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Abstract—In this paper, a novel meta-heuristics algorithm, 

namely the Firefly Algorithm (FA), is applied to PID controller 

parameter tuning in Smith Predictor. The controller is used to 

control feed rate and to maintain glucose concentration at the 

desired set point for an E. coli fed-batch cultivation process. The 

FA adjustments are done based on several pre-tests. Simulation 

results indicate that the applied FA is effective and efficient. 

Good closed-loop system performance is achieved on the basis of 

the considered PID controllers tuning procedures. Moreover, the 

observed results are compared to the ones obtained by applying 

Genetic algorithms. The comparison of both meta-heuristics 

shows superior performance for FA PID controller tuning of the 

considered nonlinear control system than GA tuned controller. 

 

Keywords—meta-heuristics, firefly algorithm, genetic 

algorithm, E. coli cultivation process, PID controller, parameter 

tuning. 

I. INTRODUCTION 

ULTIVATION of recombinant micro-organisms, e.g. E. coli, 

in many cases is the only economical way to produce 

pharmaceutic biochemicals such as interleukins, insulin, 

interferons, enzymes and growth factors. To maximize the 

volumetric productivities of bacterial cultures, it is important 

to grow E. coli to high cell concentration. Among the different 

modes of operation, (batch, fed-batch and continuous), fed-

batch operation is the most often used one in industry. Since 

both nutrient overfeeding and underfeeding is detrimental to 

cell growth and product formation, development of a suitable 

feeding strategy control is critical in fed-batch cultivation. The 

control strategy for substrate feed rate can be summarized in 

three groups: open (feedforward), closed-loop (feedback) 

control and mixed (feedforward-feedback). In feedback 

control of industrial cultivation processes, the proportional-

integral-derivative (PID) controller is widely used [1, 2]. 

Usually the PID controller is poorly tuned due to highly 

changing dynamics of most bioprocesses caused by the 

nonlinear growth of the cells and the changes in the overall 

metabolism. The tuning procedure is a significant challenge 

for the conventional optimization methods. As an alternative, 

meta-heuristics could be applied [3-5]. 

During the last decade, a broad class of meta-heuristics has 

been developed and applied to a variety of areas. Algorithms 

like genetic algorithms and evolution strategies, ant colony 

optimization, artificial bee colony optimization, bacterial 

foraging algorithms, particle swarm optimization, tabu search, 

simulated annealing, multi-start and iterated local search are – 

among others – often listed as examples of classical meta-

heuristics, and they have individual historical backgrounds 

and follow different paradigms and philosophies [6-9]. 

In the literature, there are results showing different 

strategies based on meta-heuristic algorithms for the optimal 

tuning of PID controllers. Results about application of 

simulated annealing and tabu search tuning considering linear 

systems are presented in [5, 10-14]. The properties of genetic 

algorithms (GA) result in increased use of this technique for 

tuning of PID controllers [3-4, 15-17]. Actually, there is a lack 

of results about using meta-heuristic algorithms for bioprocess 

control design, considering non-linear systems. 
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Recently, a new meta-heuristics called Firefly Algorithm 

(FA) has emerged. This algorithm was proposed by Xin-She 

Yang [18]. According to recent bibliography, the FA is very 

efficient and can outperform other meta-heuristics, such as 

genetic algorithms, in solving many optimization problems 

[18-21]. Although the FA has many similarities with other 

swarm intelligence based algorithms it is indeed much simpler 

in concept and implementation [20-21]. Based on bibliography 

results, it is evident that the FA is a powerful novel 

population-based method for solving optimization problems 

[22-25]. 

This paper aims to introduce for the first time an application 

of the FA specified to solve PID controller parameter tuning. 

An optimization algorithm based on FA is proposed for 

parameter tuning of the PID Controller for glucose 

concentration control of a nonlinear E. coli fed-batch 

cultivation process.  

II. PROBLEM FORMULATION 

A modified Smith Predictor (SP) structure, proposed in 

[14], based on a nonlinear plant model is used here. When the 

object is characterized with a significant time delay, the 

conventional PID controller can not ensure the control system 

performance. A tool approved in the practice for time delay 

compensation is the SP [26]. In this predictor scheme, the 

mathematical model of the process is implemented in an 

internal feedback loop around a conventional controller. The 

major advantage of the SP is that delay issues can be ignored 

when designing the controller [27]. 

The structure of the control system is shown in Fig. 1. In the 

conventional case of SP, only the plant output is used to form 

the inner feedback. In this case, a universal PID controller is 

used to form the feedback term of control signal [14]. In 

addition, the process variables predicted by a nonlinear model 

are used to form the feedforward term of the control signal. 

This term is utilized to hold the nonlinear plant at the actual 

equilibrium point. 

The block labeled “Nonlinear process model” predicts the 
non-delayed model output by equations: 
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Figure 1.  Structure of the control system  
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where: Xm is the evaluated by model concentration of biomass, 

[g l
-1

]; Sm is delayed concentration of substrate (glucose) 

evaluated by model, [g l
-1

]; F is feed rate, [l h
-1

]; Sin is 

substrate concentration of the feeding solution, [g l
-1

]; Vm is 

evaluated by model bioreactor volume, [l]; maxm
 is model 

maximum growth rate, [h
-1

]; kS is saturation constant, [g l
-1

]; 

YS/X is yield coefficient, [-]; SCORm is non-delayed 

concentration of substrate predicted by model, [g l
-1

]; 
X

 is 

biomass concentration process noise, [g l
-1

]; 
S

 is substrate 

concentration process noise, [g l
-1

]; 
max

 is the maximum 

growth rate process noise, [h
-1

]; ( )t  is measurement noise, 

[g l
-1

]. Here maxm
= 0.5 h

-1
. 

The PID controller algorithm is described as follows: 

 * ,

1

fb p CORm

p d

CORm

di

u s K be s S s

K T s
e s ce s S s

T sT

N

 (6) 

where: fbu s  is the feedback term of control variable, [l h
-1

]; 

r s  is a reference signal, [g l
-1

]; Kp is proportional gain, [-]; 

Ti is integral time, [h] Td is derivative time, [h]; b, c are set-

point weight coefficients, [-]; Td /N is low-pass first order filter 

of D-term time-constant, [h]. 

For the E. coli MC4110 cultivation considered here, the 

process desired set-point (reference signal) is set at  

SPS  = 0.1 g l
-1

 glucose concentration [28].  

Considering real applications, usually a digital PID controller 

is implemented. Here, for discretization of the PID controller 

(Eq. (6)), the backward Euler method
 
[10] is used. The 

mathematical description of the designed digital PID 

controller is: 

 fb p i du k u k u k u k , (7) 
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The control variable used to control the feed rate is: 

 fb ffF k u k u k , (11) 

where 

 
/

1 m m m

ff

S X in CORm

V k k X k
u k

Y S S
 (12) 

is a feedforward term obtained from the steady state 

conditions.  

Finally, the real control variable has the following form: 

 
realreal fb ffF k u k u k , (13) 

where 

 .
real real real realfb p i du k u k u k u k  (14) 

The variables 
realpu k , 

realiu k  and 
realdu k  are formed 

using Eqs. (8) – (10). The error is me s r s e s  [14]. 

To provide control action designed for specific process 

requirements, tuning of the PID controller parameters is 

required. The controller parameters are Kp, Ti, Td, b, c, Td /N. 

III. FIREFLY ALGORITHM 

The Firefly Algorithm is a new meta-heuristic algorithm 

which is inspired from flashing light behaviour of fireflies in 

nature. The pattern of flashes is often unique for a particular 

species of fireflies. The two basic functions of such flashes are 

to attract mating partners or communicate with them, and to 

attract potential victim. Additionally, flashing may also serve 

as a protective warning mechanism.  

Based on the three idealized rules [18-21], the basic steps of 

the FA can be summarized as the pseudo code (Fig. 2). 

In this algorithm, each firefly has a location x = (x1, ..., 

xd)T in a d-dimensional space and light intensity I(x) or 

attractiveness β(x), which are proportional to an objective 

function f(x). Attractiveness β(x) and light intensity I(x) are 

relative and these should be judged by the rest fireflies. Thus, 

attractiveness will vary with the distance ri,j between firefly i 

and firefly j. So, attractiveness ȕ of a firefly can be defined by 

Eq. (15) [18-21]: 

 0( ) e
mrr , m ≥ 1, (15) 

where r or ri,j is the distance between the i-th and j-th of two 

fireflies. ȕ0 is the initial attractiveness at r = 0 and Ȗ is a fixed 

light absorption coefficient that controls the decrease of the 

light intensity. In the herewith applied FA, m = 2. 
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Figure 2.  Pseudo code of FA 

The initial solution is generated based on: 

 xj =  rand(Ub − Lb) +Lb, (16) 

where rand is a random number generator uniformly 

distributed in the space [0, 1]; Ub and Lb are the upper range 

and lower range of the j-th firefly, respectively. 

When firefly i is attracted to another more attractive firefly 

j, its movement is determined by: 

 
2
,

1 0

1
e ( ) ( )

2

i jr

i i i jx x x x rand , (17) 

where the first term is the current position of a firefly, the 

second term is used for considering a firefly's attractiveness to 

light intensity seen by adjacent fireflies ȕ(r) (Eq. (15)), and the 

third term is used to describe the random movement of a 

firefly in case there are no brighter ones. The coefficient α is a 

randomization parameter determined by the problem of 

interest. The distance ri,j between any two fireflies i and j at xi 

and xj, respectively, is defined as a Cartesian or Euclidean 

distance, according to [18-21]: 

 
2

, , ,

1

( )

d

i j i j i k j k

k

r x x x x , (18) 

where xi,k is the k-th component of the spatial coordinate xi of 

the i-th firefly.  

 

IV. RESULTS AND DISCUSSION 

A series of tuning procedures for the considered control 

system using FA are performed. Computer specifications to 

run all optimization procedures are Intel® Core™i5-2320 

CPU @ 3.00GHz, 8 GB Memory (RAM), Windows 7 (64bit) 

operating system.  

The parameters of the FA are tuned based on several pre-

tests according to the problem considered here. After tuning 

procedures, the main FA parameters are set to the optimal 

settings:  ȕ0 = 1, Ȗ = 1, α = 0.2, number of fireflies = 25, 

number of iterations = 50. 

Because of the stochastic characteristics of the applied 

algorithms, a series of 30 runs for each algorithm are 

performed and the best results are presented. 

To evaluate the significance of the tuning procedure and 

controller performance the integrated square error (IISE) 

criterion is used: 

 
2

0

d

T

ISEI e t t , (19) 

where t is time, h; T is end time of the cultivation, h. 

A. Case I: Tuning of controller parameters Kp, Ti and Td 

In this case the tuning of the three controller parameters is 

considered. The coefficients b, c and N are set to the following 

values [14]: b = 1, c = 1 and N = 30. The range of the tuning 

parameters is considered, as follows: Kp  [0, 2], Ti  [0, 2], 

Td  [0, 0.1].  

For comparison of FA and GA, a series of tuning 

procedures for the considered control system using GA are 

performed, too. For realistic comparison, the GA is run for the 

same number of function evaluations, namely 1250. The GA 

parameters are: the number of generations is set at 50; the 

number of individuals is set at 25; a roulette wheel mechanism 

is employed; double point crossover with crossover 

probability of 0.7 is accepted; mutation with low probability in 

the range 0.01 is randomly applied; a generation gap of 0.97 is 

chosen, and fitness-based reinsertion is used. 

As a result of the FA and GA tuning, the optimal PID 

controllers settings are obtained. The numerical values of the 

controllers parameters, objective functions values, total 

computational times and number of functions evaluations are 

presented in Table I. In this case, it is observed that FA shows 

identical performance to GA performance with respect to 

computational time and obtained objective function values. 

The two meta-heuristics solve the tuning problem with the 

same quality – IISE = 16.86.  

begin 

Define 

light absorption coefficient Ȗ 
initial attractiveness ȕ0 
randomization parameter α 
objective function f(x), where 

x = (x1, ..., xd)
T
 

Generate initial population of fireflies 

xi (i = 1, 2, ..., n) 

Determine light intensity Ii at xi via f(xi) 

while (t < MaxGeneration) do 

for i = 1 : n all n fireflies do 

for j = 1 : i all n fireflies do 

if (Ij > Ii) then 

Move firefly i towards j 

based on Eq. (7) 

end if 

Attractiveness varies with 

distance r via exp[−Ȗr2] 
Evaluate new solutions and 

update light intensity 

end for j 

end for i 

Rank the fireflies and find 

the current best 

end while 

Postprocess results and visualization 

end begin 
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TABLE I 

CASE I: RESULTS FROM PID CONTROLLER TUNING 

Parameter 
Obtained best values 

FA GA 

Kp 0.4927 0.5450 

Ti 0.4629 0.5917 

Td 0.0030 0.0031 

IISE 16.8625 16.8653 

total time, s 165.5401 170.0924 

NFE 1250 1250 

 

In the next figures, some graphical results of the control 

system performance for E. coli fed-batch cultivation process 

are presented. As it can be seen from Fig. 3, up to 15 h 

controllers show identical performance – the resulting errors 

between control variable and reference signal (IISE) are 

identical. After 15 h, both controllers fail to keep the substrate 

concentration to set point of 0.1 g l
-1

. However, GA tuned PID 

controller accumulates bigger error in the end of the process 

compared to the FA tuned PID controller (Fig. 3, solid line). 

Resulting profiles of the control variable are shown on Fig. 4. 
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Figure 3.  IISE during the time (Case I) 

Although the observed objective function values of the two 

meta-heuristics are very close, the FA tuned PID controller 

shows better performance than the GA tuned one. Further, FA 

is compared to the GA for a more complex case – six PID 

controller parameters tuning. 
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Figure 4.  Control variable - glucose concentration (Case I) 

In Fig. 5, the resulting control signal (feed rate profile) is 

shown.  

B. Case II: Tuning of controller parameters Kp, Ti, Td, b, c 

and N 

The range of the tuning parameters is considered as follows: 

Kp  [0, 2], Ti  [0, 2], Td  [0, 0.1], b, c  [0, 5],  

N  [0, 50]. The obtained numerical values of the FA and GA 

controllers' parameters, objective functions values, total 

computational times and number of functions evaluations are 

presented in Table II.  
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Figure 5.  Control signal – feed rate profiles (Case I) 
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TABLE II 

CASE II: RESULTS FROM PID CONTROLLER TUNING 

Parameter 
Obtained best values 

FA GA 

Kp 0.3031 0.5227 

Ti 0.4912 0.1983 

Td 0.0034 0.0061 

b 0.0986 1.0365 

c 1.6207 0.9764 

N 19.9520 1.2357 

IISE 16.8410 16.8706 

total time, s 178.7211 185.8908 

NFE 1250 1250 

 

In this case, the FA tuned PID controller has superior 

performance compared to the GA tuned controller. For the 

same number of function evaluations, the FA reached better 

values for IISE compared to GA. In Fig. 6 and Fig. 7, the 

control variable (substrate concentration) and observed 

objective function are presented. 

As a result of FA tuning procedure, a set of optimal PID 

controller parameters is obtained. Thus, for a short time, the 

controller sets the control variable and maintains it at the 

desired set point (0.1 g l
-1

) to the end of fed-batch cultivation 

process. GA tuned PID controller fails in the last 1 hour of the 

cultivation. The results imply that the FA is potentially more 

powerful in solving optimization problem considered here. 
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Figure 6.  Control variable - glucose concentration (Case II) 
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Figure 7.  IISE during the time (Case II) 

The resulting control signal is shown in Fig. 8. 
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Figure 8.  Control signal – feed rate profiles (Case II) 

V. CONCLUSIONS 

The paper presents optimal tuning of PID controller, using 

the recently developed FA. The controller is used to control 

feed rate and to maintain glucose concentration at the desired 

set point for an E. coli fed-batch cultivation process.  

The mathematical model of the cultivation process is 

represented by the dynamic mass balance equations for main 

process variables – biomass and substrate concentration.  

A series of tuning procedures for PID controllers tuning, 

using FA, are performed. The FA parameters are problem-

oriented and specifically chosen to achieve an adequate and 

accurate decision. It is demonstrated that the FA provides 

simple, efficient and accurate approach of tuning the Smith 

Predictor structure based on PID controller. As a result, a set 

of optimal PID controller parameters is obtained. For a short 

time, the controllers set the control variable and maintain it at 

the desired set-point during the cultivation process. Thus, a 

good closed-loop system performance is achieved.  

In order to compare the obtained results with another meta-

heuristic algorithm, a series of tuning procedures using GA are 

performed, too. Based on the comparison, it could be 

concluded that FA, shows superior performance for PID 
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controller parameter tuning of the considered nonlinear control 

system. 

Finally, it is shown that the PID controller tuning using FA 

can be considered as an effective approach for the 

achievement of high quality and better performance of the 

designed control system for cultivation processes. 
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