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Abstract—This paper grounds on the SAPERE project (Self-
Aware PERvasive Service Ecosystems), which aims at proposing
a multi-agent framework for pervasive computing, based on the
idea of making each agent (service, device, human) manifest
its existence in the ecosystem by a Live Semantic Annotation

(LSA), and of coordinating agent activities by a small and
fixed set of so-called eco-laws, which are sort of chemical-like
reactions evolving the distributed population of LSAs. System
dynamics in SAPERE is complex because of openness and due
to the self-* requirements imposed by the pervasive computing
setting: a simulation framework is hence needed for what-
if analysis prior to deployment. In this paper we present a
prototype simulator which – due to the role of chemical-like
character of eco-laws – is based on a variation of an existing
SSA (Stochastic Simulation Algorithm), tailored to the specific
features of SAPERE, including dynamicity of network topology
and pattern-based application of eco-laws. The simulator is tested
on a crowd steering scenario where groups are guided, through
public or private displays, towards the preferential destination
and by emergently circumventing crowded regions.

I. INTRODUCTION AND MOTIVATION

THE INCREASING evolution of pervasive computing

is promoting the emergence of decentralised and com-

plex infrastructures for pervasive services composed by new

communication devices (e.g. mobile phones, PDA’s, smart

sensors, laptops). Such infrastructures include traditional ser-

vices with dynamic and autonomous context adaptation (e.g.,

public displays showing information tailored to bystanders),

as well as innovative services for better interacting with

the physical world (e.g., people coordinating through their

PDAs). Mainstream languages and software infrastructures are

often inadequate to face requirements of scalability, openness,

adaptivity and self-organisation typical of pervasive systems.

In order to better handle these scenarios, a paradigm shift

towards agent world is receiving more and more attention in

the scientific community. Agents support the implementation

of distributed and communicating environments where differ-

ent kind of autonomous entities (i.e. agents) are located. In

this context, one of the hottest research topics regards agent

coordination, namely the way an infrastructure can be built to

allow agents to produce, consume and exchange information

inside the pervasive system [31].

Different approaches were proposed in the area of coor-

dination models and middlewares for pervasive computing

scenarios: they try to account for issues related to spatiality

[17], [21], spontaneous and opportunistic coordination [2],

[10], self-adaptation and self-management [25]; however, they

typically propose ad-hoc solutions to specific problems in

specific areas, and lack generality.

The SAPERE project (“Self-adaptive Pervasive Service

Ecosystems”) addresses the issues above in a uniform way

by means of a self-adaptive pervasive substrate, namely, a

space bringing to life an ecosystem of individuals, which are

pervasive services and devices able to interact with humans.

The key idea is to coordinate agents in a self-organising way

by basic laws (called eco-laws) that evolve the population of

individuals in the system, enacting mechanisms of coordina-

tion, communication, and interaction [32]. Technically, such

eco-laws are structured as sort of chemical reactions, working

on the “interface annotation” that each agent injects in neigh-

bouring localities, called LSA (Live Semantic Annotation).

In this context, simulation can be useful in supporting the

design of eco-laws and agent behaviour, and ultimately, of

whole pervasive service ecosystems. They give the possibility

to experiment the idea of exploiting ecological mechanisms,

such as those inspired by biology [9], showing through

simulation the overall behaviour of a system designed on

top of eco-laws, as well as to elaborate what-if scenarios.

Moreover, a well designed framework will enable researchers

to formally analyse the properties of such pervasive systems

through stochastic model checking [13].

To capture the whole complexity of the SAPERE approach

the model has to support in a coherent model the follow-

ing abstractions: (i) highly dynamic environments composed

of different, mobile, communicating nodes; (ii) reactive be-

haviours expressed by chemical-like reactions over LSAs; and

(iii) autonomous behaviour of agents.

On one hand the adoption of standard Agent-Based Models

(ABM) [16] seems to be quite natural, since the pervasive

system itself is engineered adopting the agent paradigm and

relying on a mediated form of interaction—as typical when

using, e.g., the A&A metamodel [24]. There are several works

which apply this approach in different contexts, from social

systems (see, e.g., [3]) to biological systems [19], [4]. An

ABM grounds around autonomous and possibly heterogeneous

agents that can be situated in an environment. They carry

out the most appropriate line of action, possibly interacting

with other agents as well as the environment itself. The agent
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behaviour is modelled through a set of rules which describe

how the agent behaves according to environmental conditions.

These rules can be of different types, according to the specific

model / architecture: from simple reactive rules specifying how

the agent must react to environmental stimuli or perceptions,

to pro-active ones specifying how the agent must behave with

respect to its goals and tasks [33]. In ABM the environment

is also a first class abstraction whose structure, topology

and dynamic can be explicitly modelled. To develop and

simulate ABMs different simulation frameworks have been

developed, such as MASON [15], Repast [22], NetLogo [26]

and Swarm [28].

On the other hand, ABMs do not typically provide tools for

sophisticated design of behavioural rules in the environment,

at least up to the point of supporting an efficient simulation of

chemical-like reactions as studied in [12] and its extensions.

Examples of works going in this direction escape the field of

ABMs, entering the scope of formal models for stochastic and

bio-inspired concurrency models, namely, based on Stochas-

tic Simulation Algorithms (SSA) such as BioPEPA [7] and

BetaWB [8]. However, in this field few simulators allow to

flexibly define network topologies [1] – they mostly deal with

a single or few chemical compartments – and to the best of our

knowledge no one provides features of network mobility and

fine-tuning control over different behaviour in different nodes,

for this typically escapes the context of biological systems.

Additionally, SAPERE eco-laws do not fit exactly chemical

reactions, for they handle structured molecules and advanced

matching algorithms in a way that existing chemical simulators

can hardly tackle.

To take the best of both approaches we developed a brand

new simulation framework, called ALCHEMIST, meant to face

natively the above requirements. It implements an optimised

version of the Gillespie’s SSA, namely the Next Reaction

Method [11], extended with the possibility to have dynamic

reactions, i.e. reactions that can be added or removed once the

simulation runs due to network mobility, and adapted to the

semantics of the eco-law language.

We exemplify the approach in a case study of crowd steering

in pervasive computing, in which groups are guided towards

locations based on their preference, along optimal paths and

taking into account the presence of crowded regions which

should be circumvented. We provide the set of eco-laws

solving the problem (which adopts mechanisms proposed in

the context of computational fields and spatial computing

[17], [20]) and validate it via simulation of the associated

stochastich model.

The remainder of this paper is organised as follows: Sec-

tion II presents details about the computational model we

defined and the simulation engine, Section III reports the

model application at the crowd steering scenario and the

simulation results and Section IV provides concluding remarks

and discusses future works.

II. ENGINE ARCHITECTURE

In this section we first introduce how to model a chemical

system in both deterministic and stochastic ways, then we

show the known algorithms for stochastic simulation and our

choices for a full featured high performance engine.

A. Stochastic Simulation Algorithms

A chemical system can be modelled as a single space filled

with molecules that may interact through a number of reactions

describing how they combine. The instantaneous speed of a

reaction is called propensity and depends on the kinetic rate

of the reaction and on the concentrations of all the reagents

involved. For a reaction i with k reactants, j products, rate r

of the form

R0 +R1 + . . .+Rk
r
−→ P0 + P1 + . . . Pj

the propensity ai is defined as:

ai = r · [R0] · [R1] · . . . · [Rk]

where [Ra] is the number of molecules of species Ra.

Since classical ODE (Ordinary Differential Equation) mod-

els are not accurate when the number of molecules in the

system is low, a stochastic model has been proposed in [12].

This kind of description considers the whole system as a

CTMC (Continuos-Time Markov Chain), in which the rate of

the transition representing the i-th reaction is the propensity

function ai—and represents the average frequency at which

the transition should be scheduled, following a negative expo-

nential distribution of probability.

In [12], two algorithms are proposed in order to correctly

simulate a stochastic path of a chemical system. Those algo-

rithms were successively improved, but even their optimized

versions, they rely on the idea that the system can be simulated

by effectively executing the reactions one by one and changing

the system status accordingly. Every algorithm follows four

main steps:

1) select the next reaction µ to be executed;

2) calculate the time of occurrence of µ according to an

exponential time distribution and make it the current

simulation time;

3) change the environment status in order to reflect this

execution;

4) update the propensities of the reactions.

The known techniques differ in the implementation of first and

fourth steps. We will briefly present them and then justify our

choice for the engine.

1) Direct Method: The direct method was first proposed in

[12]. It chooses the next reaction to be executed by throwing

a random number r 6
∑

i ai and selecting the first reaction

µ which verifies the property that r >
∑µ

i=0
ai. After the

execution of µ, it updates propensities for each reaction.
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2) Optimized Direct Method: The direct method can be

optimised as proposed in [11] and [29] by introducing a binary

search tree and a dependency graph. The former allows one to

choose the next reaction µ to be executed in logarithmic time,

the latter to update only the propensities of those reactions in

which concentration of reagents is modified by the execution

of µ.

3) Composition-Rejection Method: In [27] a constant time

method relying on composition-rejection algorithm is pro-

posed. The separation between the number of reactions R and

the computational complexity of the algorithm is obtained by

splitting the whole set of reactions into G groups, and then

arguing that G does not depend (or depends loosely) by R.

It may rely on a dependency graph in order to improve the

update phase.

4) First Reaction: The First Reaction Method is the dual

form of the Direct Method, and was proposed first in [12]. The

key idea is to calculate immediately the time of occurrence for

each reaction and select the next one to be executed using the

lowest time. It is demonstrably the same of the Direct Method

both in soundness and in time complexity.

5) Next Reaction: The Next Reaction Method is an opti-

mised form of the First Reaction Method first proposed in

[11]. It relies on an Indexed Priority Queue (IPQ) in order to

smartly sort the reactions by time and has constant time in

the selection phase since the root of the IPQ is always the

next reaction to execute. A dependency graph can be used in

order to update only the required propensities, and moreover a

random-number re-usage is allowed, speeding up consistently

the times recalculation.

B. Computational Model

Before discussing our choice of basic SSA algorithm, we

describe the computational model we propose in order to fill

the gap between the SAPERE world and chemical simulation.

In fact, requirements on the model will necessarily influence

some aspects of the design choices behind the engine itself.

First of all, we want to motivate the choice of chemical-

resembling laws to model self-* behaviours. It has been proved

that most ODE equations describing population dynamics can

be translated in an equivalent CTMC passing through a set of

chemical like reactions that describes the way the population

entities interact [6]. This expressive power of chemical reac-

tions is very interesting as soon as it allows us to use them in

the design of pervasive systems inspired at ecological systems.

Our model extends the classic model of chemical reactions

in three main directions.

First, in the classic chemical formulation [12], the environ-

ment is a single compartment that contains the molecules soup.

This description is pretty far from the world we want to model,

which is a pervasive service ecosystem. The natural extension

is to consider many compartments (nodes) placed in a space

(environment) which is responsible of linking them based on

some rule. Depending on the specific environment, nodes can

be dynamically added, moved or removed. A neighbourhood

is consequently a structure which contains a node “centre” and

a list of all linked compartments.

Second, in classical chemical models, a reaction lists a

number of reactant molecules which, combined, produce a set

of product molecules. This kind of description is too strict

for our purposes. A more generic concept is to consider a

reaction as a set of conditions about the environment which,

when matched, may allow the execution of a set of actions.

A condition is a function which associates a boolean to the

current state of the environment, an action is a procedure

which modifies it. The propensity function can no longer be

simply the product of the reaction rate with the concentrations

of the reactants, but needs a more generic definition too:

propensity in our model is a function of the reaction rate,

the conditions, and the environment state.

Third, we want to deal with events whose occurrence time

does not follow an exponential law, like triggers events hap-

pening at a specific time regardless the previous evolution of

the system—we want to occasionally depart the CTMC model

for the sake of flexibile configuration of simulations. For

instance, we may want to simulate an alarm event at a specific

simulation time, such that one can run multiple simulations in

order to understand how the system will react. Another usage

of triggers appears when considering the possibility to interact

with a running simulation pausing it and, exploiting triggers,

interact with the environment in its current status, then resume

the simulation. Even if this approach is not useful when the

goal is to check the properties of a model, it could be very

handy when exploring and testing it.

C. Dynamic engine

Given the model we want to simulate described in Sec-

tion II-B and the algorithms presented in Section II-A, we can

argue that no existing algorithm as-is is appropriate to support

our simulations. In particular, no algorithm provides facilities

to add and remove reactions dynamically and to inject triggers

and other non-exponential time distributed events. Our choice

for the engine algorithm to extend was then restricted between

the First Reaction and the Next Reaction, because they are

the only that choose the next reaction to execute explicitly

considering the time of occurrence, which makes a lot simplier

to support non-exponential time distributed events. The latter

is an optimization of the former, offers a lower computational

complexity in every case and consequently can achieve higher

performance. Our work had the primary goal to extend Next

Reaction providing the possibility to add and remove reactions

dynamically, since to the best of our knowledge no work in

this sense have been ever made. In order to add this support,

it is a mandatory task to provide methods to add and remove

reactions from the indexed priority queue and the dependency

graph.

1) Dynamic Indexed Priority Queue: A key property of the

original Indexed Priority Queue proposed in [11] is that the

swap procedure used to update the data structure does not

change the balance of the tree, ensuring optimal update times

in every situation. This feature was easily achieved because no
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Fig. 1. Indexed Priority Queue extended with children count per branch

nodes were ever added neither removed from the structure. As

a consequence, once the tree is balanced at creation time no

event can occur to change its topology. This is no longer the

case, and we have to provide a small extension to the structure

in order to manage the balancing. Our idea is, for each node,

to keep track of the number of children per branch, having in

such way the possibility to keep the tree balanced when adding

nodes. In figure 1 we show how the same IPQ drawn in [11]

would appear with our extension. In the following algorithms,

the procedure UPDATE_AUX(n) is the same described in

[11]. Given this data structure, the procedure to add a new

node n is the following:

IF root does not exists

n is the new root

ELSE

c <- root

WHILE c has two children

IF c.right < c.left

dir <- right

ELSE

dir <- left

add 1 to count of dir children

c <- c.dir

IF c has no left child

n becomes left child of c

set count of left nodes of c to 1

ELSE

n is right child of c

set count of right nodes of c to 1

UPDATE_AUX(n)

The removal procedure for a node n is the following:

c <- root

WHILE c is not a leaf

IF c.left > c.right

dir <- left

ELSE

dir <- right

subtract 1 to count of dir children

c <- c.dir

IF c != n

swap c and n

remove n

UPDATE_AUX(c)

ELSE

remove n

Using the two procedures described above, the topology of

the whole tree is constrained to remain balanced despite the

dynamic addition and removal of reactions.

2) Dynamic Dependency Graph: Since we want to sup-

port natively and efficiently the dependencies among multiple

compartments, we defined three contexts (also called scopes):

local, neighborhood and global. Each reaction has

an input context and an output context, meaning respectively

where data influencing the rate calculus is located and and

where the modifications are made.

The first issue to address is to evaluate if a reaction r1 may

influence another reaction r2, considering their contexts. We

introduced a boolean procedure mayInfluence(r1, r2)

which operates on two reactions and returns a true value if:

• r1 and r2 are on the same node OR

• r1’s output context is global OR

• r2’s input context is global OR

• r1’s output context is neighborhood and r2’s node

is in r1’s node neighbourhood OR

• r2’s input context is neighborhood and r1’s node is

in r2’s node neighbourhood OR

• r1’s output context and r2’s input context are both

neighborhood and the neighbourhoods of their nodes

have at least one common node.

Given this handy function, we can assert that a dependency

exists between the execution of a reaction r1 and another

reaction r2 if mayInfluence(r1,r2) is true and at least

a molecule whose concentration is modified by r1 is among

those influencing r2.

Adding a new reaction implies to verify its dependencies

against every reaction of the system. In case there is a

dependency, it must be added to the graph. Removing a

reaction r requires to delete all dependencies in which r is

involved both as influencing and influenced. Moreover, in case

of change of the system topology, a dependencies check among

reactions belonging to nodes with modified neighbourhood is

needed. It can be performed by scanning them, calculating

the dependencies with the reactions belonging to new neigh-

bours and deleting those with nodes which are no longer in

neighbourhood.

D. Engine architecture

The whole framework has been designed to be fully modular

and extensible. The whole engine or parts of it can be re-

implemented without touching anything in the model, and

on the other hand the model can be extended and modified

without messing with the engine. This modularity allows to

easily make some experiments with other engines, such as

Composition-Rejection.

The framework, called ALCHEMIST, was developed from

scratch using Java. Being performances a critical issue for a

simulator, we compared some common languages in order

to evaluate their performance level. Surprisingly, Java per-

formance are at same level of compiled languages such as

C/C++ [5], [23]. The Java language was consequently chosen

because of the excellent trade off among performances, easy

portability and maintainability of the code, plus the support

for concurrent programming at language level. The COLT Java

library [14] provided us the mathematical functions we needed.

In particular, it offers a fast and reliable random number

generation algorithm, the so called Mersenne Twister [18].
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Fig. 2. ALCHEMIST architecture. Elements drawn with continuous lines
indicates components common for every scenario and already developed,
those with dotted lines are extension-specific components which have to be
developed with the specific application in mind.

ALCHEMIST is still actively developed and currently consists

of 188 classes for a total of 16527 lines of code.

As shown in Figure 2, at the current status of development

the simulations are written in a specific XML language con-

taining a complete description of environment and reactions.

This code is interpreted in order to produce an instance of

an environment, once it is created, no further interpretation is

needed in order to run the simulation. This XML code is not

meant to be directly exploited by users, but it represents a way

to describe environments in a machine-friendly way and is a

formalisation of the generic model of ALCHEMIST. The idea

behind this choice is that ALCHEMIST is flexible enough to

be used in various contexts, each one requiring a personalised

language and a different instantiation of the model. It’s up to

the extensor to write a translation module from its personalised

language to the ALCHEMIST XML.

III. CASE STUDY

We propose a crowd steering scenario as a case study to

demonstrate the possibility to exploit eco-laws to lead people

in the desired location within a complex environment in short

time, avoiding obstacles such as crowded regions and without

global supervisioning.

Consider a museum with a set of rooms, whose floor is

covered with a network of computational devices (infrastruc-

ture nodes). These devices can exchange information with

each other based on proximity, sense the presence of visitors,

and hold information about expositions currently active in the

museum. Each room has four exits and they are connected

via external corridors. Visitors wandering the museum are

equipped with a hand-held device that holds the visitor’s pref-

erences. By interaction with infrastructure nodes, a visitor can

be guided towards rooms with a target matching their interest,

thanks to signs dynamically appearing on his smartphone. This

is done, using techniques suggested in the field of spatial

computing [30]—namely, computational gradients injected in

a source and diffusing around such that each node holds the

minimum distance from source.

A. A SAPERE model

The environment is made of infrastructure nodes. Smart-

phones are agents dynamically linked with the nearest sensors

– the neighbours are the sensors inside a certain radius r,

parameter of the model – from which they can retrieve data

in order to suggest visitors where to go. Visitors are agents

which tend to follow the advices of their hand-held device.

They can move of discrete steps inside the environment. It is

also defined a minimum possible distance between them, so

to model the physical limit and the fact that two visitors can’t

be in the same place at the same time.

In the SAPERE approach, all the information exchanged is

in form of LSAs, and the rules are expressed in form of eco-

laws. Although in the SAPERE framework LSAs are semantic

annotations, expressing information with same expressiveness

of standard frameworks like RDF, we here consider a simpli-

fied notation. Namely, an LSA is simply modelled as a tuple

〈v1, . . . , vn〉 (ordered sequence) of typed values, which could

be for example numbers, strings, structured types, or function

names.

There are three forms of LSAs used in this scenario:

〈source, id, type,Nmax, π, µ, type
′〉

〈field, id, type, value, π, µ, type′, tstamp〉
〈pre field, id, type, value, π, µ, type′, tstamp〉

A source LSA is used as a source with the goal of generating

a field: id labels the source so as to distinguish sources of the

same type; type indicates the type of fields (target is used

to advertise expositions, and crowd to diffuse information

about crowding); Nmax is the field’s maximum value; π and

µ are two functions used respectively to compute the new field

value once it has to be propagated or transformed according

to the value of another field of type type′—their purpose will

be described more in details later, along with eco-laws. A

field LSA is used for individual values in a gradient: value

indicates the individual value; the tstamp reflects the time of

creation of the LSA; the other parameters are like in the source

LSAs. A pre field LSA is used to diffuse the field before it

is influenced by the transformation rule.

An eco-law is a chemical-resembling reaction working over

patterns of LSAs. One such pattern P is basically an LSA

which may have some variable in place of one or more argu-

ments of a tuple, and an LSA L is matched to the pattern P if

there exists a substitution of variables which applied to P gives

L. An eco-law is hence of the kind P1, . . . , Pn
r
7−→ P ′

1
, . . . , P ′

m,

where: (i) the left-hand side (reagents) specifies patterns that

should match LSAs L1, . . . , Ln to be extracted from the LSA-

space; (ii) the right-hand side (products) specifies patterns

of LSAs which are accordingly to be inserted back in the

LSA-space (after applying substitutions found when extracting

reagents, as in standard logic-based rule approaches); and (iii)

DANILO PIANINI, SARA MONTAGNA, MIRKO VIROLI: A CHEMICAL INSPIRED SIMULATION FRAMEWORK FOR PERVASIVE SERVICES ECOSYSTEMS 671



〈source, id, type,Nmax, π, µ, type
′〉

rinit7−−−→ 〈source, id, type,Nmax, π, µ, type
′〉,

〈field, id, type,Nmax, π, µ, type
′,#T 〉

〈field, id, type,N, π, µ, type′, t〉
rdiff
7−−−→ 〈field, id, type,N, π, µ, type′, t〉,

+〈pre field, id, type, π(N,#D), π, µ, type′, t〉

〈pre field, id, type,N, π, µ, type′, t〉, 〈field, id′, type′,M, π′, µ′, T ype, t′〉 7−→ 〈field, id, type, µ(N,M), π, µ, type′, t〉,
〈field, id′, type′,M, π′, µ′, T ype, t′〉

〈field, id, type,N, π, µ, type′, t〉, 〈field, id, type,M, π, µ, type′, t′ + t〉 7−→ 〈field, id, type,M, π, µ, type′, t′ + t〉

〈field, id, type,N, π, µ, type′, t〉, 〈field, id, type,M, π, µ, type′, t〉 7−→ 〈field, id, type,max(M,N), π, µ, type′, t〉

〈field, id, type,N, π, µ, type′, t〉, 〈field, id′, type,N +M,π, µ, type′, t′〉 7−→ 〈field, id′, type,N +M,π, µ, type′, t′〉

Fig. 3. Eco laws describing the museum application.

rate r is a numerical positive value indicating the average

frequency at which the eco-law is to be fired—namely, we

model execution of the eco-law as a CTMC transition with

Markovian rate (average frequency) r. If no rate is given the

reaction is meant to be executed “as soon as possible”, which

means that the rate that associated with the reaction tends to

infinite. To allow interaction between different LSA-spaces, we

introduce the concept of remote pattern, written +P , which

is a pattern that will be matched with an LSA occurring in

a neighbouring LSA-space. In Figure 3, the eco-laws for our

case study are given.

As sources LSAs are injected in nodes, gradients are built

by the first three rules in Figure 3. The first eco-law, given a

source, initiates the field with its possible maximum value. The

second eco-law, when a node contains a field LSA, spreads a

pre field LSA to a neighbouring node picked up randomly

with a new value computed according to the propagation

function, π, which elaborates the distance between sensors –

indicated by the variable #D – and the actual value of the

field LSA. The third eco-law, when a node contains a pre field

LSA of type type and a field LSA of type type′ by which

the pre field depends, removes the pre field LSA and creates

a new field LSA with a value computed according to the

transformation function, µ, which elaborates the values N and

M of the two reactants. The purpose of this law is to model the

interactions between fields. For instance we may assume that

if there is a crowd which jams a region of the museum, that

path towards the target should have less probability of being

picked, so the value of the target field has to be reduced. As a

consequence of these laws, each node will carry a field LSA

indicating the topological distance from the source. The closest

is the field value to Nmax, the nearest is the field source. When

the spread values reach the minimum value 0, the gradient has

to become a plateau.

To address the dynamism of the scenario where people

move, targets being possibly shifted, and crowds forming

and dissolving, we introduced the following mechanism. We

expect that if a gradient source moves the diffused value has

to change according to the new position. This is the purpose

of the tstamp parameter which is used in the fourth eco-

law, continuously updating old values by more recent ones

(youngest eco-law). In this way we ensure that the system

is able to adapt to changes of the source states. Finally, the

spreading eco-law above may produce duplicate values in

locations, due to multiple sources of the same type (indicated

by different ids), multiple paths to a source, or even diffusion

of multiple LSAs over time. For this reason we introduced the

last two eco-laws. They retain only the maximum value, i.e.

the minimum distance, the former when there are two identical

LSAs with only a different value, the latter when the id is

different (shortest eco-laws).

Eco-laws in Figure 3 describe the behaviour of the museum

ecosystem in a chemical-oriented fashion, and are accordingly

modelled in the simulator as reactions.

People are modelled as agents. They move according to the

field value computed for their target probabilistically choosing

the neighbour with higher field value. The behaviour of visitors

is modelled as a reaction too, featuring a special action in

which the behaviour of the visitors is expressed.

The proposed architecture is intrinsically able to dynami-

cally adapt to unexpected events (like node failures, network

isolation, crowd formation, and so on) while maintaining its

functionality.

B. Simulator configuration and results

The behaviour of each node is programmed according to

the eco-laws coordination model explained in Figure 3. Each

node in the environment contains by default, for each type

in the system – target and crowd – , an LSA of the

form 〈field, id, type, 0, π, µ, type′, 0〉. The sources of the

gradients are injected by sensors when a target or a number

of persons is perceived, with the values

〈source, id, target, Tmax, πt, µt, crowd〉
〈source, id, crowd, Cmax, πc, µc, crowd〉

For the first kind of source we assume that we can have

different targets according to different preferences of users.

For the crowding source instead, we may assume that sensors

are calibrated so as to locally inject an LSA indicating the level
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Fig. 4. A simulation run of the reference exposition: three snapshots of the ALCHEMIST graphic reporting module with this simulation

of crowding, i.e. if the number of persons, and is periodically

updated by the sensors.

The propagation and transformation functions have the

following form:

πt = πc = Nt,c −#D

µt = Nt − k ∗Nc

µc = Nc

where Nt,c are the actual values of the two types of fields,

and k is a model parameter use to modulate the effect that

the crowd can have on the target field. Other parameters are:

Tmax = 1000, Cmax = 1. When µt, πt,c < 0, whe impose

them to be zero.

The reaction rates are identified by hand performing differ-

ent simulations with different parameters. The results reported

below are obtained with rinit = 1 and rdiff = 50. The other

laws show no rate because it is assumed to be infinite.

We here present simulations conducted over an exposition,

where nine rooms are connected via corridors. People can

express different preferences represented by their colour.

Four snapshots of a first simulation run are reported in

Figure 4. We here consider four different targets that are

located in the four rooms near environment angles. People

are initially spread randomly in the museum, as shown in the

first snapshot, and they eventually reach the room in which

the desired target is hosted, as shown in the last snapshot.

Figure 5 shows a simulation experimenting with the effect

of crowding in the movement of people. Two groups of people

– denoted with empty and full circles – with common interests

are initially located in two different rooms, as shown in the

first snapshot. The target for the dark visitors is located in the

central room of the second row, while the others’ is in the

right room of the second row. In the simulation, dark visitors

reach their target soon before it is nearer, though forming a

crowded area intersecting the shortest path towards the target

for the other visitors. Due to this jam the latter visitors choose

a different path that is longer but less crowded.

IV. CONCLUSION

In the SAPERE metaphor, the ideal level of abstraction

to reach in order to easily and correctly model and simulate

pervasive systems requires both the rich environment of ABM

and the native CTMC model support of biochemistry-oriented

stochastic simulators. In this work we shown the ALCHEMIST

simulation framework, meant to fully support this way to think

pervasive systems. This framework embraces the SAPERE

vision and allows to approach the simulation of agent systems

in a new flavour, describing the system in terms of reaction-

like laws and having consequently the possibility to rely on all

the work already made about CTMC. We shown a case study

whose complexity overcomes the expressiveness possibility of

classical biochemistry-oriented simulation frameworks, and we

analysed it exploiting the same CTMC mathematical support.

Perspectives for the immediate future include a deeper analysis

of performance for the proposed case study, tuning parameters

so as to identify the most proper extent to which a crowd

should influence movement of people. Then we mean to

compare performance and expressiveness with respect to ABM

simulation frameworks, such as Repast and NetLogo. Finally,

we shall analyse, model and simulate further scenarios, with

different types of complexity so as to stress the potentialities

of ALCHEMIST.
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