 2).

def env=0; def val=1;
def IDEN=0; def ADD=1; def MUL=2; 
def TONUM=3; def VALOF=4;
S ::= E {

  set($1[env],getEnv());

  print(val($1[val]));

  release($1);}

E ::= E + T {

  $$ := mkCtx(2);

  mkDep($1[env],$$[env]); mkDep($3[env],$$[env]);

  mkDep($$[val],$1[val]); mkDep($$[val],$3[val]);

  inst($1[env],IDEN);  
  inst($3[env],IDEN);

  inst($$[val],ADD);

  release($1); release($3);}

E ::= T {

  $$ := mkCtx(2);

  mkDep($1[env],$$[env]); mkDep($$[val],$1[val]);

  inst($1[env],IDEN);

  inst($$[val],IDEN);

  release($1);}

T ::= T * F {

  $$ := mkCtx(2);

  mkDep($1[env],$$[env]); mkDep($3[env],$$[env]);

  mkDep($$[val],$1[val]); mkDep($$[val],$3[val]);

  inst($1[env],IDEN);

  inst($3[env],IDEN);

  inst($$[val],MUL);

  release($1); release($3);}

T ::= F {

  $$ := mkCtx(2);

  mkDep($1[env],$$[env]); mkDep($$[val],$1[val]);

  inst($1[env],IDEN);

  inst($$[val],IDEN);

  release($1);}

F ::= n {

  $$ := mkCtx(2);

  mkDep($$[val],$1[lex]);

  inst($$[val],TONUM);

  release($1);}

F ::= id {

  $$ := mkCtx(2);

  mkDep($$[val],$$[env]); mkDep($$[val],$1[lex]); 

  inst($$[val],VALOF);

  release($1);}

F ::= ( E ) {

   $$ := mkCtx(2);

   mkDep($$[val],$2[val]);

   mkDep($2[env],$$[env]);

   inst($2[env], IDEN); 

   inst($$[val],IDEN);

   release($2);} 

Fig 2. Encoding of the attribute grammar in Fig. 1.

� Finally, we include a release action for each

symbol in the rule’s RHS having semantic
attributes.
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Finally, in addition to the translation scheme, we need to

provide a suitable semantic function manager. It is depicted

by the pseudo-code in Fig. 3. Basically, it is a dispatcher

that, according to the function’s integer identifier, applies the

actual function on the sequence of semantic attribute in-

stances1 .

procedure exec(FUN,ARGS) {
case FUN of
  IDEN →

   return val(ARGS[0]);
  ADD → 

   return val(ARGS[0]) + val(ARGS[1]);
  MUL → 

   return val(ARGS[0]) * val(ARGS[1]);
  TONUM →

   return toNum(val(ARGS[0]));
  VALOF →

   return valOf(val(ARGS[0]),val(ARGS[1]));
 end case
}      

Fig 3. Semantic function manager for the attribute grammar in Fig. 1.

III. INCORPORATING A DEMAND-DRIVEN EVALUATION FRAMEWORK 

In order to make possible the execution of the encodings

proposed in the previous section, we need to implement the

basic attribution operations. In this section we describe a

straightforward implementation supporting a demand-driven

evaluation style (see, for instance [5] [9]). In this implement-

ation, semantic evaluation starts once the sentence has been

completely parsed. In this point, there is an in-memory rep-

resentation of the part of the dependency graph required for

performing semantic evaluation. During evaluation, the val-

ues of the attribute instances will be calculated only when

they are required.   

In the following subsections we describe the resulting

framework explaining how attribute instances are represen-

ted (subsection III.A). Then, we specify how the attribution

operations work (subsection III.B). Finally, we illustrate the

complete framework with an example (subsection III.C). For

the sake of simplicity, we will ignore the detection of poten-

tial circularities in the underlying dependency graphs, al-

though it would not be difficult to extend the framework to

support it. 

A. Representing the instances of the semantic attributes

The instances of the semantic attributes can be conceived

as records. Table 2 outlines the fields required together with

their intended purposes. Thus, this representation makes it

possible to build a dependency structure in which:

� Each attribute instance points to those attribute in-

stances required to compute it (in a similar way to

the reversed dependency graph used in [5]).

� In addition, it explicitly stores the identifier of the

semantic function to be used in this computation. 

1Remark that, by the sake of generality, we are intentionally using a
minimal set of programming language features. Indeed, by using a more
sophisticated programming paradigm (e.g., a language equipped with
higher-order features), it could be possible to give more elegant solutions to
these basic conceptualizations.

TABLE II.
STRUCTURE OF ATTRIBUTE INSTANCES IN THE DEMAND-DRIVEN EVALUATION FRAMEWORK.

Field Purpose Initial 

value

value It keeps the value of the instance of the 
semantic attribute.

┴

available A boolean flag that indicates whether the value 
is available. 

false

deps It keeps the links to those attribute instances 
required to compute the value. 

The 
empty list

semFun It stores the integer code of the semantic 
function required to compute the value.

┴

refcount A counter of references to this attribute 
instance (used to enable garbage collection). 

1

B. Implementing the attribution operations

Table 3 outlines, using pseudo-code, the implementation

of the attribution operations. In this pseudo-code, references

are intended to work like in Java, although we do not assume

automatic garbage collection (instead, a delete primitive

is explicitly invoked). Indeed, this is why we explicitly in-

clude release attribution operations. 

The different operations behave as follows:

� mkCtx collects in a list many fresh attribute in-

stances as needed. 

� mkDep adds the second attribute instance in the

deps list of the first one.

� inst stores the semantic function code in the

semFun field.

� release, when applied to a list of semantic attrib-

ute instances, releases each instance and de-alloc-

ates the list itself.

� On the other hand, when release is applied to an

attribute instance, decreases in 1 its reference count.

If this count becomes 0, the instances on which it

depends are released; finally, the original instance

itself is de-allocated.

� set sets the value field and records its availabil-

ity.

� val recovers the value of an attribute instance as

follows: (i) if the value is available, it returns such a

value, (ii) otherwise, it calls the semantic function

manager to compute such a value and sets and re-

turns it. 

Thus, the demand-driven evaluation process arises from

the interplay of the val attribution operation and the se-

mantic function manager. Notice that, in our minimalistic

conceptualization, we assume this manager has the pre-estab-
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lished exec name, and its implementation is changed from

encoding to encoding2.

TABLE III.
IMPLEMENTATION OF THE ATTRIBUTION OPERATIONS FOR ALLOWING A DEMAND-DRIVEN 

EVALUATION STYLE. 

Operation Implementation 

mkCtx(n) as := new list 

for i := 0 to n-1 do

   add(as, new attribute)
end for  

return as

mkDep (a
0
, a

1
) add (a0.deps, a1) 

a
1
.refcount := a

1
.refcount + 1 

inst(a,f) a.semFun := f

release(as) foreach a in as do

     release(a)
end foreach

delete as

release(a) a.refcount:= a.refcount-1
if  a.refcount = 0 then

    foreach a’ in a.deps do

         release(a’)
    end foreach 

    delete a.deps
end if

delete a

set(a,val) a.value := val

a.available := true

val(a) if ¬ a.available then 

    set(a, exec(a.semFun,a.deps))
    release(a.deps) 

end if

return a.value      

Also notice how explicit garbage collection can be readily

interleaved in the implementation of the attribution operation

by appropriately managing the reference counters and by de-

allocating lists and records as soon as they become unreach-

able. Although in this evaluation style, most of the depend-

ency graph remains in memory until parsing is finished, auto-

matic garbage collection makes it possible to de-allocate use-

less parts of the graph when they becomes unreachable. It

can be due to attribute instances that are not finally required

in any computation (e.g., F.env in a F ::= id context),

or to successive evolutions of the implementation combining

pure attribute grammar features with implementation-ori-

ented optimizations (e.g., global variables, on-the-fly evalu-

ation of semantic attributes, …).

C. Example

In order to illustrate the internal functioning of the frame-

work, we will use the example developed in subsection II.D,

together with the input sentence 5 * (6 + x).

2Again it is possible to achieve more elegant solutions by using a
programming language with a minimal higher-order support (e.g., a
conventional object-oriented language). Nevertheless, our conceptualization
keeps the essence of this evaluation approach.

Action Input Parse Stack

1.init *(6+x)$  

2. shift (6+x)$ n[1]

3. reduce F ::= n (6+x)$ F[2,3]

4. reduce T ::= F (6+x)$ T[4,5]

5. shift 6+x)$ T[4,5]*

6. shift +x)$ T[4,5]*(

7. shift x)$ T[4,5]*(n[6]

8. reduce F ::= n x)$ T[4,5]*(F[7,8]

9. reduce T ::= F x)$ T[4,5]*(T[9,10]

10. reduce E ::= T x)$ T[4,5]*(E[11,12]

11. shift )$ T[4,5]*(E[11,12] +

12. shift $ T[4,5]*(E[11,12]+id[13]

13. reduce F ::= id $ T[4,5]*(E[11,12]+F[14,15]

14. reduce T ::= F $ T[4,5]*(E[11,12]+T[16,17]

15. reduce E ::= E+T $ T[4,5]*(E[18,19]

16. shift $ T[4,5]*(E[18,19])

17. reduce F := (E) $ T[4,5]*F[20,21]

18. reduce T := T*F $ T[22,23]

19. reduce E := T $ E[24,25]

20. reduce S := E $ S

Fig 4. Evolution of the translator generated from Figure 2 while analyz-
ing 5*(6+x)

Fig. 4 illustrates the evolution of the parser. Each symbol

in the parse stack is superscripted by the list of the references

to their attribute instances. Fig. 5 outlines the dependency

structure created in the heap. In this structure, nodes corres-

pond to attribute instances, while dependencies are indicated

by mean of arrows. Each instance is accompanied by a nu-

meric identifier (it is also used to indicate references in the

parse stack), and by its duration (i.e., the parse action in

which the instance was created, followed by the parse action

in which it was deleted). For example, the instance 16 was

created in the action 14 (reduction of the T ::= F rule),

and it was destroyed in action 20 (once the parsing con-

cluded and semantic evaluation was activated as a con-

sequence of consulting val in the parse tree root). 

Finally, it is important to remark several points. On one

hand, it should be notice the parse tree is never explicitly

built, since the process only requires the underlying depend-

ency graph. Additionally, dependencies in Fig. 5 are reverted

with respect to the usual convention, according to which,

when a is used to compute b, an arc starting in a and finish-

ing in b is used [8]. Indeed, dependencies actually represent

the contents of the deps field. Additionally, the fact they

appear reversed with respect to the usual convention em-
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phasized the demand-driven nature of this evaluation

strategy. Also, while most of the instances exists until the

end of the process, this example makes apparent how those

instances that become unreachable are readily de-allocated.

For example, consider action 4: when rule T ::= F is re-

duced, the instance for F.env (i.e., the instance 3) is no

longer needed, and therefore it can be de-allocated. Actually,

this instance is de-allocated as consequence of releasing the

F attribute instance list. By last, notice how lexical attributes

for terminal symbols are created in the shift action that pre-

cedes the actual shift of such a symbol, or during parse ini-

tialization, in the case of the first shift. It is due to lexical at-

tributes are actually created by the scanner, and we suppose

1-lookahead parsers, as those generated by LALR(1) parser

generators. 

Fig 5. Dependency structure created in the heap as by the pro-
cess outlined in  Fig. 4.

IV. INCORPORATING A DATA-DRIVEN EVALUATION FRAMEWORK 

In this section we describe an alternative implementation

of the attribution operations, which leads to a data-driven

evaluation style (see, for instance, [7]). In this evaluation

style, attribute instances are scheduled for being evaluated as

soon as the values for all the instances on which it depends

are available. Thus, this method can shorten the durations of

attribute instances. Additionally, it can interleave evaluation

with parsing. These features can result of interest to process

very long sentences, or sentences made available asynchron-

ously (e.g., on a network communication channel). However,

this method can do useless evaluations on attribute instances

not required to yield the final results.

As in the previous section, we outline the representation of

attribute instances (subsection IV.A), the implementation of

attribute operations (subsection IV.B), and we illustrate how

the method works with an example (subsection IV.C).

A. Representing the instances of the semantic attributes

Table 4 outlines the representation of attribute instances in

the data-driven style. Notice that, in addition to the list of in-

stances on which an instance depends, it is needed to main-

tain the reverse relationship (i.e., each attribute instance must

refer to those instances which depend on it). Indeed, this rep-

resentation is similar to the used by networks of observables-

observers in the observer object-oriented pattern [4]3. 

TABLE IV.
STRUCTURE OF ATTRIBUTE INSTANCES IN THE DATA-DRIVEN EVALUATION FRAMEWORK. 

Field Purpose Initial 

value

value It keeps the value of the instance of the 
semantic attribute.

┴

available A boolean flag that indicates whether the 
value is available. 

false

deps It keeps the links to those attribute instances 
required to compute the value.

The 
empty 

list

obs It keeps the links to those attribute instances 
observing it (i.e., which depend on it to 
compute their values).

The 
empty 

list

required Counter which records the number of 
attribute instances in deps whose values 
have not yet been determined.

0

semFun It stores the integer code of the semantic 
function required to compute the value.

┴

instrumented True if semFun was set, false otherwise. false

refcount A counter of references to this attribute 
instance (used to enable garbage collection). 

1

B. Implementing the attribution operations

Table 5 outlines the pseudo-code of the attribution opera-

tions whose implementation differs from those in the de-

mand-driven style. In this way, we only need to redefine

mkDep, inst, set and val:

� In addition to updating deps in the first instance,

mkDep must test whether the second instance was

already computed. If it is not available, the first in-

stance must be added to its obs list, since such an

instance depends on its value, a value which is not

yet available.

� On its hand, inst must take care of whether the

value can be computed. Indeed, if the correspond-

ing attribute instance has all the instances on which

it depends computed, it can thereby be computed. It

assumes the establishment of all the required de-

pendencies before instrumentation, which is ensured

by our encoding pattern.

� Set must take care of decrementing the

required counters in all the instances depending

3
As with the demand-driven style, this representation could be simplified,

inferring the values of flags (in this case, available and instrumented) from
the other fields. However, we prefer to explicitly preserve these flags to
increase the readability of pseudo-code.

3(3-20) 

1(1-20) 

2(3-4) 

5(4-20) 4(4-18) 

8(8-20) 

6(6-20) 

7(8-9) 

10(9-20) 9(9-10) 

12(10-20) 11(10-15) 

15(13-20) 

13(11-20) 

14(13-20) 

17(14-20) 16(14-20) 

19(15-20) 18(15-20) 

21(17-20) 20(17-20) 

23(18-20) 22(18-20) 

25(19-20) 24(19-20) 
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of the current one. In addition, if a counter becomes

0, it must enforce the evaluation of the correspond-

ing instance.

� Finally, val immediately computes the value, un-

less the instance has not been yet instrumented.

TABLE V.
IMPLEMENTATION OF THE ATTRIBUTION OPERATIONS FOR ALLOWING A DATA-DRIVEN 

EVALUATION STYLE (ONLY THOSE IMPLEMENTATIONS DIFFERING FROM TABLE III ARE 
PRESENTED).

Operation Implementation 

mkDep (a
0
, a

1
) add (a0.deps, a1)

a
1
.refcount := a

1
.refcount + 1 

if ¬ a
1
.available then

   add (a1.obs, a0)

   a
0
.required  := a

0
.required + 1

   a
0
.refcount  := a

0
.refcount + 1

end if

inst(a,f) a.semFun := f
a.instrumented := true

if a.required = 0 then

    val(a)

end if

set(a,val) a.value := val

a.available := true

foreach a’ in a.obs do

    a’.required := a’.required – 1

   if a’.required = 0 then

      val(a’)

  end if

end foreach

release(a.obs)   

val(a) if a.instrumented then

   set(a, exec(a.semFun,a.deps))

   a.available := true

   release(a.deps)  

end if

Notice how, in this case, evaluation can be interleaved

with parsing. Indeed, evaluation is fired when the values of

attribute instances are explicitly set, and also when attributes

are instrumented. As a consequence, garbage collection also

interplays with parsing, and, therefore, this method can incur

in less heap overhead. It can be realized by considering the

implementation of an s-attributed grammar (i.e., a grammar

with only synthesized attributes) [1]. In this case, LHS attrib-

ute instances are computed when they are instrumented, and

RHS attribute instances are garbage collected immediately

before the reduction of the corresponding rules. On other

cases, the behavior strongly depends on the nature of inher-

ited attributes. In the extreme case (e.g., the example de-

veloped in subsection II.D), the dependency structure will be

fully constructed, and evaluation will be delayed until the

end of parsing, as in the demand-driven style. Still in these

cases, it is possible to apply some straightforward optimiza-

tions on the resulting encoding, based on the use of marker

non-terminals [1], in order to improve performance.

def env=0; def val=0;
def IDEN=0; def ADD=1; def MUL=2; 
def TONUM=3; def VALOF=4;
S ::= M0 E {
  print(val($2[val]));

  release($1); release($2);}

M0 ::= λ {
  $$ := mkCtx(1); 

  set($$[env],getEnv());}

E ::= E + M1 T {
  $$ := mkCtx(1);

  mkDep($$[val],$1[val]); mkDep($$[val],$4[val]);

  inst($$[val],ADD);

  release($1); release($3); release($4);}

M1 ::= λ {
  $$ := mkCtx(1); 

  mkDep($$[env], $-2[env]);
  inst($$[env], IDEN) }

E ::= T {

  $$ := mkCtx(1);

  mkDep($$[val],$1[val]);

  inst($$[val],IDEN);

  release($1); }

T ::= T * M1 F {
  $$ := mkCtx(1);

  mkDep($$[val],$1[val]); mkDep($$[val],$4[val]);

  inst($$[val],MUL);

  release($1); release($3); release($4); }

T ::= F {

  $$ := mkCtx(1);

  mkDep($$[val],$1[val]);

  inst($$[val],IDEN);

  release($1);  }

F ::= n {

  $$ := mkCtx(1);

  mkDep($$[val],$1[lex]);

  inst($$[val],TONUM);

  release($1); }

F ::= id {

  $$ := mkCtx(1);

  mkDep($$[val],$0[env]); mkDep($$[val],$1[lex]); 
  inst($$[val],VALOF);

  release($1); }

F ::= ( M2 E ) {
   $$ := mkCtx(1);

   mkDep($$[val],$3[val]);

   inst($$[val],IDEN);

   release($2); release($3);}

M2 ::= λ {
  $$ := mkCtx(1); 

  mkDep($$[env], $-1[env]);
  inst($$[env], IDEN) }

Fig 6. Result of optimizing the translation scheme of Figure 2 with the 
help of markers to get the most of the data-driven evaluation style. 

C. Example

In order to illustrate the potential advantages of the data-

driven method with respect to heap requirements, we will

slightly modify the encoding of Fig. 2 by introducing marker

non-terminals (i.e., new non-terminal symbols defined by

empty rules) in strategic places4.

These marker non-terminals will allocate references to the

env attribute instance for their immediate successors in the

parse stack. It lets us discard equations to propagate the en-

vironment along the parse tree left-spines. The resulting en-

coding is shown in Fig. 6.

Fig. 7 illustrate the evolution of the parser while analyzing

the sentence 5 * (6 + x). Fig. 8 shows the dependency

structure created in the heap. Notice how the marker-based

optimization performed on the encoding makes it possible to

get a behavior equivalent to a one-pass, on-the-fly, evalu-

ation of the semantic attributes, as the durations indicated in

Fig. 8 make apparent.

4It must be carefully done, as the resulting context-free grammar can lose its
desired character -e.g., LALR(1). 
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Action Input Parse Stack

1.init *(6+x)$  

2. reduce M0 ::= λ *(6+x)$ M0[2]

3. shift (6+x)$ M0[2]n[1]

4. reduce F ::= n (6+x)$ M0[2]F[3]

5. reduce T ::= F (6+x)$ M0[2]T[4]

6. shift 6+x)$ M0[2]T[4] *

7. reduce M1 ::= λ 6+x)$ M0[2]T[4]* M1[5]

8. shift +x)$ M0[2]T[4]*M1[5] (

9. reduce M2 ::= λ +x)$ M0[2]T[4]* M1[5] (M2[7]

10. shift x)$ M0[2]T[4]* M1[5] (M2[7] n[6]

11. reduce F ::= n x)$ M0[2]T[4] *M1[5] (M2[7] F[8]

12. reduce T ::= F x)$ M0[2]T[4] *M1[5] (M2[7] T[9]

13. reduce E ::= T x)$ M0[2]T[4] *M1[5] (M2[7] E[10]

14. shift )$ M0[2]T[4] *M1[5] (M2[7] E[10] +

15. reduce M1 ::= λ )$ M0[2]T[4] *M1[5] (M2[7] E[10] + M1[12]

16. shift $ M0[2]T[4] *M1[5] (M2[7] E[10] + M1[12]id[11]

17. reduce F ::= id $ M0[2]T[4] *M1[5] (M2[7] E[10] + M1[12]F[13]

18. reduce T ::= F $ M0[2]T[4] *M1[5] (M2[7]E[10] + M1[12]T[14]

19. reduce E ::= 

E+M1T

$ M0[2]T[4] *M1[5] (M2[7]E[15]

20. shift $ M0[2]T[4] *M1[5] (M2[7]E[15])

21. reduce F := (M2E) $ M0[2]T[4] *M1[5]F[16]

22. reduce T := T*M1F $ M0[2]T[17]

23. reduce E := T $ M0[2]E[18]

24. reduce S := M0 E $ S

 Fig 7. Evolution of the translator generated from Figure 6 while analyzing 
5*(6+x) 

Fig 8. Dependency structure created in the heap as by the process out-
lined in Fig. 7

V. CONCLUSSIONS AND FUTURE WORK 

This paper has shown how to systematically encode arbit-

rary non-circular attribute grammars in the input languages

of bottom-up, LALR(1) parse generation tools like YACC,

BISON or CUP. It is done using a small set of attribution op-

erations. These operations, in their turn, can be implemented

of different ways in order to enable different semantic evalu-

ation styles. In particular, this paper has illustrated two al-

ternative implementations: one supporting a demand-driven

style, and another one supporting a data-driven one. The res-

ults of this work can be useful to promote a systematic meth-

od of using conventional bottom-up parse generation tools to

yield final implementations. This method starts with the ini-

tial encoding of an attribute grammar-based specification,

and then it evolves it in a final implementation by applying

systematic implementation patterns and techniques. Besides,

the method facilitates the incremental introduction of new

language features, since they can be described according to

attribute grammar conventions, then readily encoded in the

implementation, and finally optimized according to imple-

mentation-dependent criteria. Therefore, the method trans-

ports the attribute grammar amenability for doing modular

and extensible specifications incrementally to an implement-

ation process based on parse generation tools.

Currently we have successfully tested our method with

several small examples, and we are applying it to the devel-

opment of a non-trivial translator for a Pascal-like language.

As future work, we plan to apply the method to descent pars-

er generation tools (e.g., JavaCC or ANTLR).
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