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Abstract—We consider the connected facility location problem
(ConFLP), a useful model in telecommunication network design.
First we introduce the extended connected facility location prob-
lem which generalizes the ConFLP by allowing pre-opened and
pre-fixed facilities. This new concept is advantageous for applying
complex sequences of reduction tests. By such an analysis of
the solution space we anticipate solution dependencies in favor
of following optimization methods. Besides transferring existing
techniques designed for the facility location problem, the Steiner
tree problem and the group Steiner tree problem, specific new
reduction methods are introduced. The presented concepts based
on graph theoretic formulations are also of theoretical interest.
Additionally, we propose an efficient self-adaptive presolving
strategy based on test dependencies and test impacts respectively.
A computational study shows that the number of edges could
be reduced up to 85% and the number of nodes up to 36%
respectively on instances from the literature.

Keywords-connected facility location; presolving; network de-
sign; Steiner tree;

I. INTRODUCTION

A. Motivation

THE connected facility location problem (ConFLP) is a

highly useful model for the application to problems aris-

ing in the design of telecommunication networks. For instance

the (partial) replacement of existing out-of-date copper based

networks by modern fiber-optic cables can be handled as a

ConFLP. We are given customers, that need to be connected

to a central distributor by a tree-shaped network. In com-

monly used Fiber-To-The-Curb (FTTC) architectures, potential

switching locations are given to which the customers may by

connected by an existing copper infrastructure. Any choice of

switch installations results in a set of terminals that have to be

connected to the distributor using new fiber-optic technology.

The practical objective is to minimize the overall installation

costs for cables and switching devices.

The ConFLP is an NP-hard [1] optimization problem and

therefore especially challenging in real world applications

involving large instances. To ease the computational burden

for algorithms to compute an optimal or heuristic solution,

the application of problem presolving procedures is not just

effective, but also unavoidable in many cases. The term
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presolving is used in turn which emphasizes the solution-

oriented character of the applied techniques, compared to

simple preprocessing methods. Such an analysis of the solution

space may result in a remarkable reduction of the problem size.

For certain instances no further methods need to be applied

since the techniques used for presolving completely reduced

them to trivial ones and therefore solves it to optimality. Exact

and heuristical methods take advantage of the anticipation of

preprocessable dependencies. Certainly a reduced number of

provided variables is likely to accelerate the enumeration in

exact branch & bound algorithms.

B. Contribution

We developed several presolving techniques for the ConFLP,

transferred existing literature ideas for related problems and

embedded these methods into a self-adaptive overall strategy.

This algorithmical framework is based on problem and test

specific reduction dependencies that we also present in this

paper. In our studies we did not limit ourselves to problem re-

ductions that necessarily result into a ConFLP instance again.

Instead we generalized the ConFLP by the introduction of

the extended connected facility location problem (EConFLP).

This model is very convenient for transferring presolving in-

formation during the reduction process and allows the flexible

integration of practical side constraints at the same time. The

ideas are also of theoretical interest and variations may be

considered for related problems. Computational results show

that these methods can be effective.

C. Related work

The ConFLP model combines two classical problems in

combinatorial optimization. On the one hand the Steiner tree

problem (STP) asks for a tree of minimal edge costs that

connects given terminals by optional use of Steiner nodes for

the interlinkage [2]. On the other hand the ConFLP generalizes

the well known (Uncapacitated) facility location problem

(FLP). To solve the FLP selected facilities are installed at

potential sites and each given customer is assigned to exactly

one of them. The objective is to minimize the sum of the

installation costs and the assignment costs. The ConFLP

has been introduced by Karger and Minkoff [1] who gave

the first approximation algorithm of constant factor. Solution
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approaches for the ConFLP in the literature include exact MIP-

based methods [3], greedy random adaptive search [4] and

a dual based heuristic [5]. The design of effective reduction

methods was already carried out for related network design

problems. Introductory work on preprocessing techniques can

ba found in [6]. The STP was considered by Duin et al. [7]

and Polzin et al. ( [8], [9]). Ferreira et al. [10] developed

sophisticated tests for the reduction of instances of the group

Steiner tree problems (GSTP). Ideas from these works serve as

a starting point for some of our elaborations presented in this

paper. More recently, the extensive application of presolving

techniques by Letchford et al. [11] enabled the solution of

peviously unsolved FLP instances to optimality. The authors

combined complex lower and upper bounding procedures to

an effective aggressive preprocessing scheme, that reduces

instances sufficiently for MIP solvers.

D. Problem definition

Given an undirected connected graph G = (V,E), a nontriv-

ial partition (F,C) of V identifying facilities and customers,

nonnegative edge costs c and nonnegative opening costs for

the facilities, the connected facility location problem consists

of finding a connected subgraph G′ = (V ′, E′) of G, such that

i.) each customer is adjacent to exactly one facility in G′,

ii.) the subgraph of G′ induced by the set of facilities in V ′

is connected, and

iii.) the total cost, defined as the sum of the edge costs and

the costs for opening facilities,
∑

v∈N
V ′ (C)

pv +
∑

e∈E′

ce ,

is minimized.

For any node u ∈ V , by NV ′(u) we denote the set of its

neighboring nodes in V ′, and for any subset X ⊆ V , we

set NV ′(X) = ∪u∈XNV ′(u). Due to the problem definition

above and the non-negativity of costs c and p there exists an

optimal solution such that G′ is a tree. Some facilities in F
may be used as pure Steiner nodes, in which case no opening

costs need to be paid for them. If in a solution a facility v is

adjacent to a customer u, we call v an open facility and we

say that u is supplied by v, or that u is assigned to v. The set

of potential facilities Fp = NF (C) contains the nodes in F
that allow facility installations.

II. THE EXTENDED CONFLP (ECONFLP)

In our presolving studies we did not limit ourselves to

problem reductions that necessarily result into a ConFLP

instance. Instead we generalize the understanding of such an

instance by the following properties:

• A facility might be labeled as open facility, i.e. it has to

be open in a solution.

• A facility might be labeled as network facility, i.e. it has

to be part of a solution, either open or not. We do not

allow a facility to be open and a network facility at the

same time.

• An edge connecting two facilities might be labeled as

network edge, i.e. it has to be part of the facility network

in a solution. This implies each of the two ends to be

network facilities if not opened yet.

• Facilities may belong to groups. A group specifies facility

sets in which at least one node belongs to an optimal

solution.

In order to solve the resulting EConFLP, algorithms might

need to be modified with respect to the additional restrictions.

Alternatively a ConFLP instance could easily be obtained from

an EConFLP instance. The corresponding transformation into

the ConFLP looks as follows:

i.) For each open facility v, introduce an artificial customer

ṽ and connect it to v with cṽv = 0. Herewith in any

ConFLP solution the facility v will be opened.

ii.) For each network facility v introduce an auxiliary facility

v′ and connect it to v by an edge of zero cost where

pv′ = 0. Then proceed with v′ as for an open facility

described above. Note that v′ needs to be introduced since

we do not necessarily open v.

iii.) For each group g, introduce an artificial customer vg and

connect it by zero cost edges to the nodes in g.

III. PRESOLVING TECHNIQUES

Our presolving methodology tries to reduce the initial prob-

lem stepwise. To refer to the current reduced structures we use

tilde, (e.g. F̃p). Furthermore we will use the distance function

duv which returns the length of a shortest path between two

nodes u to v in the current graph with respect to c. To restrict

the function to a subgraph induced by the nodes X ⊆ V
we write dXuv . For the set of open and network facilities,

we also say solution or fixed facilities. Given two disjoint

node sets S1, S2 ⊆ V [G], we define a minimal {S1, S2}-

cut as a partition {RS1
, RS2

} of V [G] such that S1 ⊆ RS1
,

S2 ⊆ RS2
and the number of edges connecting RS1

and

RS2
is minimized. After computing a solution for the reduced

problem, a corresponding solution for the original problem

needs to be constructed. This is achieved by the successive

reversion of the modifications in the current problem and

the corresponding solution adaptations in the opposite order

of reduction. Corresponding restoration rules can easily be

derived from the reduction steps so that we do not elaborate

them here.

A. Presolving the facility subgraph

As we already observed, once the set of open facilities is

known, the problem reduces to the Steiner tree problem on

the facility subgraph GF . Therefore, the traditional reduction

procedures for the STP, most of them originally proposed by

Duin and Volgenant [7], can easily be extended to the ConFLP.

We now show how to generalize these tests for the ConFLP:

we apply them on the subgraph G̃F̃ , with network facilities

and open facilities treated as terminal nodes.
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1) Degree 1 and 2 facilities: Every facility v ∈ F̃ with

degṼ (v) = 1 that is not a potential facility can be deleted.

If v is an open or network facility, we additionally fix its

neighbor (if not an open facility yet) as a network facility.

For a facility v ∈ F̃ with degṼ (v) = 2 that is not a potential

facility, an open facility or network facility, we can apply

the following: delete v and insert an edge connecting its two

former neighbors. Set the edge cost to the sum of the costs

of the removed edges. If this edge already exists, then set its

weight to the minimum of the new cost and its original value.

This is possible because either none of the two edges incident

with v is part of an optimal solution or both.

2) Shortest paths: An edge e = uv ∈ ẼF̃ that is not a

network edge is dispensable if ce ≥ dF̃uv , because e can always

be replaced by a shortest path connecting u and v without

increasing the objective value.

3) Network edges: For a network edge e = uv ∈ ẼF̃ with

not both ends being potential suppliers, i.e. {u, v} 6⊆ F̃p, u
and v can be contracted, say to z. Then z becomes a solution

facility if neither u nor v were fixed in the solution before. If

one of the ends was an open facility, then we assign its opening

costs to z and open it. If u or v was a network facility, then

z is added to the network facilities.

4) Nearest node: Consider a solution facility v and let x =
argminu∈N

F̃
(v)cvu and z = argminu∈N

F̃
(v)\{x}cvu. We add

vx to our solution as a network edge if a solution facility v′

exists such that

cvx + dF̃xv′ ≤ cvz .

Note that the nearest facility x may be a solution facility and in

this case the test corresponds to the adjacent solution facilities

test for x and v.

5) Node nearer to solution facility: An edge uv ∈ ẼF̃ will

not appear in an optimal solution if a solution facility x /∈
{u, v} exists such that

max(dF̃xu, d
F̃
xv) ≤ cuv .

This is possible, because instead of using the edge uv in the

network we could always connect the two ends to a solution

facility without paying additional costs. Note that in the case

of one end being a terminal, this test corresponds to the nearest

node test.

6) Bottleneck degree m: We consider a facility v that is

not a potential facility with m = degF̃ (v) ≥ 3. Such a facility

will have either degree two or will not belong to an optimal

solution if the following property holds:
∑

u∈N
F̃
(v)

cvu ≥ ST (K, G̃F̃ \{v}), ∀K ⊆ NF̃ (v), |K| ≥ 3,

where ST (K,H) denotes the cost of an optimal Steiner tree

connecting subset K of terminals on the graph H . Since solv-

ing the Steiner Tree subproblem would be way to expensive,

we just apply a heuristic, namely the well known Shortest

Path Heuristic for the STP (see [2] or [4]). In order to do

so, for each pair of neighbors of x, z ∈ NF̃ (v), we either

insert a new edge e = xz (if it does not exist) and set its

cost to s = cxv + cvz or we update the current edge weight

to cxz = min(cxz, s). In the worst case we pay the price of

adding
(

m
2

)

− m edges to the problem for a single facility

deletion which explains why this test is just applicable for

small values of m. In a dense facility network we conversely

may not need to add any edges but we might want to change

the cost structure, besides the facility deletion.
7) Adjacent solution facilities: Let two adjacent facilities u

and v be part of a solution, either as network or open facilities.

If cvu ≤ cvx ∀x ∈ F then the edge evu can be added to our

solution as a network edge. To prove this, assume that the

condition holds for v but an optimal solution S exists that

does not contain vu. For connectivity reasons S contains a

path in F̃ using an edge vx (x 6= u) from v to u. So S could

be improved by using vu instead of vx what contradicts with

the optimality of S.
8) Facility cuts: In [9], Polzin and Daneshmand present

a decomposition concept for the STP based on the detection

of node separator subsets of low cardinality, i.e. subsets of

nodes whose removal separates the terminals of the graph

G̃F̃ . We extend this concept to the set of edge separators, by

introducing additional presolving steps for the newly detected

groups induced by these cuts. For solution facilities t1 and t2
we compute a minimal t1-t2-cut (S, T ) in G̃F̃ . If there is just a

single edge e connecting S and T we can label e as a network

edge, since it will belong to any feasible solution. Additionally

we consider the induced node separator sets QS = {v ∈ S :
NF̃ (v)∩T 6= ∅} and QT = {v ∈ T : NF̃ (v)∩S 6= ∅}. We add

QS and QT to the set of groups, but control these additions

by a parameter that limits the size of added groups. Some of

the presolving techniques for the group Steiner tree problem

can be transferred and applied to the concept of EConFLP

as defined above. Recall that, given a graph G̃F̃ with non-

negative edge costs, and a collection R of subsets of F̃ , called

groups, the GSTP is to find a minimum-cost subtree of G̃F̃

that contains at least one node from each group R ∈ R. We

consider the groups R ⊂ F̃ , that arise from different tests

introduced within this paper. Apart from such groups, we can

initially add a group Ru for each customer u consisting of its

potential suppliers NF̃ (u).
9) Node nearer to group: This test is a generalization of

the node nearer to terminal test for the GSTP. An edge e =
uv ∈ ẼF̃ will not appear in an optimal solution if a group

R 6⊇ {u, v} exists such that

max(dF̃ru, d
F̃
rv) ≤ ce ∀r ∈ R .

This is possible, because instead of using the edge e in the

network we could always connect the two ends with any node

in R without additional costs. The special case of considering

groups of cardinality one leads to the node nearer to terminal

test.
10) Group cuts: For two disjoint groups R1 and R2, we

compute a minimal (R1, R2)-cut in GF̃ , say (S, T ). If there

is just a single edge connecting S and T we can label it as a

network edge, since it will belong to any solution. Additionally

we consider the induced node sparator sets RS = {v ∈ S :
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N(v) ∩ T 6= ∅} and RT = {v ∈ T : N(v) ∩ T 6= ∅}. We add

RS and RT to the set of groups, but limit the total number

of added groups. This generalizes the facility cut test since

facilities fixed in a solution are just groups of cardinality one.

Here we also mix the two types by allowing singleton groups.

B. Presolving the facility-customer subgraph

Adapting presolving tests for the facility location problem

we get the following applying to the ConFLP.

1) Degree 1 customers: For a customer u ∈ C̃ with

degG̃(u) = 1 we remove u and force the facility v to be

part of the facility network as an open facility.

2) Customer domination: For two customers u and v with

NṼ (u) ⊂ NṼ (v) we can delete an edge e = vx with x /∈
NṼ (u) if ce ≥ cvz ∀z ∈ NṼ (u). The reason for this is that

at least one of the potential facilities of u will be opened

and therefore even if facility x was already open it would be

cheaper to let v be supplied by the facility supplying u.

3) Network facility: We consider the network facilities that

are potential suppliers in order to open them or exclude

alternative potential suppliers. Consider such a facility v and a

potential customer u, i.e. v ∈ NṼ (u). We may delete an edge

ux (x 6= v) if cxu ≥ cuv + pv . So opening v and supplying u
by v would be cheaper than supplying u by x, even if x was

open.

4) Open facility: In the case that we have fixed a facility v
to be supplying in our solution we should check whether we

can exclude other facilities from being potential suppliers for

its potential customers. So for a customer u adjacent to v an

edge e = ux (x 6= v) can be deleted if cvu ≤ ce.

C. Presolving the whole graph

Finally, in this section we propose tests that apply to the

EConFLP concept, involving the whole graph G̃, considering

solution facilities, network edges and groups as well.

1) Facility-customer distance: For a potential facility v we

can delete a supply edge e = vu (u ∈ C̃) if a path Pvu

in G̃F̃∪{u} from v to u not containing e exists such that

d′vu ≤ cvu, where d′vu denotes the length of the path Pvu

plus the opening costs of the potential facility z on that path

if not opened yet. Thereby, the weights of network edges are

discarded:

d′vu =

{

∑

e∈Pvu
ce + pz z closed

∑

e∈Pvu
ce z open

(zu ∈ Pvu) .

This test checks if it would be cheaper to add the whole path

to the solution and possibly open the facility z than using the

edge vu.

2) Solution-facility-customer distance: In this test we con-

sider a potential facility v and one of its supply edges e = vu
(u ∈ C̃). Let FS be the set of current solution facilities. We

delete e if for a x ∈ FS a path Pux in G̃F̃∪{u} from u to x
not containing e exists such that d′u,x ≤ cvu. Here d′ is the

function used in the facility-customer distance test. In contrast

to the facility-customer distance test we just try to supply and

connect the customer u to any facility in the existing facility

subnetwork without exceeding certain supply edge costs. In

the case that v is already open or a network facility, this test

covers the facility-customer distance test.

3) Group-customer distance: We extend the terminal-

customer distance test to groups. The additional requirement

for a supply edge deletion is the existence of the mentioned

path for all the nodes of at least one group.

4) Potential facility leaves: Let a potential facility v have

degF̃ (v) = 1. If v is part of an optimal solution, then -

provided it is not the only facility to do so - surely its incident

edge vx ∈ ẼF̃ in the facility network will be used in this

solution. In the case that x is not a potential facility itself, we

can contract x and v and set the opening costs of the resulting

potential facility as pv+ce. Otherwise if x is a potential facility

and there exists a group not containing v or one other solution

facility, then the opening cost of v can be increased by ce to

provoke the success of the network facility test.

5) Groups: We remove groups that contain solution facili-

ties, since this is redundant information. Additionally we trans-

form groups of cardinality 1 to network facilities. Multiple

and empty groups are dynamically removed when removing a

facility.

D. The overall presolving strategy

The proposed techniques are all of polynomial time com-

plexity. Although the STP is well known to be in the class of

NP-hard optimization problems we use a polynomial method

to solve the problem heuristically. Therefore the overall pro-

cedure based on reduction success is also polynomial. The

correctness follows from the validity of the single reductions

and the transformation of the EConFLP into the ConFLP.

However the effort for carrying out test on a problem in-

stance varies. For instance a degree-testing can be done in

significantly less time than running numerous minimal cut

computations. Therefore we tried to minimize the number of

tests that we identified as computationally more expensive

in our experiments. The latter ones are mostly the tests that

require solving a non-trivial subproblem, e.g. finding minimal

cuts or multiple shortest paths. So we first apply the less

elaborate tests as long as this results in a problem reduction.

Afterwards we once run the more time consuming procedures

and perform a restart if a problem modification was detected.

Since we still observed many redundant test runs we focus on

concrete test interactions to minimize unnecessary iterations.

One can observe some complex relationships between different

reduction types. Figure 1 describes the potential changes of

the problem structure with respect to the tests performed. An

arc depicts the potentially successful presolving tests after a

certain problem modification. Figure 2 shows the impacts of

the modifications of the input graph on specific presolving

steps. An arc describes a problem modification consequence

of the corresponding reduction type. Our idea was to make the

testing scheme adaptive. Therefore a prioirity is assigned to

each reduction method. Initially these values are chosen to set

up a basic ordering. We simply enumerate the tests from based
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on our computational study from easy to hard. So the tests are

called according to their priority. Whenever a test did alter the

current problem, we increment the priority of all the other tests

that may depend on the performed problem modification. To

keep the computational effort low, we still apply the 2-phase

division that first works all the easy tests.

Fig. 1: Arc AM indicates that test A may result in a problem

modification of type M .

Fig. 2: Arc MB indicates that a modification of type M may

have an impact on the success of test B.

IV. COMPUTATIONAL RESULTS

We ran our scheme on the ConFLP instances used in [4].

The problems consist of a random facility network with ran-

domly added customer assignments . The following parameters

were adjusted to create the problem classes: the probability

of creating an edge in the facility network, G[F ] (peF ), the

probability of creating a supply edge (peC) and the probability

of defining a facility node as a potential supplier (pFp).

Edge weights are randomly assigned ranging from 50 to 100

and opening costs from 150 to 200 respectively. Our C++

implementation of the presolving algorithm was tested on an

Intel Core 2 Duo E4300 machine with 1.8 GHz, 3.25 GB

RAM. We used the following default parameter setting: in the

bottleneck degree test we set m = 3; the maximal size of the

added groups was set to 2 and number of groups was limited

to 8. The simple categorization of tests into two complexity

classes already speeds up the overall testing procedure. The

number of easy test loops is about twice the number of hard

test repetitions. Moreover it saves computational effort to

exclude hard tests from a test loop, if no need can be detected

by the dependencies illustrated in the previous section. The

results shown in Table I are average values of 3 random

instances per group. The computation times did not exeed 5

minutes per instance. The graphs having a sparse facility

TABLE I: Average presolving effectiveness on 39 instances

(|F | = 100,|C| = 100) with the relative reductions rV and

rE on V end E. Each instance class consists of 3 random

instances.

Orig. ConFLP instance Presolved EConFLP instance
peF peC pFp |E| |EF | |EC | |E| |F | |C| rV rE
0.18 0.18 0.3 1131 590 540 435 33 93 36.5 61.5
0.18 0.18 1.0 2406 594 1811 1811 100 100 0.0 24.7
0.18 0.55 0.3 2215 587 1628 1702 49 100 25.3 23.2
0.18 0.55 1.0 6062 575 5486 5486 100 100 0.0 9.5
0.18 1.00 0.3 3575 575 3000 3103 57 100 21.2 13.2
0.18 1.00 1.0 10572 572 10000 10029 100 100 0.0 5.1
0.55 0.18 0.3 3070 2538 531 647 87 94 9.0 78.9
0.55 0.18 1.0 4347 2538 1808 1808 100 100 0.0 58.4
0.55 0.55 0.3 4179 2524 1654 1815 72 100 13.8 56.6
0.55 0.55 1.0 8023 2528 5495 5495 100 100 0.0 31.5
0.55 1.00 0.3 5518 2518 3000 3154 66 100 17.0 42.8
1.00 0.18 0.3 5506 4950 556 828 96 98 3.0 85.0
1.00 0.55 0.3 6569 4950 1619 1869 80 100 9.75 71.6

network (peF = 0.18) can be preprocessed with less effort

than others. The benefit of the applied methods obviously

depends on the density of the customer-facility network (peC).

If the bipartite subgraph is complete, the algorithm stops after

less than 2 seconds without any reduction. On the other hand

if both networks are sparse (peF = peC = 0.18) and not all

facilities are potential suppliers (pFp = 0.3), we are able to

significantly reduce the size of the inputs. We obtain graphs

whose numbers of nodes and edges are reduced by 36% and

61% respectively on average. We can also observe that the

sparsity of the graph G is not a sufficient condition for a

successful reduction. If Fp = F , i.e. pFp = 1, the presolving

is not able to remove nodes, even for a very sparse graph G[F ].
The worst results are obtained for graphs having a complete

bipartite structure and Fp = F . This can be explained by the

fact that many tests originally designed for the STP are not

directly applicable to potential suppliers. Since our benchmark

instances obey a uniform structure, in which every node has

almost the same degree, simple degree tests that lead facility

removals have no effect at all. In extreme cases, when the

degree of every customer equals |Fp|, the number of edges

could be reduced by only 5.1%. Finally, the most remarkable

reductions concerning the number of edges (between 71.6%

and 85%) are obtained for graphs having complete facility

networks.
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(a) (b)

Fig. 3: Presolving effect on a random instance.

V. CONCLUSIONS

In this paper we provide techniques for presolving instances

of the ConFLP embedded in an algorithmic framework. We

extend the concept of a the ConFLP by allowing terminal

facility nodes (being open or not) and groups of facilities

among which at least one needs to be included in the solution.

Afterwards we also describe how such an extended ConFLP

instance can be reversed into a ConFLP. The new extended

ConFLP concept enables the transfer of several known tests

for (group) Steiner tree problems and the facility location

problem. Furthermore, we propose a bunch of new presolv-

ing ideas for the ConFLP structure itself and test all of

them computationally. The overall methodology is based on

identified problem modification dependencies. Our algorithmic

framework is tested on a set of benchmark instances from the

literature showing that the proposed presolving is especially

beneficial for graphs obeying a sparse edge structure with

respect to the edges connecting only facilities, facilities and

customers, or both. We observe that increasing the number of

potential suppliers decreases the effectivity of the presolving

procedures. maximal degree m for the bottleneck test, are

determined manually, by running only a small number of

sample instances. One possible way to improve these features

is to use intelligent learning techniques to train these so-called

control values.
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