
Transformation of Special Multiplicity Constraints -
Comparison of Possible Realizations

Zdenek Rybola∗ and Karel Richta†‡
∗Faculty of Information Technology, Czech Technical University in Prague, Email: rybolzde@fit.cvut.cz

†Faculty of Mathematics and Physics, Charles University in Prague, Email: richta@ksi.mff.cuni.cz
‡Faculty of Electrical Engineering, Czech Technical University in Prague, Email: richta@fel.cvut.cz

Abstract—This paper deals with the transformation of binary
relationships from Platform Independent Model (PIM) in UML to
Platform Specific Model (PSM) for relational databases from the
point of view of Model Driven Development (MDD). The paper
summarizes the transformation of a binary relationship with
multiplicity constraints and focuses on problems of the current
approach for such transformations. In this paper, we deal with
the source class optionality that is usually omitted during the
transformation. We propose three various possible realizations
for the optionality constraint to be used in the transformation of a
PIM to a PSM. We also present some experiments to demonstrate
that our approach to the optionality constraint realization is
equivalent in execution time to the current approach of omitting
this constraint during the transformation while providing better
consistency control. Finally, we generalize our proposed solution
to be used for special multiplicity values used in a PIM.

I. INTRODUCTION

MODEL Driven Development (MDD) is a development

process based on modeling and transformations. It is

based on the Model Driven Architecture (MDA) developed by

the Object Management Group (OMG) [1], [2]. The process

usually consists of creating a set of models of various ab-

straction levels and points of view along with transformations

between these models. These transformations enable forward

engineering and reverse engineering – processes of transform-

ing abstract models into more specific models or source code,

and specific models into more abstract models, respectively.

This paper deals with the transformation of binary relation-

ships along with their multiplicity constraints from a Plat-

form Independent Model (PIM) to a Platform Specific Model

(PSM) for relational databases. As a running example, we use

UML to express the models and SQL as the domain specific

language of a relational database for the implementation.

Unified Modeling Language (UML) [3], [4] is a language for

creating and maintaining variety of models using diagrams

and additional components. Additional constraints for UML

models are defined in Object Constraint Language [5]. OCL

is a specification language used to define restrictions such as

invariants – conditions that must be satisfied by all instances

of the element –, pre- and post-conditions for connected model

elements and can be also used as a general object query

language.

In particular, we deal with a special case of a multiplicity

constraint used in many-to-one relationships where the mini-

mal multiplicity value of the many entity is equal to one. In

[6], this constraint is called the inverse referential integrity

constraint. This constraint is often used in models when we

need to restrict the required existence of both related entities

in such a relationship – none of them can exist without the

other one. An example of this situation could be a register

of students’ accommodation – we register only students with

an address and keep only addresses where someone lives (see

Fig. 2).

Many CASE tools provide support for the modeling in

UML and the MDD approach with transformation of mod-

els, for instance Enterprise Architect [7]. However, most of

the tools do not provide full support for MDD and omit

some aspects such as the source class optionality during the

transformations. Therefore we try to bring these aspects to

the attention by defining them in another formalism by OCL

invariants. Thanks to this approach, various OCL tools such

as DresdenOCL Toolkit [8] can be used to transform them

to an implementation. Finally, we generalize our proposed

mechanism for special multiplicity values. An example for this

situation could be a part of a university information system

where each year consists of exactly two or three terms. These

special multiplicity constraints are usually not realized at all

although they are defined in the model.

In our approach, according to the MDD approach, we

suggest transforming a PIM to a PSM for a relational database

together with OCL constraints for such multiplicity constraints

that cannot be restricted just by the FOREIGN KEY, UNIQUE

and NOT NULL constraints. The PSM is then transformed to

SQL scripts for database creation. The OCL constraints can be

transformed by an OCL tool. We also plan to develop a tool

that utilizes our approach and proposes the transformation of

a PIM and the PSM along with the OCL constraints to the

realizations we propose.

Our approach was already published in [9], [10]. In this

particular paper, we propose three various possible realizations

of the constraint to be used in the transformation process by a

database view, a check constraint or a trigger. We also present

some experimental comparison of our proposed realizations to

the common realization where the constraint is not realized.

The paper is structured as follows: In section II, we discuss

related work and existing tools and their problems. In section

III, the transformation of binary relationship and multiplicity

constraints is defined. The possible realizations of the special

constraint for source entity optionality are defined in section

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1357–1364

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 1357

IV. Experiments and their results are given in section V. Ge-

neralization of the mechanism for special multiplicity values is

given in section VI. In section VII, the conclusions are given.

II. RELATED WORK

The problem of transforming data PIM to relational database

schema is nothing new. There is a lot of books such as Rob

and Coronel [11] describing the principles of data modeling

and transformation to database schema, and tools such as

DresdenOCL [8] and Enterprise Architect [7] providing sup-

port for such modeling and transformations. Rob and Coronel

[11] suggest transforming entities to database tables with each

entity attribute transformed to a table column. Instances of

such entity are stored as rows in the corresponding table. A

relationship between two entities – the source and the target

entity, identified according to the direction and multiplicities

of the relationship in the PIM – is transformed in a FOREIGN

KEY constraint using the primary key of the table for the target

entity and a special column in the table of the source entity.

Using this mechanism we are able to restrict the optionality

of the target entity with a NOT NULL constraint and the

cardinality of the source entity with a UNIQUE constraint on

the table column referring to the target entity table. The target

entity cardinality is automatically ensured by the mechanism

of foreign key as any single table row can refer only to a single

target row. However, there is no way to restrict the optionality

of the source entity using just the foreign key. Rob and Coronel

[11] also suggest using an ON DELETE RESTRICT clause for

the foreign key constraint to prevent break of the target entity

optionality constraint if required. However, they suggest no

solution to restrict the source entity optionality. Therefore, a

special constraint has to be defined and realized to check this

restriction.

In [9], [10], we presented a more exact definition of the

transformation of a data PIM to a PSM for a relational database

from the point of view of binary relationships. We also defined

the minimal and maximal multiplicities of binary relationships

using OCL invariants and suggested transformation rules of

these binary relationships according to the defined multiplici-

ties. Finally, we defined a special constraint in OCL to ensure

minimal source multiplicity (i.e. optionality of the source

entity) and suggested a simple method how to implement it

in SQL on the PSM level. In our current paper, we present

other possibilities for transformation of the special constraint

for checking and ensuring the source entity optionality. We

also provide some experiments to compare performance of

the suggested implementations.

In [12], Cabot and Teniente identify various limitations

of current tools regarding code generation of the integrity

constraints defined in PIMs including OCL constraints and

multiplicity constraints. In our paper, we focus on the multi-

plicity constraints and propose possible realizations of such

constraints in relational databases. In addition to the tools

compared in [12], we also identify another CASE tool with

similar limitations. Enterprise Architect (EA) [7] is a complex

commercial CASE tool for maintaining models, transformation

Fig. 1. Labeling of the multiplicities of relationship between two classes

of models, source code generation and reverse engineering

process from a source code to a PSM. Beside others, it

provides a transformation from a PIM data model to a specific

database PSM model and generation of SQL source code from

such a PSM model. However, the default transformations of

Enterprise Architect do not consider optionality of relation-

ships to determine neither the direction of the relationship im-

plementation using the foreign key constraint nor the required

multiplicity restrictions. It does not support special multiplicity

values either. Although EA allows definition of OCL con-

straints, the constraints are not realized by the transformations.

In [6], the authors also identify a problem of current

relational databases in the realization of the source class

optionality constraint – they call this constraint an inverse

referencial integrity constraint (IRIC). The authors also present

an approach to the automated implementation of the IRICs

by database triggers in a tool called IIS*Case. This tool is

designed to provide complete support for developing database

schemas including checking consistency of constraints em-

bedded into the DB [6] and integration of subschemas into

a relational DB schema [13].

III. TRANSFORMATION OF PIM TO PSM FOR RELATIONAL

DATABASES

Our approach to the transformation of a data PIM to a PSM

for relational databases has been introduced in [9], [10]. This

section brielfy summarizes our approach.

A. Platform Independent Model

In the platform independent model (PIM), each object of a

problem domain is represented by a class – in some models

called an entity – with a set of attributes and its instances

[4]. The classes are connected together by associations to

represent relationships between objects. Each association has

its name to describe the meaning of the relationship and

multiplicities to define the number of instances of each entity

related together. Fig. 1 shows the general form of modeling a

binary relationship using UML class diagram [4].

The minimal multiplicity defines the minimal number of

instances of one entity related to a single instance of the

other entity. However, this constraint is usually used only to

define the obligation of the entity to be related to the other

entity by using the values 0 for optional or 1 for required

occurrence, respectively. Therefore the minimal multiplicity is

sometimes called optionality. The maximal multiplicity – also

called cardinality – defines the maximal number of instances

of one entity related to a single instance of the other entity.

1358 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Fig. 2. PIM of one-to-many relationship of addresses and students

However, this constraint is usually used only to restrict the

number of instances to a single instance by using the values

of * for unrestricted number of instances or 1 for a single

instance, respectively. In Fig. 1, k and l define the minimal

and maximal multiplicities of instances of ClassA related to a

single instance of ClassB, while m and n define the minimal

and maximal multiplicities of instances of ClassB related to

a single instance of ClassA. In the following, we focus on

the definition and realization of constraints for the optionality

and cardinality constraints, i.e. multiplicity values 0, 1 and *.

The generalization of the constraints for special multiplicity

values – i.e. other values of multiplicities – is mentioned in

section VI.

B. Transformation to Platform Specific Model

In general, data is stored as rows in database tables with a

set of columns to store specific data in a relational database.

Therefore, the classes of a PIM are transformed to database

tables with columns corresponding to the classes’ attributes.

Each row in a database table is identified by a primary key.

Associations defined in a PIM are realized by a mechanism

called foreign key [11]. This mechanism adds a special column

to one of the related tables – the source table in the terms

of the direction of the relationship realization – that links a

row in that table to a single row in the other – target – table

using the target’s primary key. Using this mechanism, each row

can refer only to a single target row so we can only realize

one-to-one and one-to-many relationships, and therefore the

target cardinality is always restricted to one. However, many-

to-many relationships can be transformed into two many-to-

one relationships and then transformed the usual way using

the foreign key mechanism as well [11].

In fact, this restriction is the most important key to deter-

mine the direction of the relationship realization. The Fig. 2

shows one-to-many relationship between classes Address and

Student with the meaning of many students being able to live at

the same address. The cardinality n = * requires the realization

by the foreign key referring from the table Student to the table

Address as shown in Fig. 3, and therefore restricting the target

cardinality l = 1. Furthermore, the model defines the source

optionality m = 1.

By defining the FOREIGN KEY constraint, we automati-

cally restrict the target cardinality to l = 1 because a single

foreign key value always refers to a single target row [14]. A

NOT NULL constraint can be used to restrict the value to be

entered for each row and so make each row to be related

to some target row, determining the target optionality k =

1. Furthermore, a UNIQUE constraint would prevent from

entering more rows in the source table with the same foreign

key value, determining the source cardinality n = 1 – however,

this is not our case.

The only multiplicity value we have not restricted yet is

the source optionality m = 1. There is no possible way to

restrict the source entity optionality using just the foreign

key mechanism. As mentioned earlier, the usual method is

to omit this restriction and provide the constraint check by

the application using the database schema [11], [9]. However,

we present a method to create a special constraint realization

to restrict the source optionality using special constraint to

keep the database schema consistent independently of the

application. This constraint can be expressed using OCL on

the PSM level like this:

context a:Address inv minStudents:

Student.allInstances()

->exists(s | s.address_id = a.address_id)

IV. REALIZATION OF THE SOURCE ENTITY OPTIONALITY

CONSTRAINT

The special constraint for optionality restriction of the

source entity defined above can be transformed into several

various realizations. This section deals with these possible

realizations and their pros and cons. The proposed realizations

are given in the Oracle SQL syntax.

A. Database views

The most straightforward realization of the constraint are

database views [9], [10]. Each constraint is transformed into

a database view to filter only valid data stored in a table.

This approach is inspired by DresdenOCL Toolkit [8] which

transforms constraints defined in OCL into database views.

These views contain only the rows that satisfy the defined

constraint using the WHERE clause. The realization of the

constraint for the optionality of Student in Fig. 3 can be

defined as follows:

CREATE VIEW valid_addresses AS

SELECT a.* FROM Address a WHERE EXISTS

(SELECT 1 FROM Student s

WHERE s.address_id = a.address_id)

However, this approach does not ensure the data stored

in the database are consistent. We are still able to insert

invalid data violating the defined multiplicity constraints. The

application itself must use the view to work only with the valid

data and provide support to correct the invalid data. For this

process, an inverse view can be useful to detect the invalid

data violating the constraints. Such an inverse view can be

defined as follows:

CREATE VIEW invalid_addresses AS

SELECT a.* FROM Address a WHERE NOT EXISTS

(SELECT 1 FROM Student s

WHERE s.address_id = a.address_id)

ZDENEK RYBOLA, KAREL RICHTA: TRANSFORMATION OF SPECIAL MULTIPLICITY CONSTRAINTS - COMPARISON OF POSSIBLE REALIZATIONS 1359

Fig. 3. PSM of one-to-many relationship of addresses and students

The realization using database views does not increase the

time required for inserting new entries in the tables. However,

the selection of valid data consists of evaluating the condition

of the view and thus increasing the time required to get the

data.

B. CHECK constraint

In relational databases, CHECK constraint can be used to

restrict values in a column of a table [14]. The constraint is

checked whenever a value is inserted or updated in the column

and the operation is rolled back if the constraint fails. Such a

constraint can restrict range for numeric values or provide a list

of valid values. Using this approach, we can define a CHECK

constraint to allow only the primary key values of addresses

that are referred by rows in the students’ table. According to

the SQL:1999 specification [14], the constraint for the situation

in Fig. 3 can be defined as follows:

ALTER TABLE Address

ADD CONSTRAINT address_check

CHECK (address_id IN

(SELECT address_id FROM Student))

However, after adding this constraint to the database schema

we would not be able to insert new data because of two

inverse checks – the CHECK constraint requiring existing

students for an address, and the FOREIGN KEY constraint

requiring an existing address for a student. This conflict can

be resolved by deferring one of the constraints [14]. Defining

a constraint deferrable makes the database engine to check the

constraint at the end of the transaction instead of checking it

in the time of inserting the data. Using the deferred FOREIGN

KEY constraint, we can insert students referring to an address

not yet inserted and then insert that address. The CHECK

constraint is evaluated when inserting the address but there

already exist students referring to it. On the other hand, the

FOREIGN KEY constraint is not evaluated while inserting

students – when it would fail –, instead it is evaluated in the

end of the transaction when the address is already inserted.

The deferred FOREIGN KEY constraint can be defined as

follows:

ALTER TABLE Student

ADD CONSTRAINT student_address

FOREIGN KEY (address_id)

REFERENCES Address

DEFERRABLE INITIALLY DEFERRED;

Using this realization, the data consistence is ensured

because it is impossible to insert invalid data. However,

there are some problems with this realization. One of the

problems is that if a violation is detected by the deferred

constraint the whole transaction is rolled back as it can not be

determined which command have caused the violation [14].

Another important problem of this realization is the fact that,

although specified by the SQL:1999 specification [14], none of

current common database engines support this kind of CHECK

constraints as it contains a subquery. Therefore we can not use

this realization until the database engines provide the support

for this specification.

C. Trigger

Triggers are special procedures available in many relational

databases [14] connected to some special events on a table.

Each trigger can be defined to be executed BEFORE or

AFTER such event while the event can be any statement

to insert new rows, update rows or delete rows, including

its combination. Furthermore, triggers can be defined to be

executed for each affected row or for all rows affected by

the statement at once. During the execution of the trigger, the

original row data and the new row data can be accessed using

special keywords.

In context of constraints checking, a trigger can be defined

to check the validity of the updated data. Such a trigger would

throw an exception if the updated data is invalid or make the

other data invalid. For the situation in Fig. 3, the trigger would

check existence of students for the inserted or updated address.

Similar trigger should be created before updating or deleting

students to prevent removing the last student of an address.

The insert and update trigger for Oracle 10g database can be

defined as follows:

1360 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

CREATE OR REPLACE TRIGGER check_students

BEFORE INSERT OR UPDATE ON Address

FOR EACH ROW

DECLARE

l_count NUMBER;

BEGIN

SELECT COUNT(*) INTO l_count

FROM Student s

WHERE s.address_id = :new.address_id;

IF l_count = 0 THEN

raise_application_error

(-20910,

’student not found for address’);

END IF;

END

This trigger is executed before each insert or update state-

ment executed for the address table. Students referring the

inserted address by its primary key are searched. If no students

are found, exception is thrown causing the statement to be

rolled back. Because this trigger is always executed in the

time of address insertion, the students must be inserted before

this statements. To enable this the FOREIGN KEY constraint

must be defined deferrable as described in the previous section.

The trigger ensures the data stored in the database is

consistent as it does not allow to insert invalid data violating

the multiplicity constraint. However, the check is executed

for each address insertion or update searching for the related

students. This search takes the longer time the more records

are already stored in the table. However, this searching time

can be decreased by defining an index on the foreign key value

in the referring table. For the situation in Fig. 3, the index can

be defined as follows:

CREATE INDEX students_addresses_index

ON Student (address_id);

V. EXPERIMENTS

To prove that our proposed realizations are suitable for wide

usage in relational databases, we made some experiments.

These experiments compare our proposed realizations to the

commonly used realization without realizing such constraint in

two areas - inserting new entries with the triggers and selecting

through the view.

The suggested realization by triggers requires select ope-

rations executed while inserting new entries to the table.

Therefore we made an experiment to compare our suggested

realization by triggers to the commonly used realization omit-

ting this constraint. In this experiment, the realization by the

check contraint should have been also tested but it cannot be

implemented in Oracle database as it does not support queries

in check constraints.

On the other hand, the suggested realization by views to

be used to select only valid data requires additional condition

evaluation while selecting. Therefore, we also made experi-

ments to compare the time of selection of entries from the

Address table directly and using the view.

TABLE I
VARIANTS OF CREATE SCRIPTS FOR VARIOUS CONSTRAINT REALIZATIONS

(+ IMPLEMENTED, * IMPLEMENTED DEFERRABLE, - NOT IMPLEMENTED)

Variant primary keys foreign key index trigger
Foreign key + + - -
Trigger + * - +
Trigger with index + * + +

Fig. 4. Pseudo-SQL code of experimental insert scripts

We used Oracle 10g XE database for our experiments.

A. The Insertion Experiment

The experiment presents evaluation time comparison of

inserting new entries for various implementations of a one-to-

many relationship in a relational database for various number

of entries already stored in the tables. We developed several

creation scripts for creating the database tables with constraints

and appropriate insert scripts for each implementation to

simulate the process of inserting new entries in the database

schema.

Table I presents the constraint implementation for each

variant. The Foreign key variant is the standard realization of

one-to-many relationship with a primary key in both tables

and a foreign key referring from the table Student to the table

Address. This variant does not restrict minimal multiplicity for

students living at an address. The Trigger variant adds a trigger

to check existing student for each address. In this variant, the

trigger prevents inserting addresses where no students live.

Finally, the Trigger with index variant adds an index on the

address id in the table Student to speed up the search of

students by their address.

The pseudo-SQL code of the insert script is given in Fig.

4. First, the insert script tries to insert students with incorrect

reference to an address. This constraint violation is checked

by the foreign key in each of the variants. Second, the script

inserts several students with reference to a new address. The

number of students referring to the same address differs to

check the options of inserting no, one or more students for

an address, respectively. A commit operation comes after

each group of students with the same address to apply the

constraints check. In the case of the constraint implementation

ZDENEK RYBOLA, KAREL RICHTA: TRANSFORMATION OF SPECIAL MULTIPLICITY CONSTRAINTS - COMPARISON OF POSSIBLE REALIZATIONS 1361

Fig. 5. Execution time of insertion of new entries for various implementation variants

TABLE II
THE RESULTS OF THE INSERTION EXPERIMENT - EXECUTION TIMES OF

NEW ENTRIES INSERTION FOR VARIOUS IMPLEMENTATIONS IN SECONDS.

Number of entries Foreign key Trigger Trigger with index
0 0.061 0.387 0.068

100 0.082 0.381 0.090
1000 0.098 0.422 0.100

10000 0.093 0.540 0.088
100000 0.089 1.460 0.155

1000000 0.110 12.579 0.262

by a trigger, the students are inserted before the address

because the trigger checks the value immediately while the

foreign key is deferred.

Fig. 5 presents execution time of the insertion of 100

new entries for each variant in a database already containing

various number of entries. As we can see, the Foreign key

variant results to be the fastest as there are no constraints to

check when inserting. However, the optionality of students for

each address is not checked and addresses without students are

inserted, too. The Trigger variant enforces only valid addresses

to be inserted, however, the constraint check slows down

the evaluation the more entries already exist in the tables.

However, the Trigger with index variant results to be only

slightly slower than the Foreign key while enforcing only

valid data inserted to the database. The measured data is

summarized in the Table II.

B. The Selection Experiment

This experiment presents a comparison of the execution time

of a SELECT operation from the table Address directly and

using the view for accessing only the valid data. Two different

types of SELECT queries were measured – a select using the

primary key value to get a single result and a select using not-

indexed column of unique values to get a single result. Three

various implementations were measured for each select. The

Table variant presents selects from the table Address directly

without checking the constraint. The View variant presents

selects from the view ValidAddresses defined over the table

Address to check the existent entries in the Student table and to

select only from valid addresses. The View with index variant

presents selects from the view ValidAddresses defined over

the table Address with an index defined on the address id in

the table Student to speed up the search of students by their

address while checking the existence. All select variants are

summarized in Table III.

Fig. 6 presents results of the experiment. It shows the

execution time of each variant for various number of addresses

stored in the Address table together with associated students in

the Student table. The Table variants result to be fastest as there

is no additional condition to check the constraint. However,

the query returns both valid and invalid data according to

the constraint. The View variants become much slower when

more entries are stored in the tables because of the additional

constraint with a subquery to check the valid addresses.

However, only valid addresses according to the constraint are

returned. The index defined over the foreign key value in the

Student table speeds up the subquery execution rapidly as

shown by the View with index variant results. Therefore, the

View with index variant results to be equivalent in the execution

time to the selection from the table directly while returning

only the valid data. The measured data is summarized in the

Table IV.

VI. SPECIAL MULTIPLICITIES

Usually, multiplicities of binary relationships are used to

restrict obligation of the relationship existence and to define if

the relationship is limited to only one entity. In other words,

the target minimal multiplicity defines if there has to be a

related target entity (m = 1) or not (m = 0) while target

maximal multiplicity defines if there can be a collection of

related target entities for each source entity (n = *) or just one

target entity (n = 1). The same stands for source multiplicities.

However, in practise, we can use multiplicities to restrict

the numbers of related entities more strictly – we can define

a range of numbers. In Fig. 7, a small part of university

information system is shown. We define class Year consisting

of exactly two terms – winter term and summer term. Using the

common mechanism of foreign key, the model is transformed

to table Year and table Term as shown in Fig. 8. A foreign

1362 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

TABLE III
VARIANTS OF SELECTS EXECUTED AND MEASURED

Select Variant Condition Source Index in the Student table
S1A Table address id table Address not defined
S1B View address id view ValidAddresses not defined
S1C View with index address id view ValidAddresses defined
S2A Table street table Address not defined
S2B View street view ValidAddresses not defined
S2C View with index street view ValidAddresses defined

Fig. 6. Execution time of selection of entries for various implementation variants

TABLE IV
THE RESULTS OF THE SELECTION EXPERIMENT - EXECUTION TIMES OF SELECT OPERATIONS FOR VARIOUS IMPLEMENTATIONS IN SECONDS.

Number of entries S1A S2A S1B S2B S1C S2C
1 0.001 0.004 0.003 0.001 0.001 0.001

100 0.001 0.002 0.001 0.001 0.001 0.001
1000 0.001 0.001 0.001 0.002 0.001 0.001

10000 0.001 0.006 0.005 0.009 0.001 0.006
100000 0.001 0.055 0.044 0.089 0.001 0.054

1000000 0.003 0.552 0.691 0.994 0.005 0.495
5000000 0.051 7.523 17.168 24.547 0.065 7.426

key constraint is created in the table Term referring an entry

in the table Year. The foreign key value can be restricted by

NOT NULL constraint to enforce each term having a year

related. No UNIQUE contraint will be defined for the foreign

key value to enable having more terms referrencing the same

year. However, there is no way to restrict the number of terms

related to a single year to exactly two as defined in the model

just by the foreign key mechanism.

These restrictions are usually omitted during transformation

and constraints are not at all realized or must be implemented

manually. However, we can generalize our proposed mecha-

nism to restrict the number of terms in PSM [9], [10]. Using

this mechanism, OCL invariants can be automatically defined

for the multiplicities in PIM and realized by views and triggers

in PSM of relational database. This way, we can easily check

the consistency of data in the schema and enforce inserting

only valid data according to the restrictions in defined in PIM.

Fig. 7. PIM of year and terms with special multiplicities

VII. CONCLUSIONS

In this paper, we summarized the currently used method

for modeling binary relationships in data models using UML

class diagram. We showed the way to define multiplicity

constraints in the model. Furthermore, we showed the usual

transformation of the model from PIM to PSM for relational

database and showed the usual transformations for multiplicity

ZDENEK RYBOLA, KAREL RICHTA: TRANSFORMATION OF SPECIAL MULTIPLICITY CONSTRAINTS - COMPARISON OF POSSIBLE REALIZATIONS 1363

Fig. 8. PSM of year and terms with special multiplicities

constraints using FOREIGN KEY, NOT NULL and UNIQUE

constraints in SQL.
We pointed out the constraint for the source entity op-

tionality. This constraint is often used in the model but not

realized in the database because the foreign key is insufficient

to realize it. Therefore, we defined this constraint in another

formal way by an OCL invariant and suggested three methods

of realization of this special constraint.
We also compared the suggested realizations to the currently

used approaches in context of the execution time while insert-

ing new data to the tables and selecting existing data from

the table. The trigger realization of the special constraint with

an index created on the foreign key column was proved in

the insertion experiment to be able to prevent the insertion

of invalid data in the database schema and, in the same

time, to be still comparable in the execution time to the

realization omitting this constraint. On the other hand, the

view implementation with the index created on the foreign

key column was proved in the selection experiment to be able

to filter our the invalid data and, in the same time, to be

equivalent in the execution time to selection from the table

directly. Therefore, we suggest the constraint to be realized

by transformations in CASE tools’ transformations of data

models to relational databases either by the trigger to prevent

inserting invalid data or the view to filter invalid data from

selecting. This realization will definitelly support the analysis

and design processes to create consistent database schemas

using the MDD approach.
Furthermore, as we have shown, our proposed mechanism

can be easily used to automatically generate constraints for

special multiplicity values used in PIM. These constraints are

transformed to database views and triggers in the same way

enforcing the data to be valid according to the multiplicities

in the PIM.

VIII. ACKNOWLEDGEMENTS

We would like to thank for financial support of Stu-

dent Grant Competition of CTU in Prague, grant number

SGS12/093/OHK3/1T/18 and also to AVAST Foundation in

Prague.

REFERENCES

[1] OMG, “Object management group,” http://www.omg.org/, Dec. 2011.
[2] OMG, J. Miller, and J. Mukerji, “MDA guide version 1.0.1,”

http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf, Jun. 2003.
[3] OMG, “UML 2.3,” http://www.omg.org/spec/UML/2.3/, Feb. 2011.
[4] J. Arlow and I. Neustadt, UML 2.0 and the Unified Process: Practical

Object-Oriented Analysis and Design (2nd Edition). Addison-Wesley
Professional, 2005.

[5] OMG, “Object constraint language, version 1.3,”
http://www.omg.org/spec/OCL/2.2/PDF, Feb. 2010.

[6] S. Aleksić, S. Ristić, and I. Luković, “An approach to generating
server implementation of the inverse referential integrity constraints,”
in Proceedings. Amman, Jordan: AL-Zaytoonah University of Jordan,
May 2011.

[7] Sparx Systems, “Enterprise architect - UML design
tools and UML CASE tools for software development,”
http://www.sparxsystems.com.au/products/ea/index.html, Mar. 2011.

[8] B. Demuth, “DresdenOCL,” http://www.reuseware.org/index.php/DresdenOCL,
Jan. 2011.

[9] Z. Rybola and K. Richta, “Transformation of binary relationship with
particular multiplicity,” in DATESO 2011, vol. 11. Pı́sek, Czech
Republic: Department of Computer Science, FEECS VSB - Technical
University of Ostrava, Apr. 2011, pp. 25–38. [Online]. Available:
http://www.informatik.uni-trier.de/˜ley/db/conf/dateso/dateso2011.html

[10] K. Richta and Z. Rybola, “Transformation of relationships from
UML/OCL to SQL,” in ITAT 2011: Zbornı́k prı́spevkov prezentovaných

na konferencii ITAT, vol. 11. Terchová, Slovakia: University of
P. J. Šafárik, Košice, Slovakia, Sep. 2011. [Online]. Available:
http://itat.ics.upjs.sk/proceedings/itat2011-zbornik.pdf

[11] P. Rob and C. Coronel, Database Systems: Design, Implementation, and

Management, 2nd ed. Boyd & Fraser, 1995.
[12] J. Cabot and E. Teniente, “Constraint support in MDA

tools: A survey,” in Model Driven Architecture Foundations

and Applications, ser. Lecture Notes in Computer Science,
A. Rensink and J. Warmer, Eds., vol. 4066. Springer
Berlin / Heidelberg, 2006, pp. 256–267. [Online]. Available:
http://www.springerlink.com/content/4902321654674181/abstract/

[13] I. Luković, P. Mogin, J. Pavićević, and S. Ristić, “An approach to
developing complex database schemas using form types,” Software:

Practice and Experience, vol. 37, no. 15, p. 16211656, Dec. 2007.
[Online]. Available: http://dx.doi.org/10.1002/spe.v37:15

[14] J. Melton, Advanced SQL:1999. Morgan Kaufmann Publishers, 2003.

1364 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

