
Using structured grammar domain models

to capture software system essence

Micha l Śmia lek, Albert Ambroziewicz, Wiktor Nowakowski, Tomasz Straszak and Jacek Bojarski
Warsaw University of Technology

Warsaw, Poland
Email: smialek@iem.pw.edu.pl

Abstract—Creation of a precise domain vocabulary is
crucial for capturing the essence of any software system,
either when recovering knowledge from a legacy system
or when formulating requirements for a new one. Soft-
ware specifications usually maintain noun notions and
include them in central vocabularies. Verb or adjec-
tive phrases are easily forgotten and their definitions
buried inside imprecise paragraphs of text. This paper
proposes a model-based language for comprehensive
treatment of domain knowledge, expressed through
constrained natural language phrases that are grouped
by nouns and include verbs, adjectives and preposi-
tions. In this language, vocabularies can be formulated
to describe behavioural, declarative and conditional
characteristics of a given problem domain. What is im-
portant, these characteristics can be used (linked) from
within other specifications similarly to a wiki. In par-
ticular, the application logic can be formulated through
sequences of imperative Subject-Predicate sentences
containing only links to the phrases in the vocabulary.
The paper presents initial tooling framework to capture
application logic specifications and make them available
for further automated transformations.

I. Introduction and related work

A
S POINTED out by Brooks back in the eighties
[1], software systems possess essential (inherent) and

accidental (technological) complexity. The essential com-
plexity cannot be removed without reducing the problem
at hand. In order to understand any software system
we thus need to “extract” this essential complexity and
make it clearly visible. This is especially important when
modernising the existing systems. We normally would like
to remove all the code, related to the old technology
and retain just the problem-related essence. Then, we
could transfer this essence (after possible improvement and
extension) into a new technology.

An important attempt to enable capturing essential
knowledge about software systems is the Knowledge Dis-
covery Metamodel (KDM), as explained by Pérez-Castillo
et al. [2]. Unfortunately, KDM operates mainly at quite
low levels of abstraction, concentrating e.g. on defining a
metamodel for abstract syntax trees capturing the code
structure of the system. It also contains structures to
represent conceptual-level artifacts but this part of the
standard is very roughly defined. Moreover, it can be
argued that capturing the detailed internal structure does
not reduce the accidental complexity associated with the

“twisted” internals of a legacy system. We need means to
capture the essence of the system’s logic and not e.g. the
detailed code breakdown structure as implemented in the
legacy system.

By contrast, a very comprehensive approach to captur-
ing essential knowledge (Domain Driven Development -
DDD) was proposed by Evans [3]. He postulates organising
software development around rigorously defined domain
models. These models capture the domain logic of the
system at a high level of abstraction. At the same time,
the domain logic is the foundational basis to specify the
application logic describing the observable interaction of
the users with the system (called “workflow logic” by
Fowler [4]). This approach was even strengthened in rigour
by Bjôrner [5] who advocates mathematical precision in
domain engineering. He identifies serious flaws in system
specification whenever domain specifications are treated
without enough care.

Domain engineering is thus argued as an important
element in capturing the essential complexity. Unfortu-
nately, it is normally treated as a second-class citizen
in specifying systems. It is equated with a more-or-less
complete list of noun-related domain elements with their
definitions, placed somewhere close to the end of the
overall specification (be it requirements, design or business
description) and soon forgotten. Worse still, in many cases
the vocabulary is in fact buried in text throughout the
whole specification. All the definitions of domain notions
are scattered everywhere leading in many places to contra-
dictions (e.g. different definitions of the same term). This
all calls for a tooling framework where the various domain
notions could be used consistently through referring to a
central vocabulary, as postulated by Śmia lek et al. [6].

The tooling for DDD has been developed in the context
of the Romulus project (see work by Iglesias et al. [7]).
However, the domain models in Romulus are at the level
of design models rather than pure domain descriptions. A
domain-driven approach was also taken by the creators of
the Requirements Specification Language (RSL [8]) within
the ReDSeeDS project (www.redseeds.eu). The domain
models in this language rely heavily on verbs used within
requirements specifications. This is also similar to knowl-
edge engineering approaches like the one described by
Chan [9] and also pure ontology languages like RDF [10].

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1349–1356

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 1349

In effect, we result with a constrained language with em-
bedded semantics, capable of representing domains along
the proposition by Evermann and Wand [11]. Moreover,
the language introduces a very strict relation between the
domain logic (expressed through verbs associated with
nouns) and the application logic.

In the current work we use RSL to enable capturing
the essential complexity at the level of application logic of
either existing or new systems. This kind of“essential com-
plexity” is meant as sequences of user-system and system-
system/user interactions defining the observable system
behavior. We propose to capture it through constrained-
natural-language sentences that refer (hyperlink) directly
to a domain model based on nouns, verbs and other parts
of speech. Similar usage of hyperlinks was proposed by
Kaindl [12], but such a comprehensive treatment with an
extensive tooling environment is not found in the litera-
ture according to our best knowledge. What is more, we
propose a method for capturing and migrating the essence
from legacy systems. It is unique in generating application
logic scripts from UI/GUI-ripping results. The users record
their activity in the legacy system and this is transferred
to the application logic (essential) specification. Due to
precision of such specifications, this can be brought to the
level of code in an MDA-style transformation process [13].

II. Phrases: basic building blocks for

specifications

In order to describe a domain, people normally use
certain natural language phrases. Any entity in a given
domain is expressed through a phrase containing promi-
nently a noun. In sentences, nouns are normally used in
the role of subjects or objects. Noun phrases are obviously
not satisfactory to express the domain logic – its dynamics.
We need verbs that can be composed of many words (e.g.
phrasal verbs or aggregates of the Dixon’s primary and
secondary type verbs [14]). In a sentence, a verb occurs as
a part of its predicate. It is strongly relevant to the noun:
it describes behaviours, functions and events of the entity
represented by that noun. These are important elements
of domain descriptions as defined by Bjôrner [15]. One
noun can have any number of behaviours, functions or
events associated (“read book”, “write book”, “buy book”).
Sometimes there is a need to enrich nouns with modifiers
or determiners (“single book”, “old book”).

To capture the application logic we will thus define a
language capable of expressing noun-based phrases. This
is illustrated in Figure 1. The base “phrase” contains a
noun and optionally a determiner and a modifier (most
often – an adjective or an adverb). “Verb phrases”, in
addition, contain verbs (“simple verb phrase”) or verbs and
other nouns (“complex verb phrase”). Verb phrases can
be enriched with prepositions. All the parts of a phrase
constitute atomic terms.

The above can be seen as a constrained language and we
can define a grammar for it. We want the language to be

sign up registered customer for exercises

Verb Modifier Noun Preposition Noun

registered customer

sign up registered customer

sign up registered customer for exercises

Terms

Phrase

Simple Verb Phrase

Complex Verb Phrase

Figure 1. Phrase structure example

Phrase

ComplexVerbPhrase SimpleVerbPhrase

Term

Noun

VerbPhrase

Term

Verb

Term

Preposition

TermHyperl ink

Modifier

TermHyperl ink

Determiner

TermHyperl ink

Object

TermHyperl ink

PhraseVerb

TermHyperl ink

PhrasePreposition

Term

Modifier

Term

Determiner

{xor}

1

0..1

1

0..*

l inkedT erm

1

{redefines l inkedT erm }

0..*

l inkedT erm

1

{redefines l inkedT erm }

0..1

1

0..*

l inkedT erm

1

{redefines l inkedT erm }
1

1

1

1

0..*

l inkedT erm

1

{redefines l inkedT erm }

indirectObjectPreposi tion 1

0..1

di rectObjectPreposi tion0..1

0..1

0..*

l inkedT erm

1

{redefines l inkedT erm }

Figure 2. Phrase metamodel

used for automatic transformations and thus we will use a
metamodel to define it (work by Kleppe [16] can be used as
a good introduction on this). This is shown in Figure 2. A
Phrase always contains an Object that points to a specific
Noun. Such Phrases are satisfactory for representing entity
names. More complex Phrases can optionally contain a
Modifier and a Determiner.

A VerbPhrase describes some behaviour that can be
performed in association with a Noun. In the metamodel,
VerbPhrase is an abstract subtype of Phrase and it ex-
ists in two concrete variants: SimpleVerbPhrase and Com-

plexVerbPhrase. The SimpleVerbPhrase is the basic struc-
ture for expressing the Noun’s behaviour. It can have all
the elements of a Phrase, but it also includes a Phrase-

Verb pointing to a Verb. A ComplexVerbPhrase describes
behavioural relation between two Nouns. It can be noted
that it contains an Object (the indirect object) but also
points to a SimpleVerbPhrase that contains another Object
(the direct object).

It is worth noting that the phrases in fact constitute

1350 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Package

Notion

TermHyperl ink

NounLink

Term

Noun

Phrase

RepresentableE lement

DomainElement

PackageableElement

RepresentableElement

DomainStatement

RepresentableElementRelationship

DomainElementRelationship

Multip l ici tyElement

DomainElementMultiplicity
ValueSpecification

owningLower

lowerVa lue

0..1

owningUpper

upperValue

0..1

*1

{redefines ta rget}

*1

{redefines

source}

sourceM ultip l ici ty

0..1

targetM ul tip l ici ty

0..1

nam e

1

{redefines

nam e}

1
0..*

l inkedNoun

1

{redefines

l inkedT erm }

statem ents

0..*

{redefines ownedM em ber}

1

nam e

1

{redefines nam e}

1

Figure 3. Notion metamodel

sequences of hyperlinks pointing at external terms. These
Terms (with their forms, which depend on the context) can
be stored in an external, global structure. This structure,
represented by a Terminology, defines the semantics of the
Terms through giving relations between them, and can be
based on existing dictionaries/ontologies (e.g. WordNet
[17]). This way, the phrases can be subject to semantic-
based matching, as described by Wolter et al. [18].

III. Structuring domain specifications with

notions

To organise the phrases we will group them by the
nouns defining the described domain entities. We will call
such group a “notion”. The appropriate metamodel for
this part of the presented language is shown in Figure
3. Every Notion, which is a kind of UML :: Kernel ::

Package, can include many DomainStatements referring to
the same noun. The DomainStatements can have textual
descriptions (see Section IV) and their names are the
Phrases described above. The common Noun being an
object for all the phrases within a notion is also linked
as that notion’s name (see the relevant NounLink).

To complete the domain structure, we need to de-
fine relationships between notions. This is done through
DomainElementRelationshipss which denote relationships
between two DomainElements. The relationship can be
constrained by bounds of multiplicity and is directed. The
source of the relationship has to be different than its tar-
get. The DomainElementRelationship can have constrained
multiplicity described by the sourceMultiplicity and the

Exercises

Form of physical activity performed in a [[n:fitness club]].
Exercises may be [[m:cyclic n:exercises]] or [[m:sporadic
n:exercises]]. [[m:Sporadic n:exercises]] must be reserved
earlier (in eg. a private session with a [[n:coach]]).

[[m:cyclic n:exercises]]
[[m:sporadic n:exercises]]
[[v:check n:availability p:of n:exercises]]
[[v:submit n:sign-up p:for n:exercises]]
[[v:want to n:sign-up p:for n:exercises]]
[[v:sign-up n:customer p:for n:exercises]]

Figure 4. Example of textual notation

Figure 5. Example of graphical notation

targetMultiplicity. Similarly as in the UML metamodel [19],
the DomainElementMultiplicity is a range consisting of two
ValueSpecifications.

The above abstract syntax calls for appropriate concrete
syntactic elements. Our metamodel introduces a special
kind of structural domain representation that explicitly
focuses on domain elements. It can be seen as possessing
some of the key object-oriented principles: domain ele-
ments can be connected through domain element associ-
ations adorned with multiplicities. We could thus simply
use UML class model notation. However, where a graphical
notation is necessary, we propose a notation clearly dis-
tinguishing domain elements from classes. This is to stress
its domain modelling (cf. ontological modelling) purpose.
This is illustrated in Figures 4 and 5. The first Figure
presents a textual description of a notion (Exercises) with
several embedded phrases (e.g. cyclic exercises). It can be
noted that the notion description contains phrases (repre-
sented by hyperlinks in the description). In Figure 5 we can
see a graphical notation that includes the same notion. The
phrases have a notation that clearly distinguishes them
from e.g. class operations.

IV. Hyperlinking phrases to build specifications

The metamodel we have presented allows to organise
the domain definition in the form of a dictionary of
phrases. We have already shown that the phrases can be
hypelinked from within the domain element descriptions

MICHAL SMIALEK, ALBERT AMBROZIEWICZ ET AL.: USING STRUCTURED GRAMMAR DOMAIN MODELS 1351

(see Fig. 4). However, this can be easily extended to any
textual specification. For instance, we could organise this
way the functional and the quality requirements. Through
consistent use of hyperlinks we could significantly raise
precision and unambiguity of such specifications. For this
purpose we will thus extend the presented language to
allow formulating full sentences constructed out of hyper-
links.

We have already seen that all the elements used in
phrases link to the Terminology. In fact, phrases consist
only of hyperlinks to specific Terms through the Ter-

mHyperlink construct (specialised by Modifier, Determiner,
Object, PhraseVerb, and PhrasePreposition). This idea is
extended to use phrases as targets of hypelinking and
to construct specifications as sequences of hyperlinks to
phrases. Now, instead of copying the same phrase in
many places, we just point to its definition placed in a
central domain specification. This provides consistency as
every hyperlink may point at exactly one element. This
is in line with the findings by Kaindl [20] which indicate
that hyperlinks applied in requirements specifications are
basic facilitators of coherence. However, the approach is
beneficial only with strong tool support, which we will
discuss in the following section.

The precision of system specifications is assured by
using hyperlinks that link interaction flow descriptions
with definitions of phrases. In textual specifications, this
leads to the idea of a wiki-like language. Hyperlinks can be
inserted into free-form text using the notation presented
in the previous section.

Unfortunately, free (although hypelinked) text used in
specifications has serious limitations. Namely, it is not
suitable for automatic processing (e.g. translation into
design or code, comparison, structured editing, semantic
operations), and it can be formulated still in an unreadable
way. To cater for these two problems we would need to
introduce much more rigour and limit the language used.
We will now present such a limited language with three
types of sentences: SVO sentences, modal SVO sentences
and conditional sentences. It can be argued that most of
software requirements and descriptions could be covered
by these three types. They will use phrases (or rather:
hyperlinks to phrases) as their atomic “lexemes”.

The overall structure of constrained language sentences
is shown in Figure 6. They generally consist of Predicates
that point to VerbPhrases and Subjects that point to
regular (noun-only) Phrases. In addition, some sentences
can contain ModalVerbs and ConditionalConjustions that
point directly to appropriate Terms in the terminology.

The simplest SVOSentences contain just one Subject

and one Predicate. This together results in a grammar
that follows the Subject – Verb – Object (S-V-O) scheme,
as proposed by Graham [21]. In such RSL sentence the
Predicate is a hyperlink to a SimpleVerbPhrase, and the
Subject hyperlinks to a Phrase. These phrases are fur-
ther hyperlinked to appropriate terms in the terminology.

ModalSVOSentence

Term

TermModalVerb

Phrase

VerbPhrase

PhraseHyperl ink

Subject

PhraseHyperl ink

Predicate

TermHyperl ink

ModalVerb

SVOSentence

Hyperl inkedSentence

ConstrainedLanguageSentence

ConditionalSentence
TermHyperl ink

ConditionalConjunction

Term

TermConditionalConjunction

subject

1

{subsets

hyperl inks}
1

*

1

verbWithObjects

1

{subsets

hyperl inks}

1

*

1

modalVerb

1

{subsets

hyperl inks}

*

1

0..1

condi tiona lClause

0..1

0..1

mainClause

1

*

1

condi tional

Conjunction

0..1

{subsets

hyperl inks}

1

Figure 6. Constrained language sentence metamodel

Customer may buy ticket at the ticket terminal

Noun ModalVerb Verb Preposition Noun

Phrase SimpleVerbPhrase

ComplexVerbPhrase

Sentence:

Terminology:

Phrases:

Noun

Modal SVO sentence:

SubjectPhrase Hyperlinks: PredicateModalVerb

Figure 7. Example of ModalSVOSentence with ComplexVerbPhrase

We should also note that such sentences can contain
ComplexVerbPhrases. In such situation, the sentence is
extended by an additional indirect object (S-V-O-O) al-
lowing to express more complex behaviour involving more
than one noun phrase.

A ModalSVOSentence is an SVOSentence extended with
a ModalVerb, as shown in Figure 7. This type of sen-
tence adds a modality aspect to the information carried
by an SVOSentence. This allows to express priority of
the described activity, an attribute or circumstance that
denotes mode or manner of the described activity or an
obligation (a possibility) of the subject to perform an
action (described by a Predicate). ModalSVOSentences can
be used to describe different system’s features – they can
be used in order to capture non-functional requirement
statements or high-level/system vision type statements. In
Figure 7 we can additionally see an example of a sentence
where a Predicate points to a ComplexVerbPhrase.

1352 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

If system stores user data, transaction should be saved in journal. Cond. Sentence:

Conditional SVO sentence:

If system stores user data, (M)SVO Sentences: transaction should be saved in journal.

NounCC Verb ModalVerbNoun

Phrase Phrase

SimpleVerbPhrase

Terminology:

Phrases:

Verb P Noun

Phrase

SimpleVerbPhrase

CC – Conditional Conjunction
P - Preposition

SubjectPhrase Hyperlinks: PredicateModalVerbSubject PredicateCC

Noun

Phrase

Figure 8. Example of ConditionalSentence

Use case

scenario editor

SVO

sentences

Notion editor

Notion

description

Phrases

Relationships
Domain specification in the

software case browser

Figure 9. Editors and browsers of the ReDSeeDS tool

A ConditionalSentence is an ordered set of two SVO
sentences. The first of these sentences (the conditional
clause) describes a state, a possibility or in general – a
condition in which the activity expressed in the second
sentence (the main clause) can occur. The type of the
condition is additionally determined by conditional con-
junction linking these two sentences. The Terms like “if”,
“when”, “upon”, “during”, can be used as conjunctions for
conditional sentences. This is illustrated in Figure 8.

V. Tool-based evaluation

In order to evaluate the presented approach, a tool
chain was constructed. Its main purpose was to allow for
recovering the system essence and storing it using the
notation and metamodel presented in the previous section.
The central part of this tool chain is the ReDSeeDS
tool (redseeds.sourceforge.net), that implements the RSL
metamodel ([8], see section I). The tool offers a set of
editors dedicated to different types of domain elements
(see Figure 9, bottom-right, containing the notion editor
with compartments for the notion’s definition, phrases and
relationships). The central point of the tool is the use case
scenario editor (as illustrated in Figure 9, top-right). It
allows writing use case scenarios consisting of sentences
describing interaction flows within the software system.

Figure 10. Elementary example for GUI interactions

Such sentences are created within the grammatical rules
described above. The sentences are referencing domain
specification elements: actors, notions and system elements
(see sentence element colouring according to hyperlink
types). The tool allows to manage the domain specification
elements directly from the use case editor or using a typical
tree-like browser (see Figure 9, left-middle).

The first step of the recovery process utilizing our
tool chain is performed using a GUI-ripping tool (see
a discussion by Memon et al. [22]). While performing
this step, the GUI-ripping tool records the interactions
representing the system’s application logic. This includes
the user inputs (buttons clicked, data entered, widget focus
gained, etc.) and respective system responses (windows
displayed, messages shown to the user or even textual
console behaviour). A simple example of such user –
system interaction is shown in Figure 10. We use the
JabRef reference manager system (jabref.sourceforge.net)
but any other example system with extensive user-system
interaction could be used.

In our evaluation, for GUI-ripping, we have used
a commercial test management tool (Rational Func-
tional Tester, www.ibm.com/software/awdtools/tester/
functional/). However, any tool allowing for interaction
recording to some form of structured text files can be
integrated with our software. The tool we used, records
sequences of interactions into XML-based scripts, as shown
in Figure 11. The next step is then to transform these
scripts into the presented notation. This is done with
the TALE tool (Tool for Application Logic Extraction)
developed as part of this work. This novel tool can produce
scenarios with SVO sentences, as illustrated in Figure
11 (bottom; the script reflects the interaction from Fig.
10). What is important, the tool can also extract infor-
mation about the composition of specific notions used
in the scripts. Namely, all the buttons and fields in the
consecutive windows (e.g. “Select entry type” or “JabRef -
untitled”) can be stored as descriptions of respective noun
phrases (discussion of this is out of scope of this paper).

The scenarios generated by the TALE tool can be joined
into use cases and further processed in ReDSeeDS. The
generated specification can be subject to manual modifi-
cations and additions such as use case model re-factoring,
additions to the domain model, changes in scenario sen-

MICHAL SMIALEK, ALBERT AMBROZIEWICZ ET AL.: USING STRUCTURED GRAMMAR DOMAIN MODELS 1353

...

<testElements xsi:type="com.ibm.rational.test.ft.visualscript:ProxyMethod" name="book" type="GuiTestObject"

role="Button" elementType="TestObject" domain="Java" controlName="Book" topLevelWindow="//@topLevelWindows.2">

<action name="click"/>

</testElements>

<testElements xsi:type="com.ibm.rational.test.ft.visualscript:ProxyMethod" name="jabRefUntitled"

type="TopLevelTestObject" role="Frame" elementType="TestObject" domain="Java" controlName="JabRef - untitled"

topLevelWindow="//@topLevelWindows.1">

<action name="inputChars">

<argument>

<testelement xsi:type="com.ibm.rational.test.ft.visualscript:Value" value=""Tytul""

elementType="Value" valueType="String"/>

</argument>

</action>

...

1. User selects New entry from BibTex

2. System shows Select entry type

3. User selects Book

4. System shows JabRef - untitled
5. User enters JabRef - untitled

Figure 11. Elementary example of a recovered application logic
script

tences, etc. After such modifications, the model contains
both the still relevant“legacy”specifications and the“new”
ones. This constitutes the “essence” of the application
logic. We can now use this essence to generate a new
system. In order to do this we need to reorganise the model
according to the needs of the transformation rules.

The result of the process for the example from Figure
10 is summarised in Figure 12. The scenario has been
manually extended with sentence 6 (see top-right). In
addition, some of the generated notions (groups of phrases)
have been identified as UI elements (see centre-left). We
have also added a new domain element (“jabref untitled
data”). It should be also noted that the phrases have been
linked with relevant terms in the terminology (note the
“validate” term in bottom-left). We should also note that
most of the resulting “essential” model has been recovered
automatically from the legacy system (here: JabRef).

In order to transform the presented model into a soft-
ware system architecture we can use the rules formulated
by Śmia lek [23]. According to one of the rules, each use
case is transformed into an application logic (cf. con-
troller/presenter in the Model-View-Controller/Presenter
architectural patterns) class. The realisation of this simple
rule is shown in Figure 12 (see the CAddBookEntry class
at bottom-left). We can even go further and generate
important parts of dynamic code, as it was shown recently
by Šimko et al. [24] and Śmia lek [25]. For instance, Figure
13 presents a small fragment of application logic code
generated automatically from the essential model in Figure
12. As it can be seen, all the “user” sentences (1, 3 and 5)
were transformed into operations in the controller class.
Furthermore, the “system” sentences (2, 4 and 6) were
transformed into operation calls to appropriate “view”
(denoted by “v”) or “model” (denoted by “m”) objects.
The resulting code can be fully operational in regard to
the application logic, i.e. it can fully control all the flows
of user-system interaction. What is important, the code
can also contain decisions (“if” statements) that control
the interaction flow depending on the user decisions or the

Figure 12. Recovered script and domain specification in the ReD-
SeeDS editor

public void _SelectsNewEntry(){
 vSelectEntryType.show();
}

public void SelectsBook(){
 vJabRefuntitled.show();
}

public void EntersJabRefuntitledData
 (XJabRefuntitledData aJabRefuntitledData) {
 mJabRefuntitledData.validate
 (aJabRefuntitledData);
}

CAddBookEntry

Figure 13. Code generated from the example recovered script

current system state. Such decisions can be generated on
the basis of alternative scenarios, but a detailed discussion
is out of scope of this paper.

By generating code we finalise the process that is sum-
marised in Figure 14. Throughout this process we use
the “essential” specifications according to the Application
Logic (AL) language presented in the previous section.
We first analyse the legacy system’s UI by using a GUI
ripping tool. Based on this semi-automatic analysis we
generate the initial AL model. This model can then be
manually updated (edited) at the “essential” level to cater
for new or changed functionality. This model is based on
a metamodel and thus we can use model transformation
tools to generate more detailed (e.g. technology/platform
specific) models and code. In the presented tool chain
we use the MOLA transformation language [26] and the
associated transformation engine.

By using the presented tooling environment several
studies are currently undertaken. First, there is performed

1354 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Legacy

system

UI ripping

tool

Test scripts

(XML) TALE

Initial

RSL modelReDSeeDS
Refined

RSL model Target

architecture and

design models

MOLA

transformation

engine

Figure 14. Overview of the application logic handling process

a larger case study based on a legacy credit management
system, used currently by a major Polish bank. This
study is performed in cooperation with Infovide-Matrix
S.A. (large Polish software consultancy/provider). The
system’s observable application logic has been already
semi-automatically translated into RSL scenarios and the
new system architecture has been generated. The current
results show very promising levels of application logic that
can be recovered from a legacy system. What is important,
this recovery is to large extent automatic. Furthermore,
the recovered logic is brought to the level of requirements
understandable to the users. It was already shown by Jedl-
itschka et al. [27] that such structured specifications with
precisely defined domain vocabularies are well accepted
as simply being a better way of expressing requirements.
While working within such a “discover notions – write
structured sentences” framework, the analysts are encour-
aged to be acquainted with software system’s environment
and are stimulated to write precise, clearly formulated
requirements statements.

Further studies were performed with students attending
the “Model Driven Software Engineering” course at the
Warsaw University of Technology. During this course, the
students were asked to develop applications by using the
presented Application Logic language using the ReDSeeDS
tool. The students were able to write precise scenarios
in the presented notation, for up to 12 use cases within
the course of a 4-hour lab session. Furthermore, they
were able to generate and implement essentially functional
applications for around half of these use cases, within
further 10 hours of lab sessions. The applications had
all the necessary application logic and were performing
elementary data handling (store-read) operations.

VI. Conclusion and future work

The presented Application Logic language aims at cap-
turing the essence of the system’s functionality. It can
be noted that the specifications are written at the level
of detailed functional requirements. What is important,
these requirements are written in near-natural language
thus making it accessible to the end-users (see relevant
work by Śmia lek [28]). At the same time, specifications
are based very coherently on the domain definition by
pointing to centrally defined domain statements (phrases).

To define the application logic, the specifications can
contain only pointers (hyperlinks) to centrally defined
noun and verb phrases. A sequence of such hyperlinks
forms a scenario describing the user-system interactions.
Our experience shows that such application logic scenarios
are easy to write by inexperienced developers (analysts)
and even the end-users. This can be done using any tool
that allows for hyperlink management. This prominently
includes wiki systems, but also some CASE tools enable
this (see e.g. the scenario editor of Enterprise Architect,
www.sparxsystems.com).

Writing scenarios hyperlinked to a central vocabulary
gives important element of coherence to specifications.
However, in order to be able to perform automatic trans-
formations or semantic-based matching [18], we need a tool
that implements the presented (or analogous) metamodel.
In the current work we have shown that it is also possible
to use such a tool as a repository for essential application
logic recovered from legacy systems. This repository gives
an additional advantage of generating code directly from
high-level scenarios. This includes not only the code struc-
ture (classes, method signatures) but also the dynamics
(method bodies) for the application logic layer.

It can be noted that the presented results can be
extended in the direction of creating a more expressive
language at the “essential” level. It has to be stressed that
the language is not meant for data processing. Thus, it will
not possess typical data-processing constructs like loops or
variables. Instead, it concentrates on capturing application
logic, where loops are implicit through repeated system-
user interaction. However, in the currently ongoing work,
the scenarios will be extended to include conditional sen-
tences thus adding decision capabilities to the language.
Moreover, the language will gain the capability to combine
scenarios into UML-style use case models with relation-
ships between use cases. Additional sentences will enable
use case“invocations” shifting the flow of interactions from
one use case to another. This can be combined with the
work by Ambroziewicz [29] on application logic patterns.
The presented language can be used as a pattern language
where the noun and verb phrases can be abstracted from
a particular problem domain. The patterns can operate on
a generalised domain and then can be instantiated for a
specific domain.

Future work will also include extending the TALE tool
to be able to recover scenarios combined into use cases
on the basis of analysis of GUI-ripping results. It will
also consist in extending the language into a language
fully capable of performing “programming” at the level of
essential application logic. The goal is to move much of
such programming activity to a significantly higher level
of abstraction than currently. This way, the application
logic programming can become accessible even to the end-
users. It has to be noted that this language would not yet
capture all the essence of a software system functionality.
The domain logic will not be expressed in any way. The

MICHAL SMIALEK, ALBERT AMBROZIEWICZ ET AL.: USING STRUCTURED GRAMMAR DOMAIN MODELS 1355

determiner

start

stop

determiner determiner

modifier modifier modifier

nounnoun noun
modal
verb

prepositionverb

Figure 15. Simple SVO sentence grammar state machine

domain statements would indicate the necessary domain
functionality (data processing algorithms etc.), but not
define this functionality.

Finally, it has to be noted that the SVO grammar
is a kind of controlled language with formal grammar
as presented in Figure 15 (see also e.g. work by Fuchs
et al. [30] or Sleator and Temperley [31]). As such it
does have some difficulties with reflecting different natural
languages. Some heavily inflected languages, like Polish,
need suffixes and prefixes for words, even in sentences with
similar structure and meaning. Another problem is that
some languages (e.g. German, Turkish) allow for different
order of words in a sentence. This can be solved by adding
attributes to sentence classes, indicating word order or lan-
guage used for this sentence. Phrases themselves pose some
problems while considering natural languages. Determiner

and Modifier classes can constitute different parts of speech
and also multi-word verbs and nouns are constructed in
variety of manners in different languages. Handling of
multi-language specifications is thus a very interesting
challenge for future research.

Acknowledgment

This research has been carried out in the REMICS
project (http://www.remics.eu) and partially funded by
the EU (ICT-257793 under the 7th Framework Pro-
gramme).

References

[1] F. P. Brooks,“No silver bullet: Essence and accidents of software
engineering,” IEEE Computer, vol. 20, no. 4, pp. 10–19, April
1987.

[2] R. Pérez-Castillo, I. G.-R. de Guzmán, and M. Piattini, “Knowl-
edge Discovery Metamodel-ISO/IEC 19506: A standard to mod-
ernize legacy systems,”Comput. Stand. Interfaces, vol. 33, no. 6,
pp. 519–532, Nov. 2011.

[3] E. Evans, Domain Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley, 2004.

[4] M. Fowler, Patterns of Enterprise Application Architecture.
Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[5] D. Bjôrner, “Rôle of domain engineering in software develop-
ment. why current requirements engineering is flawed!” Lecture
Notes in Computer Science, vol. 5947, pp. 2–34, 2010, PSI 2009.

[6] M. Śmia lek, J. Bojarski, W. Nowakowski, and T. Straszak,
“Writing coherent user stories with tool support,”Lecture Notes
in Computer Science, vol. 3556, pp. 247–250, 2005, xP’05.

[7] C. A. Iglesias, J. I. Fernández-Villamor, D. Pozo, L. Garulli, and
B. Garćıa, “Combining domain-driven design and mashups for
service development,” in Service Engineering, S. Dustdar and
F. Li, Eds. Springer Vienna, 2011, pp. 171–200.

[8] H. Kaindl, M. Śmia lek, , P. Wagner, and et al., “Requirements
specification language definition,” ReDSeeDS Project, Project
Deliverable D2.4.2, 2009, www.redseeds.eu.

[9] C. W. Chan, “Knowledge and software modeling using UML,”
Software and Systems Modeling, vol. 3, no. 4, pp. 294–302, 2004.

[10] Resource Description Framework (RDF). W3C. [Online].
Available: http://www.w3.org/RDF/

[11] J. Evermann and Y. Wand, “Toward formalizing domain mod-
eling semantics in language syntax,” IEEE Transactions on
Software Engineering, vol. 31, no. 1, pp. 21–37, January 2005.

[12] H. Kaindl and M. Snaprud, “Hypertext and structured object
representation: A unifying view,” in Proceedings of the Third
ACM Conference on Hypertext (Hypertext ’91), San Antonio,
TX, December 1991, pp. 345–358.

[13] A. G. Kleppe, J. B. Warmer, and B. W, MDA Explained, The
Model Driven Architecture: Practice and Promise. Boston:
Addison-Wesley, 2003.

[14] R. M. Dixon, A new approach to English Grammar, on semantic
principles. Oxford University Press, 1991.

[15] D. Bjôrner, Software Engineering 3: Domains, Requirements,
and Software Design, ser. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer, 2006.

[16] A. Kleppe, Software Language Engineering: Creating Domain-
Specific Languages Using Metamodels, 1st ed. Addison-Wesley
Professional, 2008.

[17] C. Fellbaum, Ed., WordNet: An Electronic Lexical Database.
MIT Press, 1998.

[18] K. Wolter, M. Śmia lek, L. Hotz, S. Knab, J. Bojarski, and
W. Nowakowski, “Mapping MOF-based requirements represen-
tations to ontologies for software reuse,” in CEUR Workshop
Proceedings (TWOMDE’09), vol. 531, 2009.

[19] Unified Modeling Language: Superstructure, version 2.2,
formal/09-02-02, Object Management Group, 2009.

[20] H. Kaindl, “Using hypertext for semiformal representation in
requirements engineering practice,” The New Review of Hyper-
media and Multimedia, vol. 2, pp. 149–173, 1996.

[21] I. M. Graham, “Task scripts, use cases and scenarios in object-
oriented analysis,” Object-Oriented Systems, vol. 3, no. 3, pp.
123–142, 1996.

[22] A. M. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping:
Reverse engineering of graphical user interfaces for testing,”
in Proceedings of the 10th Working Conference on Reverse
Engineering, Nov. 2003, pp. 260–269.

[23] M. Śmia lek, Software Development with Reusable Requirements-
Based Cases. Publishing House of the Warsaw University of
Technology, 2007. [Online]. Available: http://bcpw.bg.pw.edu.
pl/Content/2098/Smialek Habil.pdf

[24] V. Šimko, P. Hnětynka, and T. Bureš, “From textual use-cases
to component-based applications,” Studies in Computational
Intelligence, vol. 295, pp. 23–37, 2010.

[25] M. Śmia lek, “Requirements-level programming for rapid soft-
ware evolution,” in Databases and Information Systems VI,
J. Barzdins and M. Kirikova, Eds. IOS Press, 2011, ch. 3,
pp. 37–51.

[26] A. Kalnins, J. Barzdins, and E. Celms, “Model transformation
language MOLA,” Lecture Notes in Computer Science, vol.
3599, pp. 14–28, 2004, mDAFA’04.

[27] A. Jedlitschka, K. S. Mukasa, and S. Weber, “Case reuse ver-
ification and validation report,” ReDSeeDS Project, Project
Deliverable D6.2, 2009, www.redseeds.eu.

[28] M. Śmia lek, “Accommodating informality with necessary preci-
sion in use case scenarios,” Journal of Object Technology, vol. 4,
no. 6, pp. 59–67, August 2005.

[29] A. Ambroziewicz and M. Śmia lek, “Application logic patterns –
reusable elements of user-system interaction,” in Model Driven
Engineering Languages and Systems, ser. Lecture Notes in Com-
puter Science, 2010, vol. 6394, pp. 241–255.

[30] N. E. Fuchs, S. Höfler, K. Kaljurand, F. Rinaldi, and G. Schnei-
der, “Attempto controlled english: A knowledge representation
language readable by humans and machines,” Lecture Notes in
Computer Science, vol. 3564, pp. 213–250, 2005.

[31] D. D. K. Sleator and D. Temperley, “Parsing english with a link
grammar,” Department of Computer Science, Carnegie Mellon
University, Tech. Rep. CMU-CS-91-196, 1991.

1356 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

