

Abstract—According to this paper, to refine an initial

context-free grammar supposes to devise an equivalent
grammar that preserves the main syntactic structures of the
initial one while making explicit other structural characteristics
(e.g., associativity and priority of the operators in an expression
language). Although, generally speaking, checking the
equivalence of two context-free grammars is an undecidable
problem, in the scenario of grammar refinement it is possible to
exploit the relationships between the initial grammar and the
grammar refinement to run a heuristic conformance test. These
relationships must be made explicit by associating core non-
terminal symbols in the initial grammar with core non-terminal
symbols in the grammar refinement. Once it is made, it is
possible to base the heuristic test on searching regular
expressions involving both terminal and core non-terminal
symbols that describe each core non-terminal symbol, and on
checking the equivalence of carefully chosen pairs of such
regular expressions. The paper describes the method and
illustrates it with an example.

I. INTRODUCTION

ROM a language engineering perspective, the necessity

to ensure the correctness of the successive refinements

of a context-free grammar becomes apparent. Unfortunately,

in the last term checking this correctness supposes to check

the weak equivalence of two arbitrary context-free gram-

mars1, a classical undecidable problem [3]2. As a conse-

quence, it is not possible to devise a complete checking algo-

rithm, which can work in all the cases. However, since we

are not facing arbitrary context-free grammars, but grammars

related by a refinement relation, we still can propose some

heuristic methods working reasonably well in many practical

situations. This paper describes one of such methods.

F

II. THE REFINEMENT WORK-FLOW

In order to systematize the process of context-free gram-

mars refinement we propose the work-flow of Fig. 1.

1i.e., to check whether the two grammars generate the same language.

2Although structural equivalence of context-free grammars (i.e., to check
whether two context-free grammars produces structurally equivalent parse
trees) is decidable [4], grammar refinements usually do not preserve the
structure of the parse trees. Thus, checking this restricted form of structural
equivalence is not sufficient in this context.

The work-flow begins with the providing the initial gram-

mar activity. The goal of this activity is to get an initial or

base grammar to refine.

Fig 1. Refinement work-flow

Next activity is writing the grammar refinement. This ac-

tivity is oriented to refine the initial grammar by reflecting

structural features and properties not present in such an ini-

tial grammar (e.g., associativity and precedence of

operators). In this way, the initial grammar should introduce

the core syntactic constructs of the language, in form of core

non-terminal symbols, while the refinement should address

the structural refinement of these constructs, without chang-

ing the generated language.

Once the grammar refinement has been written, next activ-

ity is the specifying the grammar mapping activity. The goal

of this activity is to make explicit a grammar mapping iden-

tifying which non-terminal symbols in the refinement corre-

spond with each relevant (core) non-terminal symbol in the

initial grammar.

Next step is regularization. This activity, which is carried

out automatically, actually is the first part of the confor-

mance checking method. Its goal is to associate, with each

core non-terminal symbol, a definitional regular expression.

Definitional regular expressions must involve both terminal

and core non-terminal symbols. In addition, each sentence in

the language described by the definitional regular expression

ε for a core non-terminal A must be derivable from A (i.e.,

α∈L(ε) ⇒ A→*α). Finally, ε must completely characterize

Checking the Conformance of Grammar Refinements with respect
to Initial Context-Free Grammars

Bryan Temprado-Battad, Antonio Sarasa-Cabezuelo, José-Luis Sierra
Facultad de Informática. Universidad Complutense de Madrid. 28040 Madrid, Spain

Email: {bryan, asarasa, jlsierra}@fdi.ucm.es

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 887–890

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 887

one of the intermediary languages derived from A, in the fol-

lowing sense: A→*w ⇒ ∃ α∈L(ε) (α→*w)3.

Finally, the last step is given by the conformance check-

ing activity. This activity tries to actually check the weak

equivalence on the basis of the definitional regular expres-

sions associated with each core non-terminal in both gram-

mars, as well as on the basis of the grammar mapping.

Therefore, it constitutes the second part of the conformance

checking method.

It is worthwhile to notice that, being the checking method

necessarily incomplete, during its execution it will be possi-

ble to get one of two possible answers: (i) the grammars are

actually equivalent and (ii) it has not been possible to prove

whether the grammars are equivalent. While in the first

case, the method will ensure the correctness of the performed

refinement, in the second case the answer is not conclusive:

indeed, the grammars could be actually equivalent in a way

not envisioned by the method, and therefore we can’t con-

clude the non-equivalence of the grammar. In this case, it

could be possible to re-factor the refinement, to modify si-

multaneously both the refinement as the initial grammar, and

even to rethinking the grammar mapping, as the iterative na-

ture of the work-flow makes apparent. Next sections go in-

side each activity of this work-flow.

III. PROVIDING THE INITIAL GRAMMAR, WRITING THE GRAMMAR
REFINEMENT AND SPECIFYING THE GRAMMAR MAPPING

The first activity to do in the refinement work-flow is to

provide a suitable initial grammar. As said before, this

grammar formally characterizes the syntax of the computer

language addressed (i.e., it is able to generate exactly the

sentences of the language). However, it does not necessarily

do it in a way which is convenient to undertake a systematic

implementation of such a language. Therefore, it could be

necessary to modify this initial grammar to yield a grammar

refinement.
(a)
Sents ::= Sents ; Sent | Sent

Sent ::= id := Exp

Exp ::= Exp + Exp | Exp * Exp | id | (Exp)

(b)
SS ::= SS ; S | S

S ::= id := E

E ::= E + T | T

T := F * T | F

F ::= id | (E)

Fig 2. (a) An initial context-free grammar, (b) a refinement of (a)

In order to illustrate these aspects, let us consider the ini-

tial grammar shown in Fig. 2a. This grammar characterizes a

simple language of assignment instructions, in which arith-

metic expressions can be assigned to identifiers. However, it

does not take care of characterizing precedence and associa-

tivity of operators. As a collateral consequence, it exhibits

ambiguity. In order to solve these shortcomings, it is possible

to refine the initial grammar, getting an equivalent grammar

characterizing the mentioned priority and associativity of op-

3
Here, as usual, α denotes a sentential form –a string of terminal and non-

terminal symbols-, and w a sentence –a string of terminal symbols.

erators. Fig. 2b outlines a possible refinement taking these

features into account.

In addition to provide the initial grammar and to specify

the grammar refinement, in order to get the benefits of our

checking approach, grammar writers must make the struc-

tural relationships between initial grammars and grammar re-

finements explicit. It is done by specifying a grammar map-

ping. On one hand, such a mapping supposes to recognize a

set of representative syntactic structures in the grammar re-

finement that result of refining structures in the initial gram-

mar. It is done by identifying a set of core non-terminal sym-

bols in the grammar refinement. In particular, the initial sym-

bol must be one of these core symbols. On the other hand,

this mapping makes it possible to associate to each core non-

terminal symbol in the grammar refinement a distinct non-

terminal symbol in the initial grammar. Following a similar

convention, these symbols in the initial grammar will be

called core non-terminal symbols of the initial grammar.

Non-terminal symbols that are not core symbols we will be

called auxiliary non-terminal symbols.

Concerning our example, the establishment of a grammar

mapping is straightforward. Indeed, in the refinement of Fig.

2b we can identify three core symbols (SS, S and E), which

are mapped respectively to Sents, Sent and Exp in the

initial grammar of Figure 2a.

IV. REGULARIZATION

As said before, the goal of the regularization activity is to

associate with each core non-terminal a definitional regular

expression. In addition, this expression must only comprise

terminal symbols, and core non-terminal symbols. For doing

so, the algorithm of Fig. 3 is used.

This algorithm successively visits each non-terminal sym-

bol A, determining and refining a definitional regular expres-

sion εA for A. It starts by determining an arbitrary order for

the non-terminal symbols. While the final regular expres-

sions will depend on this order, the results will be equivalent

for any order chosen. Then, it visits each non-terminal sym-

bol A. For this purpose, it begins by establishing a first value

for the definitional regular expression

ε

A
 as ⊕{α | A→ α ∈ P},

with P the set of syntax rules. Here, by ⊕Γ we denote ∅

when Γ=∅, α when Γ={α} and α
0
 | …| α

k
when Γ={α

0
,

…,αk} (k ≥1). Therefore εA is initially set to the disjunction

of the RHSs of the rules for A. Then it substitutes the expres-

sion ε
B

 for each already visited auxiliary non-terminal B in

εA (it is denoted by εA[B /εB]). Notice that core non-termi-

nals in ε
A

 are preserved, since this process only attempts to

eliminate auxiliary non-terminals. Next, it simplifies εA to

replace several forms of immediate recursion by iteration.

For this purpose, a well-known result borrowed from the

theory of language equations is used [2], which makes it pos-

sible to derive

A = (β*δγ*α)* β*δγ* (1)

from

888 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

A = AαA | βA | Aγ | δ (2)

Input: (i) A context-free grammar G ≡(SN, ST ,S,P) -SN is the set of non terminal symbols,

ST the set of terminal symbols, S the initial symbol, and P the set of syntax rules; (ii) The set

of core non-terminals K

Output: A set of equations, with an equation of the form A=ε for each core non-terminal A,

with ε a definitional regular expression

Method:
let SN = {A0, A1, …, An} in

 for i = 0 to n

 εi := ⊕{α | A → α ∈ P }

 for j = 0 to i-1

 if Aj ∉ K then

 εi := εi [Aj / εj]

 end if
 end for

 εi := simplify(εi, normalize(εi))

 if Ai ∉ K then

 for j = 0 to i-1

 εj := εj [Ai / εi]

 end for
 end if
 end for
end let

return { Ai = εi | Ai ∈ K }

Fig 3. Regularization method.

(a)
Ordering: Sents, Sent, Exp

Regularization:
 Sents = (Sent;)* Sent

 Sent = id := Exp

 Exp = ((id | (Exp)) (+|*))*(id | (Exp))

(b)
Ordering: F,T,E,S,SS

Regularization:

 SS = S (; S)*

 S = id := E

 E = ((id | (E)) *)* (id | (E))

 (+ ((id | (E)) *)* (id | (E)))*

Fig 4. (a) Regularization of grammar in Fig. 2a; (b) Regularization of
grammar in Fig. 2b.

This result is taken as as a basic transformation pattern to

eliminate several forms of immediate recursion during the

regularization stage. In order to make it possible to apply this

pattern, we need to start by normalize definitional regular ex-

pressions ε
A

for non-terminal symbols A in order to yield

regular expressions of the form AαA | βA | Aγ | δ equivalent

to ε
A

. Such a normalization basically works by applying the

identities

(ε0|ε1) ε2 = ε0 ε2| ε1 ε2
(3)

ε2 (ε0|ε1) = ε2 ε0| ε2 ε1
(4)

to the begin and the end of the expression in order to push up

the left and right recursive positions of A. Due to space con-

strains, these normalization details will be omitted here.

In order to exemplify regularization, Fig. 4 shows the re-

sults of the regularization activity when carried out on gram-

mars of Fig. 2a and Fig. 2b.

V. CONFORMANCE CHECKING

The last activity to be considered is conformance check-

ing itself, which is carried out by the method of Fig. 5.

The first step involved in the activity is to align the core

non-terminal symbols in the two regularizations, in such a

way those regularizations use the same names for those sym-

bols. It is indicated by the align operation (details omitted).

In addition to aligning the names of the core non-terminal,

this operation is supposed to replace the auxiliary non-termi-

nals that could remain in the definitional expressions by _ (_

is assumed to not be allowed as a grammar symbol). Once

aligned both regularizations, the next step actually addresses

the checking process. For this purpose, it maintains two sets:

(i) Γ, which contains the core symbols whose conformance

must be checked, and (ii) V, which contains the core symbols

whose conformance has been already undertook (visited non-

terminals). Then, the checking process proceeds until Γ be-

comes empty.

Input: (i)The regularization of the initial grammar RI; (ii) The regularization of the refinement

grammar Rr ; (iii) The terminal alphabet ΣT ; (iv) Τhe initial symbol S of the initial grammar;

(v) The grammar mapping Θ from the refinement to the initial grammar

Output: “yes” if it the conformance can be proved, “don’t know” otherwise
Method:

 (RI, Rr) := align(RI, Rr, Θ, ΣT)

 Γ := {S}; V := ∅

 while Γ ≠ ∅

 pick A from Γ

 Γ := Γ - {A}; V := V ∪ {A}

 pick A=εI
A from RI,

 pick A=εr
A from Rr

if _ ∈ εI
A ∨ _ ∈ εr

A then

 return “don’t know”
 fi

 if εI
A ∼ εr

A then

 Γ := Γ ∪ { B | B ∈ εI
A ∧ B∉V ∪ ΣT }

 else
 return “don’t know”
 end if
 end while
 return “yes”

Fig 5. Conformance checking method

In each iteration, a core symbol A in Γ is chosen, it is

recorded as visited, and the definitional expressions for A in

the initial grammar (εI
A) and in the grammar refinement (εr

A)

are considered (remember the aligned regularizations shares

the names for the core non-terminals). If εI
A or εr

A contain a

_ symbol, it means regularization failed to produce defini-

tional expressions comprising only terminal and core non-

terminal symbols. Thus, the checking process ends with a

non-conclusive response. Otherwise, εI
A and εr

A are checked

for equivalence (i.e., it is studied whether εI
A ∼ εr

A holds). If

the test fails (i.e., εI
A and εr

A are not indeed equivalent), the

overall process finishes with a non-conclusive answer. Oth-

erwise, the method tries to ensure that, if α∈L(εI
A) (and,

thus, α∈L(εr
A)), then it is possible to derive exactly the same

sentences from α in the initial grammar than in the grammar

refinement. Indeed, if it holds for any core non-terminal in α,

it will hold for the overall sentential form. For this purpose,

the method schedules the checking of those core non-termi-

nals in α not yet visited. Thus, if the set Γ is finally emptied,

it is possible to ensure that all the proof obligations concern-

BRYAN TEMPRADO BATTAD ET AL: CHECKING THE CONFORMANCE OF GRAMMAR REFINEMENTS 889

ing the core non-terminal symbols scheduled by the method

have been satisfied, and, therefore, the equivalence has been

effectively proven. In this way, it is possible to finish with a

conclusive and positive answer.

Alignment of core non-terminal names

Aligned regularization for the initial grammar

Sents = (Sent;)* Sent

Sent = id := Exp

Exp = ((id | (Exp)) (+|*))*(id | (Exp))

Aligned regularization for the grammar refinement

Sents = Sent (; Sent)*

Sent = id := Exp

Exp = ((id | (Exp)) *)* (id | (Exp))

 (+ ((id | (Exp)) *)* (id | (Exp)))*

Conformance checking

Init Γ = {Sents}

V = ∅

It. 1 Symbol to check: Sents

Γ = ∅

V = {Sents}

¿ (Sent;)* Sent ∼ Sent (; Sent)* ?: YES

Γ = {Sent}

It. 2 Symbol to check: Sent

Γ = ∅

V = {Sents,Sent}

¿ id := Exp ∼ id := Exp? : YES

Γ = {Exp}

It. 3 Symbol to check: Exp

Γ = ∅

V = {Sents,Sent,Exp}

¿ ((id | (Exp)) (+|*))* (id | (Exp)) ∼

((id | (Exp)) *)* (id | (Exp))

 (+ ((id | (Exp)) *)* (id | (Exp)))*? : YES

End Success (YES answer) !

Fig 6. Checking the conformance of grammar in Fig. 2b with respect to
grammar in Fig. 2a

Finally, notice that the conformance checking method re-

lies on checking the equivalence of regular expressions. For

this purpose, it is possible to use one of the well-known ap-

proaches reported in the literature (see, for instance, [1]),

which, in last term, rely on converting regular expressions to

equivalent finite automata, and to check equivalence between

automata.

Fig. 6 details the application of the conformance checking

method to the grammar refinement of Fig. 2b and the initial

grammar of Fig. 2a.

VI. CONCLUSIONS AND FUTURE WORK

Grammar refinement is a usual activity in language engi-

neering. Initial context-free grammars are refined to impose

finer structures on the initial syntactic categories, in order to

make explicit important features of the target language (e.g.,

operator associativity and precedence). Grammars are also

refined to get equivalents satisfying the constraints imposed

by particular development tools (e.g., parser generators).

Therefore, checking the correctness of refinements with re-

spect to initial grammars should be a must in any systematic

language engineering process. Although the unconstrained

problem is undecidable, this paper has shown how it is still

possible to provide some useful automatic assistance. For

this purpose, it has proposed an interactive approach, fo-

cused on checking equivalence of definitional regular ex-

pressions for core non-terminals

We are currently improving the efficiency of the different

algorithms involved in our proposal. We are also investigat-

ing the inclusion of new regularization patterns and strate-

gies. In addition, we want to check the approach with several

grammars for non-trivial domain-specific languages. As fu-

ture work, we want to use this approach to check the confor-

mance of processing-oriented grammars with respect to

XML schemas in order to assist the language-oriented pro-

cessing of XML documents [5].

ACKNOWLEDGMENT

Thanks are due to the project grants
TIN2010-21288-C02-01.

REFERENCES

[1] Aho A.V, Ullman J.D. The Theory of Parsing, Translation and
Compiling. Vol. I - Parsing. Prentice-Hall. 1972

[2] Andrei, S., Chind, W-N., Cavadini, S.V. Self-embedded context-free
grammars with regular counterparts. Acta Informatica 40(5): 349–
365. 2004

[3] Bar-Hillel, Y., Perles, M., Shamir, E. On formal properties of simple
phrase-structure grammars. Z. Phonetik, Sprachwiss.
Kommunikationsforsch 14, 143-172. 1961 (Reprinted in Bar-Hillel.
Language and Information, Addison-Wesley, 1964)

[4] Paull, M.C., Unger, S.H. Structural Equivalence of context-free
grammars. Journal of Comp. and System Sc., 2(4), 427-463. 1968

[5] Temprado-Battad, B., Sarasa, A., Sierra, J.L. Modular Specifications
of XML Processing Tasks with Attribute Grammars Defined on

Multiple Syntactic Views. 5th International Workshop on Flexible
Database and Information Systems. Bilbao, Spain. 2010

890 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

