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Abstract—This paper examines the possibility of detecting 2
conditions which cause vision to deteriorate: Aged-Related Mac-
ular Degeneration (AMD), and the effects of aging on eyes using
the features of PLR waveforms. These features were extracted
using Fourier descriptors of PLR waveform shapes, weighted
amplitudes of the waveforms, and a balanced combination of
these two in the from of a weighted value. The Random Forest
method was used for classification analysis to detect three types of
PLR, such as in healthy eyes, in AMD-affected eyes, and in age-
affected eyes. The optimized weight values were evaluated using
a classification error rate. The results show that the error rates
for healthy PLRs and AMD PLRs were low, but the error rates
for PLRs of age-affected eyes stayed at a high level. Additionally,
dissimilarities between the PLRs for blue light and red light at
low intensities contributed to the performance of the classification
technique.

Index Terms—Pupil Light Reflex; Age-Related Macular Degen-
eration; Waveform shape; Fourier Descriptors; Random Forests

I. INTRODUCTION

THE pupil light reflex (PLR) to chromatic stimuli has

been analyzed since the discovery of the melanopsin-

associated photoreceptive system (intrinsically photosensitive

retinal ganglion cell pRGCs) in the human retina [2]. In

particular, the difference between the response behavior of

this photoreceptive system and that of the conventional rod-

cone system has been compared [1], [3]. The differences in

the PLR waveforms caused by the sensitivity and activity of

these cells provides the possibility of proposing a diagnostic

procedure for clinical examination of the retina [4], [15]. It

is supposed that retinal diseases such as Age-related Macular

Degeneration (AMD) [13] and the effects of aging on eyes,

or age-affected eyes influence PLR waveforms, and that an

evaluation procedure may be developed to detect the resulting

irregular responses [10].

The procedure employs Multi Dimensional Scaling (MDS)

techniques [12], [14] to classify individual differences in PLRs

[9]. The features of PLR waveform shapes are extracted using

the Fourier descriptor technique [11], [16], [17]. Addition-

ally, a detection procedure for AMD patients using feature

differences between left and right pupil responses has been

proposed, as in most cases only one eye has the disease.

However, this procedure can not be used in cases where both

eyes are diseased.

In this paper, feature expressions of PLRs are modified to

identify pupil characteristics, by considering the degree of

amplitude of the PLR. Also, a classification technique has been

introduced to detect AMD affected eyes using the Random

Forest method [5].

II. METHOD

A. Subjects

In this experiment, 7 healthy young subjects (20–21 years

old) and 6 elderly AMD-affected patients (59–86 years old)

participated. Each elderly patient had a diseased eye and a

healthy eye. Diseased eyes with choroidal neovascularization

(CNV) in the macular region are often affected by new blood

vessels, which bleed and form dense macular scars [13]. Also,

CNV is a major cause of visual loss due to AMD [13].

All subjects participated in this experiment voluntarily, and

agreed to the experimental procedure before it commenced.

B. Experimental procedure

Pupil responses were measured using the PLR observa-

tion procedure, to determine the level of functionality of

the melanopsin-associated photo-receptors [4], [15]. In the

experiment, a long wavelength (635nm bandwidth) red light

and a short wavelength (470nm bandwidth) blue light were

used at 2 different light intensities (10 cd/m2 and 100 cd/m2).

Pupil responses were recorded using Hamamatsu Iriscorder

Dual equipment at a sampling rate of 30 Hz. The observation

period consisted of a 10 second light pulse which caused a

restriction of the pupil size, followed by 10 seconds without

a light pulse during which restoration of the pupil size was

allowed to occur. The light pulses were projected within the
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Fig. 1. PLR of both eyes of a healthy subject.
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Fig. 2. PLR of a diseased eye.

housing of a pair of goggles. The measurements were taken in

a darkened room, after a 5 minute darkness adaptation period.

Responses for both left and right pupils were recorded for each

subject. In this paper, the four conditions for the left (L) and

right (R) eyes are defined as follows: r10 (long wavelength &

low light intensity), r100 (long & high intensity), b10 (short

wavelength & low intensity), and b100 (short wavelength &

high intensity). The pupil responses for a healthy subject are

illustrated in Figure 1, and the pupil responses for a patient

with AMD-affected are illustrated in Figure 2.

C. Extraction of waveform features

The features for PLR waveforms can be noted using the

Fourier Discrete Transform (DFT) [8], [9].

x(n) = a0 +

N/2
∑

k=1

(a(k)cos(2πk
t(n)

N∆
)

+ b(k)sin(2πk
t(n)

N∆
)) (1)

The PLR waveforms can be represented using coefficients

a0, a(k) and b(k) with periodical sine and cosine functions.

The magnitude of a(k) and b(k) is noted as FD, and given as

FDi(i = 0, . . . , N/2−1). The feature vector of the waveform

shape can be defined using FD. This method of presentation

is known as a Fourier Descriptor [11], [16], [17].

In general, the component FD0, a0 in the equation shows

the DC component of the signal, corresponding to the signal

amplitude. The remaining components of FD describe the

shape of the waveform. The components are affected by

individual factors, so that a standardized feature using FD1

as a vector is preferred [17].

It is suggested that low-order values of 4 or 5 FDs can

represent the characteristics of waveform shapes [11], thus 4

components are extracted as feature vectors (f ). For example,

feature vectors for the left eye of the healthy subject in Figure

1 can be noted as follows:

fr10 L = [0.61, 0.34, 0.28, 0.36]

fr100 L = [0.68, 0.52, 0.40, 0.36]

fb10 L = [0.68, 0.47, 0.48, 0.33]

fb100 L = [0.64, 0.43, 0.33, 0.30]

D. Feature modification

In a comparison of the two sets of waveforms in Figures 1

and 2, the amplitudes of the waveforms are different between

healthy and AMD affected subjects. The features are generated

from waveform shapes which exclude the DC component,

though the amplitude of the waveform has not been sufficiently

considered as a feature. To include FD0 components with

features, the FD0 values were standardized using the mean

for each eye. In case of the left eye of the healthy subject

in Figure 1, the FD0
′ of the standardized FD0 is noted as

follows:

[FD0:r10 L
′FD0:r100 L

′FD0:b10 L
′FD0:b100 L

′]

= [0.65, 0.95, 1.16, 1.25]

Combined vector f ′ can be noted using coefficient w.

f ′ = [
FD2

FD1

,
FD3

FD1

, . . . ,
FD5

FD1

, wFD0
′]

Here, w is a coefficient used as a weighted value to create

a balance between features of waveform shapes and standard-

ized FD0 (FD0
′). The performance of the classification is

evaluated in response to w.
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Fig. 3. Two-class classification error rate across w values.
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Fig. 4. Three-class classification error rate across w values.

TABLE I
CONTINGENCY TABLE FOR TWO-CLASSES

D H Err.

AMD (D:N=6) 5 1 0.17
Healthy (H:N=20) 0.1 19.9 0.005

(FD0

′
w = 1.5)

TABLE II
CONTINGENCY TABLE FOR THREE-CLASSES

D A H Err.

AMD (D:N=6) 5 0 1 0.17
Aged (A:N=6) 0.9 2.9 2.2 0.52

Healthy (H:N=14) 0 0.9 13.1 0.06

(FD0

′
w = 1.5)

E. Classification procedure

In this paper, the number of subjects is small, and the

number of trials for taking measurements is limited because

the experimental stimuli influences the response. The Random

Forest method [5], which uses an ensemble learning procedure

to analyze the classification of the small samples, is frequently

used. Also, the Random Forest method can show contributions

of features and can conduct cross validation calculations. Since

the structure of the feature data set is not clear, the results from

the Random Forest method may provide useful information to

improve the detection procedure. The statistical package R

and the “RandomForest” package [6], [7] was used for this

analysis.

The number of decision trees was set at 500 as a default

value, and the sample size was set at 6. The total number of

samples was 26 (2× (6 + 7)). One third of the samples were

assigned as test data, and the rest of data was assigned as

OOB (Out of Bag) training data. The selection of the data

set was initially random. This selection was performed 10

times in order to calculate the generalized performance of the

data throughout all conditions. The performance was evaluated

according to the value of w, as follows:

w = [0, 0.3, 0.5, 1.0, 1.5, 2.0, 3.0,∞]

Here, ∞ means a case using only FD0
′.

Classification of the modified set of features into 2-classes:

Healthy (H) and AMD (D), or into 3-classes: Healthy (H),

AMD (D) and age-affected eyes (A) was conducted using the

RF technique.

According to the preliminary analysis, the performance was

low when the feature set of equation (1) was used. Next,

Euclidean distances among the four conditions were analyzed

in the same way as in the previous assessment [10].

Here, an Euclidean distance matrix is shown as EdHealthy L

for the example of the healthy subject, and the distance feature

is noted as FE.

EdHealthy L =













r10 r100 b10 b100
r10 0 0.37 0.57 0.62
r100 0.37 0 0.24 0.33
b10 0.57 0.24 0 0.18
b100 0.62 0.33 0.18 0













FE = [r10 − r100, r10− b10, r10− b100,

r100− b10, r100− b100, b10− b100]

FEHealthy L = [0.37, 0.57, 0.62, 0.24, 0.33, 0.18]
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Fig. 5. Error rates for classification of each class.
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Fig. 6. Comparison of contribution values across features (w=1.5).

III. RESULTS

A. 2-class performance

For two-class classification of PLRs of Healthy (H) and

AMD-affected (D) eyes, 10 times calculations were conducted

using w values. Mean error rates of classification are summa-

rized in Figure 3. The horizontal axis shows weight w, and the

vertical axis shows the error rate. The error bar in the figure

shows the standard deviation (STD). The minimum error rate

appears at w = 1.5. In the case of w = 0.5 or only FD0
′, the

error rates are high.

The estimation performance for w = 1.5 is summarized as

a contingency table in Table I. The table shows that healthy

eyes can almost always be correctly classified, but the error

rate of classification for AMD-affected eyes is low, at 17%.

B. 3-class performance

Three class classification of PLRs of Healthy (H), AMD-

affected (D) and age-affected (A) eyes, 10 times calculations

were conducted using w values. Mean error rates across w
values are summarized in Figure 4 using the same format as

in Figure 3. Error bars in the figure show the STD of all 10

results. The minimum error rate also appears when w = 1.5,

while the rate changes with the w values.

The results for 3 classes are summarized as a contingency

table in Table II, as mean rates for all 10 results. According to

the results, healthy eyes are almost always correctly classified,

while the error rate for AMD-affected eyes is low again, at

17%. The performance for age-affected eyes is not good, as the

error rate is over 50%. The age-affected eyes class may include

eyes which respond in the same manner as eyes of young

people or eyes whose condition is similar to AMD affected

eyes. Therefore, further observation of the condition of the

subject’s eyes may be required.

The error rates for the three classes are summarized in

Figure 5. The rates of both Healthy and AMD-affected eyes

are almost always small, and the minimum rate appears at

w = 1.5. The rates for age-affected eyes are relatively higher

than the ones for the other two classes.

C. Contributing features for estimations

According to the classification results in the previous sec-

tion, pupils can be classified accurately using features of PLR

waveforms, except for the performance of age-affected eyes.

The next question was which components of features make

it possible to classify PLRs. After that, the contributions of

features were evaluated using the Random Forest tool. The

degrees of contribution for each feature are summarized in

Figure 6. The figure suggests that Euclidean distances are

dissimilar between PLRs for blue light and PLRs for red

light at low intensities such as r10 − b100 or r10− b10, and

denote the level of performance. Also, color differences at

high intensities in PLRs such as r100 − b100, or amplitudes

of FD0
′ present the ability to distinguish the type of pupil.

These results coincide with the visual differences in PLRs

between healthy and AMD-affected patients.

D. Clustered PLRs

The similarities of the features of waveform shapes in PLRs

are also identified using the Random Forest procedure, then

cluster analysis of these distances is conducted using the Ward

method. Figure 7 shows a resulting dendrogram of the clusters

of PLR features with w = 1.5 as the optimized value. In this

figure, all subjects and eyes are indicated as Healthy/Patient

and Left/Right or Normal/Diseased.

As the figure shows, the upper cluster displays a group of

healthy subjects except for one a patient with age-affected

eyes. A sub-cluster consists of both eyes of most subjects. The

lower clusters consist of patients with age-affected eyes in the

upper part and patients with AMD-affected eyes in the lower

part. Some healthy subjects and some patients with AMD-

affected eyes have been incorrectly classified into these groups.

These occurrences have been explained in the above section

where performance was classified.
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Fig. 7. Results of clustering of PLRs of all subjects (w=1.5).

To improve the performance of the test, responses should be

opthalmologically diagnosed. For the classification procedures,

many different data mining tools have been developed, so a

more effective procedure should be devised. The characteris-

tics of features of pupillary response waveform shapes which

result from using the Random Forest method. They will be a

subject of our further study.

IV. CONCLUSION

This paper determined the possibility of detecting AMD-

affected eyes and age-affected eyes using features of PLR

waveforms. These features consist of Fourier descriptors of

PLR waveform shapes and their amplitudes, and a balanced

combination of these two was controlled using weighted

values. The Random Forest method of classification analysis

of the PLR waveform feature dissimilarities was conducted

across the four types of stimuli. The weighted values were

optimized using variations of the classification error rate.

In the results, the error rates for healthy pupils and AMD-

affected pupils were low when the value of the coefficient was

optimized as 1.5. However, the error rates for patients with

age-affected eyes was high. The contributions of the compo-

nents of these features were evaluated, and the differences

between PLRs for blue light and PLRs for red light at low

intensities strongly contributed to the classification.

Pupils of patients with age-affected eyes were influenced

by various factors, so it may not be easy to classify healthy

and AMD-affected patients in these cases. Additional feature

processing may be required. This will be a subject of our

further study in the near future.
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