
Detectors Generation using Genetic Algorithm for a
Negative Selection Inspired Anomaly Network

Intrusion Detection System

Amira Sayed A. Aziz1,∗, Mostafa Salama2,∗, Aboul ella Hassanien3,∗

Sanaa EL-Ola Hanafi3

1French University in Egypt, Cairo, Egypt

Email: amira.abdelaziz@scienceegypt.net
2British University in Egypt, Cairo, Egypt

Email: mostafa.salama@gmail.com
3Cairo University, Faculty of Computers and Information, Cairo, Egypt

∗Scientific Research Group in Egypt (SRGE)

Abstract—This paper presents an approach for detecting
network traffic anomalies using detectors generated by a ge-
netic algorithm with deterministic crowding Niching technique.
Particularly, the suggested approach is inspired by the negative
selection mechanism of the immune system that can detect foreign
patterns in the complement (non-self) space. In our paper, we run
a number of experiments on the relatively new NSL-KDD data set
which was never tested against this algorithm before our work.
We run the test using different values for the involved parameters,
to find out which values give the best detection rates, so we can
give recommendations for future application of the algorithm.
Also, Formal Concept Analysis is applied on the generated rules
to visualize the relation among attributes. We will show in the
results that the algorithm have very good results through the
analysis, compared to other machine learning approaches.

I. INTRODUCTION

A
NOMALY detection has been a widely researched prob-

lem in several application domains such as system health

management, intrusion detection, health-care, bio-informatics,

fraud detection, and mechanical fault detection. Traditional

anomaly detection techniques analyze each data instance (as

a uni-variate or multivariate record) independently. And ig-

nore the sequential aspect of the data. Often, anomalies in

sequences can be detected only by analyzing data instances

together as a sequence, and hence cannot be detected by tra-

ditional anomaly techniques [1]. Gonzalez and Dasgupta in [2]

used sequential niching technique with the genetic algorithm

to generate the rules. Then, in 2003 [3] they suggested using

deterministic-crowding niching technique to limit the crowd

by replacing parents with more fitted children. This time, the

algorithm gave same results with less number of rules, which

is better because the population size won’t change. This paper

applies an approach for detecting network traffic anomalies

using genetic algorithm based intrusion detection system, but

without the levels of abnormality. The algorithm is put under

investigation to find which values for its parameters can lead

to better results, using the relatively new NSL-KDD data set.

The rest of this paper is organized as follows. Section II

presents a background of anomaly intrusion detection, artificial

immune systems, genetic algorithms and formal concept anal-

ysis. Section III gives a description of the applied approach

and its phases as well. Section IV shows the experimental

results and discusses observations. Finally, section V addresses

conclusions and discusses future work.

II. BACKGROUND

A. Anomaly Detection

An Intrusion Detection System (IDS) is a system built

to detect outside and inside intruders to an environment

by collecting and analyzing its behavior data. Two basic

approaches are followed to implement an IDS: Misuse-based

and Anomaly-based detection. In a misuse-based IDS, attacks

are represented as a pattern or a signature to use for detection.

It’s very good in detecting known attacks and provide detailed

information on the detected ones, but is of little use for

unknown attacks. Anomaly-based IDS build a model for a

system’s normal behavior to use for detection, assuming all

deviated activities to be anomalous or intrusions. It is very

useful for finding unknown attacks but it has a high false

negative or positive rates, beside it needs to be updated

with system behavior and can’t provide much information on

detected attacks. In some IDSs, a hybrid of both techniques is

used [4].

Different approaches exist for Anomaly-based Network IDS

(A-NIDS), but in general they all consist of the following

modules: (1) Parameterization: representing the observed in-

stances in some pre-defined form, (2) Training: a model is

built using the normal or abnormal system behavior. It can

be done manually or automatically, and (3) Detection: the

(parameterized) monitored traffic is searched for anomalous

behavior using the system model built through previous stage.

The techniques used to build the system behavioral model

can be: statistical, knowledge-based, or machine learning-

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 597–602

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 597

based. The Genetic Algorithms (GA) is among the machine

learning-based techniques. The flexible and robust global

search is the main advantage of applying GAs in A-NIDS,

where it looks for a solution from multiple directions with no

prior knowledge required about the system [5], [6].

B. Genetic Algorithms

GAs are basically used in IDSs to generate rules used

to detect anomalies [6]. They were inspired by the biolog-

ical evolution (development), natural selection, and genetic

recombination. GAs use data as chromosomes that evolve

through: selection (usually random selection), cross-over (re-

combination to produce new chromosomes), and mutation

operators. Finally, a fitness function is applied to select the

best (highly-fitted) individuals. The process is repeated for a

number of generations until reaching the individual (or group

of individuals) that closely meet the desired condition [2], [6].

GAs are very promising in the computer security field,

especially in IDSs. They have been applied for intrusion

detection since the 1990’s, and still being used up till the

current time. GA is usually used to generate rules for intrusion

detection, and they usually take the form if {condition} then

{action}, where the condition part test the fields of incoming

network connections to detect the anomalous ones [6].

C. Artificial Immune Systems

The Artificial Immune Systems (AIS) were inspired by

the Human Immune System which is robust, decentralized,

error tolerant, and adaptive. The HIS has different cells with

so many different tasks, so the resultant mimic algorithms

give differing levels of complexity and can accomplish a

range of tasks. There are a number of AIS models used in

pattern recognition, fault detection, computer security, and

a variety of other applications in the field of science and

engineering. Most of these models emphasize on designing

and applying computational algorithms and techniques using

simplified models of various immunological processes and

functionalities [7], [8].

There exists no single algorithm from which all immune

algorithms are derived, as AISs are designed using a number

of algorithms [9]. The Negative Selection approach (NSA) —

which is applied in our paper — explains how T-cells are

being selected and their maturation in the system. T-cells are

blood cells that belong to a group of white blood cells calles

lymphocytes. In the NSA, whenever the T-Cells are produced,

they undergo an immaturely period to learn which antigen

recognition results in their death. The T-cells need activation to

develop the ability to remove pathogens. They are exposed to

a comprehensive sample of self antigens, then they are tested

against self and non-self antigens to match the non-self ones.

If a T-Cell matched a self antigen, it is then removed until

they are mature and released to the system [10], [11].

D. Formal Concept Analysis

Formal Concept Analysis (FCA) is one of the data mining

research methods and it has been applied in many fields as

medicine. The basic structure of FCA is the formal context

which is a binary-relation between a set of objects and a set

of attributes. The formal context is based on the ordinary set,

whose elements has one of two values, 0 or 1 [12], [13]. A

formal concept is defined as a pair(A, B) with A ⊆ G,B ⊆ M ,

intent(A)=B and extent(B) = A. The set A is called the extent

and the set B called the intent of the concept (A, B). The

extent and the intent are derived by two functions, which are

defined as:

intent(A) = {m ∈ M |∀g ∈ A : (g,m) ∈ I}, A ⊆ G, (1)

extent(B) = {g ∈ G|∀m ∈ B : (g,m) ∈ I}, B ⊆ M. (2)

Usually the attributes of a real life data set are not in a

binary form, attributes could be expressed in a many-valued

form that are either discrete or continuous values. In that case

the many-valued context will take the form (G,M, V, I) which

is composed of a set G of objects, a set M of attributes, a

set V of attribute values and a ternary-relation I between G,

M and V . Then the many-valued context of each attribute

is transformed to a formal concepts, the process of creating

single-valued contexts from a many-valued data set is called

conceptual scaling. The process of creating a conceptual scale

must be performed by using expert knowledge from the

domain from which the data is drawn. Often these conceptual

scales are created by hand, along with their concept lattice,

since they are represented by formal contexts often laid out

by hand. Such that we choose a threshold t for each many-

valued attribute and replace it by the two one-valued attributes

”expression value” [12], [13].

III. THE PROPOSED NETWORK ANOMALY DETECTION

APPROACH

Genetic Algorithms produce the best individual as a solu-

tion, but in an A-NIDS a set of rules is needed - hence, running

GA multiple times. The technique used here was originally

proposed in [3] to solve this problem using the Deterministic-

Crowding Niching technique. Niching algorithms are impor-

tant research area in evolutionary computation. They basically

aim to generate multiple and highly-fit different solutions

while slowing down convergence if only one solution is

needed. Many Niching techniques exist, but the strengths of

the deterministic-crowding are that it requires no additional

parameters to those that are already used in a GA, beside that

itis fast and simple [14].

The self (normal behavior) individuals are represented in a

self space S, where each individual is represented as a vector

of features of dimension n, with the values normalized to the

interval [0.0,1.0]. This can be written as S = x1, . . . , xm,

where m is the number of the self samples. Algorithm (1)

shows the main steps of the detectors generation approach.

The final solution is a set of rules, represented as

individuals with low and high limits for each dimension, as

the conditions used to define the AIS detectors. So, each rule

R has a condition part (xn ∈ [lowi, highi]), hence a feature

vector xi satisfies a rule R if its hyper-sphere intercepts the

598 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Algorithm 1 Deetetors generation algorithm

1: Initialize population by selecting random individuals from

the space S.

2: for The specified number of generations do

3: for The size of the population do

4: Select two individuals (with uniform probability) as

parent1 and parent2.

5: Apply crossover to produce a new individual (child).

6: Apply mutation to child.

7: Calculate the distance between child and parent1 as

d1, and the distance between child and parent2 as

d2.

8: Calculate the fitness of child, parent1, and parent2
as f , f1, and f2 respectively.

9: if (d1 < d2) and (f > f1) then

10: replace parent1 with child

11: else

12: if (d2 <= d1) and (f > f2) then

13: Replace parent2 with child.

14: end if

15: end if

16: end for

17: end for

18: Extract the best (highly-fitted) individuals as your final

solution.

hyper-cube represented by the rules defines by its points [3].

To calculate the fitness of an individual (or a rule), two

things are to be taken into account: the number of elements in

the training sample that can be included in a rule’s hyper-cube,

calculated as [2], [3]:

num elements(R) = xi ∈ S and xi ∈ R (3)

The volume of the hyper-cube that the rule represents is

defined by the following form:

volume(R) =
n
∏

(i=0)

(highi − lowi) (4)

Consequently, the fitness is calculated as:

fitness(R) = volume(R)− C × num elements(R) (5)

where C is a coefficient of sensitivity that represents a penalty

if a rule covers anomaly samples. The bigger the C value, the

higher the sensitivity - hence the penalty - is. The fitness can

take negative values. The same equations are used if you’re

calculating the fitness of an individual in general. To calculate

the distance between two individuals (a child c and a parent

p), volumes of the hyper-cubes surrounding the individuals

(represented by low and high points in each dimension) are

used as follows:

distance(c, p) =
volume(p)− volume(p

⋂

c)

volume(p)
(6)

The purpose of using the volume is to check how much the

child covers of the area of the parent, so this distance measure

is not symmetric. To calculate the intersection between two

hyper-cubes, compare the intervals of the hyper-cubes in each

dimension, which will produce a hyper-rectangle in the end.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Sets

The experiment was performed on the NSL-KDD data set

which was suggested to solve some problems in the KDD

Cup’99 data set that is widely used for IDS evaluation. This

data set contains less number of records in both the train

and the test, which helps researchers to run their experiments

on the whole sets instead of only small portions. Hence, the

evaluation results will be comparable and consistent [15].

Fifteen parameters (features) were selected to use in our

experiment, which have real values that can be used in the

approach and can be used to detect basic DoS attacks. These

features values are already in the interval [0.0,1.0], and they

are listed in Table (I).

TABLE I
FEATURES USED IN THE EXPERIMENT

Feature name Description
serror rate % Of connections with “SYN” errors

(same-host connections)
srv serror rate % Of connections with “SYN” errors

(same-service connections)
rerror rate % Of connections with “REJ” errors

(same-host connections)
srv rerror rate % Of connections with “REJ” errors

(same-service connections)
same srv rate % Of connections to the same service

(same-host connections)
diff srv rate % Of connections to different services

(same-host connections)
srv diff host rate % Of connections to different hosts

(same-service connections)
dst host same srv rate Same srv rate for destination host
dst host diff srv rate Diff srv rate for destination host
dst host same src port rate Same src port rate for destination host
dst host srv diff host rate Diff host rate for destination host
dst host serror rate Serror rate for destination host
dst host srv serror rate Srv error rate for destination host
dst host rerror rate Rerror rate for destination host
dst host srv rerror rate Srv serror rate for destination host

B. Experiment Settings

We used the self (normal) data only in the training phase

to generate best rules that represents the Self profile, as the

negative selection approach suggests, then the rules were

compared against the test sample. The parameters values used

for the genetic algorithm were:

• Population size: 200, 400, 600

• Number of generations: 200, 500, 1000, 2000

• Mutation rate: 0.1

AMIRA SAYED A. AZIZ, MOSTAFA SALAMAET AL.: DETECTORS GENERATION USING GENETIC ALGORITHM 599

• Sensitivity coefficient: 1.0

• Variability values: 0.05, 0.10, 015, 0.20

Following the NSA, we basically train the algorithm (to

generate rules) on self (normal) samples, then use these rules

to find non-self (anomalies) which will be the vectors very

far from the self rules. To characterize the samples to self or

non-self, the characterization function was:

µnon self(x) = D(x, Self) = min{d(x, s) : s ∈ Self} (7)

which mean the closer a vector x is to a self point s, the

less it is a non-self sample.

The distance measure d(x,s), as shown in equation (8), used

to characterize the test data was the n-dimensional Euclidean

distance, which is:

d(x, s) =
√

(x1 − s1)2 + (x2 − s2)2 . . . (xn − sn)2 (8)

C. Experiment Results

The training phase was held using normal samples extracted

from the 20% Train Set to generate intrusion detectors using

different population sizes ran for different numbers of gener-

ations, one run used for each. Then these rules were used to

detect anomalies in both the whole Train Set and the Test Set+.

Figures 1 and 2 show the average detection rates and maximum

detection rates respectively against different variation levels.

The figures show that low variation levels give better results

when used with smaller populations, while the bigger the

population size, the better the average detection rates of higher

variation values used. Following figure 2, we will realize that

using higher population size gives better results, especially

with less number of generations.

Fig. 1. Train Set Average Detection Rates versus Variation Levels.

As for the Test Set, Figures 3 and 4 show the average

and maximum detection rates respectively. we will find that

in general detectors generated using lower population sizes

give relatively better results with low variation values. But

looking at maximum rates in figure 4, we will realize that

higher variation values have the best detection rates.

Fig. 2. Train Set Maximum Detection Rates versus Variation Levels.

Fig. 3. Test Set Average Detection Rates versus Variation Levels.

Fig. 4. Test Set Maximum Detection Rates versus Variation Levels.

Coming to different threshold levels used to detect anoma-

lies, figures 5 and 6 show the detection rates versus threshold

values (0.2, 0.4, 0.6, 0.8). the detection rates are higher when

testing the Train Set with threshold values 0.4, 0.6. Running

the intrusion detection process on the Test Set, we will realize

600 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

that using a threshold of value 0.2 gives the best results.

Fig. 5. Train Set Maximum Detection Rates versus Threshold Levels.

Fig. 6. Test Set Maximum Detection Rates versus Threshold Levels.

D. Comparison analysis

In [16], they ran the machine learning algorithms imple-

mented in the project WEKA [17] against the NSL-KDD Test

Set. The detection accuracy is listed in table II along with

the suggested algorithm, and it shows that we have very good

detection accuracy compared to those approaches used

TABLE II
THE CLASSIFICATION ACCURACY OF KNOWN CLASSIFIERS

Classifier name Classification accuracy
j47 81.05%

Naive Bayes 76.56%
NBTree 82.03%

Random Forest 80.67%
Random Tree 81.59%

Multi-layer Perception 77.41%
SVM 68.52%

Suggested Algorithm 81.76 %

E. Visualization of rules

Formal Concept Analysis is applied on the rules generated

from running the algorithm. Figure 7 shows that attributes

A1, A3, and A5 are the most effective in the descrimination

between normal and anomalous connections. They correspond

to serror rate, rerror rate, and same srv rate respectively.

Fig. 7. Visualized generated rules using FCA

V. CONCLUSIONS AND FUTURE WORK

In this paper, an investigation was held to test different

values for the parameters used in the genetic algorithm to find

those which can give better results. The system is basically an

intrusion detection system which uses detectors generated by

genetic algorithm combined with deterministic-crowding nich-

ing technique, applied on NSL-KDD IDS test data set under

the scope of negative selection theory. Different population

sizes against different number of generations with different

variation levels were tested. At the stage of rule generated,

we use the formal concept analysis to visualize the generated

rules, which give more insight analysis on these rules using the

visualization. The observations—based on the results shown

after running the intrusion detection on the Test Set can be

summarized as: (1) Using threshold values 0.2 and 0.4 results

in better detection rates (higher true positives). (2) Using

higher variation values gave better results when the algorithm

was tested against Test Set, which includes unknown attacks

that did not exist in the Train Set. (3) Lower population size

with more generations gave also the best detection rates when

tested on the Test Set. Our future work would be tending to do

more investigations on the parameters used in this approach,

concerning the features selected for the detection as obviously,

real-valued features are not enough to detect attacks, especially

there are other features in the data set that are not real-valued

but can be used to detect attacks that can not be detected with

the features used in the experiment.

REFERENCES

[1] Varun Chandola, “Anomaly Detection for Symbolic Sequences and
Time Series Data”, PhD. Dissertation. Computer Science Department,
University of Minnesota, September 2009.

[2] Fabio A. Gonzalez and Dipankar Dasgupta, “An Immunity-based Tech-
nique to Characterize Intrusions in Computer Networks”, Evolutionary
Computation, IEEE Trancactions, Vol. 6(3), pp.281-291, 2002.

[3] Fabio A. Gonzalez and Dipankar Dasgupta, “An Immunogenetic Tech-
nique to Detect Anomalies in Network Traffic”, Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO, Morgan
Kaufman, pp.1081-1088, 2002.

AMIRA SAYED A. AZIZ, MOSTAFA SALAMAET AL.: DETECTORS GENERATION USING GENETIC ALGORITHM 601

[4] Tarek S. Sobh and Wael M. Mostafa, “A cooperative immunological
approach for detecting network anomaly”, Applied Soft Computing,
Elsevier, Vol. 11(1),pp.1275-1283, 2011.

[5] P. Garcia Teodorro, J. Diaz-Verdejo, G. Marcia-Fernandez, E. Vazquez,
“Anomaly-based network intrusion detection: Techniques, systems and
challenges”, Computers and Security, Elsevier, Vol. 28(1-2), pp.18-28,
2009.

[6] Wei Li, “Using Genetic Algorithm for Network Intrusion Detection”,
Proceedings of the United States Department of Energy Cyber Security
Grou, Training Conference, Vol. 8, pp. 24-27,2004.

[7] L.N. De Castro and J. Timmis, “Artificial Immune Systems: a new com-
putational intelligence approach”, Springer, Book Chapter, 1st Edition.,
2002, XVIII, 380 p.

[8] Dipanker Dasgupta , “Advances in Artificial Immune Systems” ,IEEE
Computational Intelligence Magazine, Vol. 1(4), pp.40-49, 2006.

[9] U. Aickelin and D. Dasgupta, “Artificial Immune Systems”, Book
Chapter, Search Methodologies: Introductory Tutorials in optimization
and decision support techniques, Springer, pp. 375-399, 2003.

[10] Julie Greensmith, Amanda Whitbrook, Uwe Aickelin, “Artificial Im-
mune Systems”, Handbook of Metaheuristics, International Series in
Operations Research and Management Science, Springer, Springer US,

Vol. 146, pp. 421-448, 2010.
[11] Dipankar Dasgupta, Senhua Yu, Fernando Nino, “Recent Advances in

Artificial Immune Systems: Models and Applications”, Applied Soft
Computing, Elsevier, Vol. 11(2), pp. 1574-1587, 2011.

[12] Mehdi Kaytoue, Sbastien Duplessis, Sergei O. Kuznetsov and Amedeo
Napoli, “Two FCA-Based Methods for Mining Gen Expression Data”,
Lecture Notes in Computer Science, Vol. 5548, pp. 251-266, 2009.

[13] Richard Cole, Peter Eklund, Don Walker, “Using Conceptual Scaling
In Formal Concept Analysis For Knowledge And Data Discovery In
Medical Texts”, Proceedings of the Second Pacific Asian Conference
on Knowledge Discovery and Data Mining, pp. 378-379, 1998.

[14] Ole Mengshoel and David E. Goldberg, “The Crowding Approach to
Niching in Genetic Algorithms”, Evolutionary Computation, MIT Press
Cambridge, Vol. 16(3), pp. 315-354, 2008.

[15] NSL-KDD data set, http://nsl.cs.unb.ca/NSL-KDD/
[16] M. Tavallaee, E. Bagheri, W. Lu, A. A. Ghorbani, “A detailed analysis

of the KDD CUP 99 data set”, IEEE Symposium on Computational
Intelligence for Security and Defense Applications, CISDA 2009.

[17] WEKA “Waikato Environment for Knowledge Analysis (weka) version
3.5.9”, available on: http://www.cs.waikato.ac.nz/ml/weka/, Junr, 2008.

602 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

