
 

 

 

 

Abstract—This paper proposes a meta-heuristic image 

processing application for mobile robot navigation.  It classifies 

figures that are drawn on a wall by hand with a laser pointer.  

Image processing technique extracts optical flow of the laser 

beam trail, which represents vectors along edges of shapes. 

Genetic programming learns geometric characteristics of laser 

trail shapes and creates classification algorithm.  Three typical 

figures, such as a circle, a triangle, and a square, are evaluated 

and identified in high accuracy.  We have investigated the effects 

of genetic programming parameters on the performance of shape 

identification. As a result, proposal system makes it possible to 

command robots by easy and intuitive action of drawing a figure 

only with a laser pointer. 

I. INTRODUCTION 

OBOTS are coming to be used not only in the factories 

but also at home. It is desirable for the aged or children 

to control them with easier, simpler, and more intuitive 

method instead of key boards or joy sticks.  

Several papers have reported on robot operating methods 

using a laser pointer [1]-[4].  A laser pointer can indicate 

the arbitrary points in the real space in easy and simple 

action.  The previous studies applied the laser pointer only 

to direct the robot destination.  It is difficult to instruct 

robots more complicated actions without any additional 

devices.  

We have proposed the navigation system which guided 

robots according to the connoted figures drawn by a laser 

pointer.  It classified several typical figures by evaluating 

incidence of momentary motion of laser spot according to 

the criterion determined based on geometrical properties of 

each figure [5].  We cannot be satisfied with its 

experimental record in shape identification. 

We newly applied genetic programming to automatically 

create the classification algorithm.  It learns the procedure 

of laser beam trail. 

This paper proposes the meta-heuristic approach to 

identify shapes drawn by a laser pointer.  We constructed 

the shape identification system based on classification 

programs evolved by genetic programming, and evaluated 

the performance of discrimination between three typical 

shapes. 

 

II. CONCEPT OF ROBOT NAVIGATION SYSTEM 

A. Robot navigation procedure 

The conceptual diagram of the navigation system is 

shown in Fig. 1.  This system acquires motion of the laser 

spot by a CCD camera, obtains geometric features by 

calculating optical flows, identifies its shape and gives a 

robot the command corresponding to the drawn figure.  We 

assign robot commands simple figures such as a circle, a 

triangle, and a square.  

Our proposed system distinguishes figures among those 

three shapes based on the laser beam trail. 

The procedure of robot navigation is shown in Fig. 2. 

(1) A human operator draws a figure with a laser pointer on 

the wall. 

(2) A CCD camera catches the image of the laser spot trail.  

An image processor extracts motion of the laser spot as a 

series of optical flow vectors. 

(3)  The pattern recognition algorithm, previously created 

by genetic programming, distinguishes the drawn figure 

among candidate shapes. 

(4) The system provides robots with the connoted 

command corresponding to the identified shape. 

 

 
Fig. 1 Concept of robot navigation system 
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Fig. 2 Procedure of robot navigation 

 

The 3
rd

 stage of the procedure classifies drawn figures. 

Because a laser pointer is operated by hand, it is difficult for 

a human operator to draw figures correctly.  It is necessary 

to evaluate such inaccurate shapes.  

 

B. Concept of shape identification 

Conventional studies focused on the corners of shapes to 

define polygons [6]-[8].  A triangle, for example, was 

identified by three corners, and classified by the interior 

angles. 

As for figures drawn by hand, it is harder to identify their 

corners and to evaluate the angles accurately than their edges.  

That is why we have adopted edges to define shapes instead 

of corners. 

When drawing a figure with a laser pointer, momentary 

motion vectors of the laser spot lie on the edge of the figure 

as shown in Fig. 3.  In the case of a triangle, momentary 

motion vectors can theoretically be considered to be 

composed of three directions. Similarly, a square consists of 

four directions of vectors, and a circle contains 

omni-directional vectors. 

Therefore, appearance pattern of the motion vectors helps 

us to identify the shape of a drawn figure. 

Genetic programming technique creates a program which 

indicates the type of shape as output by giving the vectors as 

input. 

 

 
 

Fig. 3 Momentary motion vectors composing shapes. 

III. SHAPE IDENTIFICATION BY GENETIC PROGRAMMING 

Shape classification algorithm is established as a 

classification program created by genetic programming in 

advance of navigation.  Genetic programming technique 

generates computer programs of dynamically varying size 

and shape [9].  The program represents classification 

algorithm.  The evolutionary process evaluates how well 

individual program hits the right answer, and improves it. 

This study deals with three shapes: a triangle, a square 

and a circle.  The purpose of the identification algorithm is 

to provide an index representing each shape as output. 

 

A. Genetic programming design 

First of all, we prepared the geometric data regarding the 

shapes for learning.  Each computer program, modified by 

genetic programming, is evaluated its ability of classification 

by applying the geometric data.  We actually drew triangles, 

squares and circles with a laser pointer on a wall.  Each 

shape was traced by hand with a 650-nm 1-mW laser 

pointer.  Laser beam traveled 1.5 m from it to a white wall.  

Laser trail was detected by a 1.3 Mega pixel CMOS camera 

whose video resolution and frame rate were 640 x 480 and 

30 FPS, respectively.   

 

 
 

Fig. 4(a) Measured optical flow vectors (triangle) 

 

 
 

Fig. 4(b) Measured optical flow vectors (square) 
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Fig. 4(c) Measured optical flow vectors (circle) 

 

 
Fig. 5(a) Inclination of edge (triangle) 

 
Fig. 5(b) Inclination of edge (square) 

 
Fig. 5(c) Inclination of edge (circle) 

The camera was placed 1 m apart from the wall.  The 

length of an edge of the drawn triangles and squares was 

around 0.5 m.  The diameter of the drawn circles was also 

0.5 m. 

  Image processing was conducted by an Intel Core i7 

@2.93GHz CPU.  Image processing provides optical flow 

vectors concerning the figures as shown in Fig. 4, where 

each figure is constituted by 50 optical flow vectors.  We 

therefore obtained 50 inclination data of each figure’s edge 

as shown in Fig. 5.  

An instance of a shape is composed of 50 inclination 

angles of the optical flow vectors.  It also contains the 

numerical index of shape, index_i.  The index represents the 

type of the shape.  In this paper, a circle, a triangle, and a 

square are expressed by 0, 1, and 2, respectively.  

Consequently, the instance, f_i, is described as  

 

f_i=  (slant1i, slant2i, …., slant50i, index_i) 

 

where slantNi [N=1, 2, …., 50] represents the inclination 

angle of the N-th optical flow vector, and i is number of 

individual drawn figure. 

We obtained 50 instances for each of three shapes. 

We next prepared the set of primitive functions as shown 

in Table 1.  The set of terminals is also prepared as   

 

( 1- k/18 )       [k=0, 1, …., 36]  

slant1, slant2, …., slant50 

 

Each computer program is a composition of functions 

from the function set and terminals from the terminal set. 

 
TABLE I  FUNCTION SET 

Function explication 

if(A,U,V) If A is TRUE then U else V 

add(U,V) U + V 

sub(U,V) U - V 

mul(U,V) U  V 

div(U,V) U / V 

equal(U,V) If (|U-V|<π/18) then TRUE else FALSE 

not_equal(U,V) If (|U-V|<π/18)  then FALSE else TRUE  

>(U,V) If (U>V) then TRUE else FALSE 

<(U,V) If (U<V) then TRUE else FALSE 

S>(U,V) If (sin(U)>sin(V)) then TRUE else FALSE 

S<(U,V) If (sin(U)<sin(V)) then TRUE else FALSE 

C>(U,V) If (cos(U)>cos(V)) then TRUE else FALSE 

C<(U,V) If (cos(U)<cos(V)) then TRUE else FALSE 

and(A,B) If both A and B are TRUE then TRUE else FALSE 

or(A,B) If either A or B is TRUE then TRUE else FALSE 

not(A) If A is TRUE then FALSE else TRUE  
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The fitness measure of the problem was determined as 

accuracy rate of the programs that correctly answered the type 

of shape.  The closer the fitness is to 1, the better the program 

is.   

Every computer program in the population returned a 

numerical value, which indicated the type of shape in this 

problem.  The hits measure counted the number of fitness 

case for which the numerical value returned by the program 

came within a designated tolerance of the correct value 

described in the instance. 

We then determined the values of parameters to control 

the runs.  The population size and the maximum number of 

generations were 3000 and 300, respectively.  

The termination criterion was triggered either by running 

the maximum number of generations or by the satisfaction of 

success predication by at least one program in the population.  

The success predicate for this problem was that a program hit 

the right answer with regard to the entire instances for 

learning. 

 

B. Experiments 

A run of genetic programming started with the creation of 

a population of 3000 random computer programs.  They 

were generated from the available functions from the above 

function set and the available terminals from the terminal set.  

We compared three types of function set shown in Table 2.  

Basic arithmetic operations were available in CASE A.  

CASE C evaluated the inclination angle of optical flow 

vectors in trigonometry. 

  
TABLE II  AVAILABLE FUNCTION 

Function  CASE A CASE B CASE C 

if(A,U,V) ○ ○ ○ 

add(U,V) ○ × × 

sub(U,V) ○ × × 

mul(U,V) ○ × × 

div(U,V) ○ × × 

equal(U,V) ○ ○ ○ 

not_equal(U,V) ○ ○ ○ 

>(U,V) ○ ○ × 

<(U,V) ○ ○ × 

S>(U,V) × × ○ 

S<(U,V) × × ○ 

C>(U,V) × × ○ 

C<(U,V) × × ○ 

and(A,B) ○ ○ ○ 

or(A,B) ○ ○ ○ 

not(A) ○ ○ ○ 

○: available, ×: unavailable      

 

The randomly generated individuals found in the initial 

generation of the population had blind random search of the 

space of computer programs representing possible solutions 

according to the flowchart shown in Fig. 6.  The Darwinian 

reproduction operation was applied a designated number of 

times to single individuals selected from the population on the 

basis of their fitness.  Both the genetic crossover and 

mutation operations were applied to the designated number of 

pairs of parents selected on the basis of their fitness to breed a 

new population of programs.  The crossover and mutation 

rate were individually altered from 0 to 1.0.   

We designated the best-so-far individual as the result of a 

run of genetic programming. 

 
Fig. 6 Flowchart of genetic programming 

 

 
Fig. 7 Fitness curve of shape identification 

 

Figure 7 presents the fitness curves on condition that 

population size is 3000, maximum tree depth is 20, 

maximum program size is 20, crossover rate is 1.0, mutation 

rate is 0.9, and using function set CASE C. 

It displays the typical process of evolution where the 

vertical axis shows the accuracy rate of modified programs in 

learning, and the horizontal axis expresses the generation.  

The solid line indicates the fitness of the best-of-generation 

program, and the broken line represents the average of 

fitness for the population as a whole.  The solution program 

is evolved rapidly until 50 generations as fitness exceeds 0.9. 
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We next investigated the effects of genetic programming 

parameters on the performance of shape identification.  

Accuracy rate of the eventually evolved programs is 

evaluated in terms of available functions and maximum 

program size.  Maximum program size represents the limit 

of the number of producted program rows. 

The final, i.e. in the 300
th

 generation, fitness of three 

types of function set is compared with regard to maximum 

program size in Fig. 8, provided that population size is 3000, 

maximum tree depth is 20, crossover rate is 1.0, mutation 

rate is 0.9.  Figure 8(a) expresses that the 

best-of-generation program provided the desirable 

performance when the program size was more than 30, and 

the function set CASE A was inferior to the others.  Figure 

8(b) indicates little relevance of maximum program size to 

the average of the whole programs.  CASE C is considered 

to the best choice among three, whose fittness is not more 

than 0.97. 

The effects of crossover and mutation rates are then 

evaluated under the condition that maximum number of 

generation is 300, population size is 3000, maximum tree 

depth is 20, maximum program size is 20, and using 

function set CASE C.  Figure 9(a) reveals that the final 

fitness regarding the best-of-generation was as high as 0.9 or 

more when mutation rate was more than 0.2.  Even if 

mutation rate was lower, the final fitness took high as far as 

crossover rate is more than 0.4.  Figure 9(b) indicates the 

final average fitness of whole programs was up to 0.9.  The 

larger crossover rate was, the higher the fitness increased. 

 
 Fig. 8(a)  Relationship between final fitness and function set  

(best of generation) 

 
Fig. 8(b)  Relationship between final fitness and function set (average) 

 

 

Fig. 9(a)  Relationship between final fitness and crossover rate 

(best of generation) 

 

Fig. 9(b)  Relationship between final fitness and crossover rate (average) 

 

Fig. 10(a)  Relationship between final fitness and mutation rate 

(best of generation) 

 

Fig. 10(b)  Relationship between final fitness and mutation rate (average) 
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Figure 10(a) suggests that the final fitness regarding the 

best-of-generation was around 0.9 independent of crossover 

rate unless choosing mutation rate smaller than 0.1.  Figure 

10(b) shows that the final average fitness was not influenced 

so much by mutation rate but by crossover rate. 

The best-of-run program in the 300
th

 generation is 

indicated as a classification tree in Fig. 11, where population 

size is 3000, maximum tree depth is 20, maximum program 

size is 20, crossover rate is 1.0, mutation rate is 0.9, and 

using function set CASE C. 

This optimum program was eventually applied to classify 

150 figures.  They had separately been prepared for 

verification.  Experimental results proved that the program 

successfully classified 144 figures into three candidates of 

shapes.  The accuracy rate of the definitive program was 

consequently estimated at 0.960.  

Our previous study [5] tried to classify the figures drawn 

with the laser pointer by means of a statistical analysis.  

The same data were used for shape identification as this 

paper regarding circles, triangles, and squares.  They were 

distinguished based on the histogram pattern of momentary 

motion vectors of laser spot.  Recognition rate of the 

statistical method was 0.867.  Results supports the 

proposed meta-heuristic method is superior to the 

conventional one.  

 

 

 
Fig. 11  optimum classification tree based on best-of-run program 

 

 

 

IV. CONCLUSION 

This paper proposed the shape identification system of 

hand written figures.  We focused on configurations of 

edges to distinguish shapes.  It detects motion of laser spot 

by a CCD camera, and the image processing technique 

extracted optical flow vectors of figures drawn by a laser 

pointer. 

Genetic programming was applied to create shape 

identification program based on the optical flow vectors.  

We conducted the experiments of generating classification 

algorithm of laser trail shape.  Effects of genetic 

programming parameters were investigated to find the 

optimum conditions. 

The definitive program successfully identified the hand 

written shapes in accuracy of 0.960.  Results suggest that 

the proposed system helps us to control robots with easier 

and more intuitive ways than ever. 

The authors are continuing investigations on the 

performance of laser trail shape identification by genetic 

programming, and are verifying the possibility of the 

proposed method to classify other kinds of shapes among 

more candidates than three. 
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(if)
+--(not)
|    +--(S<=)
|         +--(-2.44)
|         +--(slant8)
+--(if)
|    +--(not_equal)
|    |    +--(slant20)
|    |    +--(-0.87)
|    +--(1.92)
|    +--(slant27)
+--(if)

+--(S<=)
|    +--(slant35)
|    +--(if)
|         +--(false)
|         +--(slant4)
|         +--(if)
|              +--(C>=)
|              |    +--(slant50)
|              |    +--(-2.44)
|              +--(0.35)
|              +--(2.97)
|

[partially omitted]
|
+--(0.00)
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