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Abstract—The problem of fair resource allocation is of consid-
erable importance in many applications. In this paper advanced
aggregation operators based on the Ordered Weighted Averag-
ing (OWA) are utilized as consistent and fairness–preserving
approach to modeling various preferences with regard to dis-
tribution of Internet traffic between network participants. The
networking model based on Wireless Mesh Networks is consid-
ered. The physical medium properties cause strong interference
among simultaneously operating node devices, which makes the
optimization problem extremely difficult. We show that in this
case OWA–based aggregation operators can be utilized just as
easily as traditional lexicographic operators.

I. INTRODUCTION

W IRELESS Mesh Network (WMN) is an organized

cooperating group of network devices communicating

with each other by means of wireless media. The nodes are

organized in a mesh topology, where each wireless device

not only sends and receives its own data but also serves as

a relay for other nodes. Some of the nodes can be connected

to cable network or mobile network and serve as Internet

gateways. This way the whole mesh network constitutes

a decentralized way of providing Internet access between

attending participants.

This network type poses numerous advantages including

setup cost, independence of the hardwired infrastructure and

flexibility. However, providing fair and efficient network man-

agement, including routing and scheduling, is not a straight-

forward task. The main source of difficulty lies in physical

medium properties that cause strong interference among si-

multaneously operating devices. Additionally the link quality

is a function of the distance and can be affected by obstacles

present between the nodes. As a result the efficient network op-

eration requires transmission scheduling, channel assignment

and transmission power determination.

Common objective of the optimization is maximization of

the total throughput while retaining fairness in its distribution

between participants.

In many network optimization problems, fairness is accom-

plished by simple max-min optimization with regularization

through minimization of the second largest outcome (provided

that the largest one remains as small as possible), minimization

of the third largest (provided that the two largest remain as

small as possible), and so on. This approach, called MMF

(Max-Min Fairness) prevents some demands with structurally

low throughputs from blocking/disabling the max-min func-

tion. This is, however, a stiff approach that usually does not

allow any other criteria, the overall efficiency (total through-

put) in particular. Moreover, it requires sequential repeated

optimization of the original problem.

In this paper we show the application of the ordered

weighted averaging (OWA) aggregation with extensions as

consistent, reasonable and fairness–preserving approach to

modeling various preferences (from the extreme pessimistic,

through neutral to extreme optimistic) with regard to distribu-

tion of Internet throughput between network participants.

In the OWA aggregation ([20], [21]) the weights are

assigned to the ordered values (i.e., to the largest value, the

second largest and so on) rather than to the specific criteria.

The OWA operator provides a parameterized family of

aggregation operators, which include many of the well-known

operators such as the maximum, the minimum, the k-order

statistics (including CVaR), the median and the arithmetic

mean. The OWA satisfies the properties of strict monotonicity,

impartiality and, in the case of monotonic increasing weights,

the property of equitability (satisfies the principle of transfers –

equitable transfer of an arbitrary small amount from the larger

outcome to a smaller outcome results in a more preferred

achievement vector). Thus the OWA-based optimization

generates the so-called equitably efficient solutions (cf.[8]

for the formal axiomatic definition). According to [8] and

[16], equitable efficiency expresses the concept of fairness, in

which all system entities have to be treated equally and in the

stochastic problems equitability corresponds to the risk aver-

sion [3]. Since its introduction, the OWA aggregation has been

successfully applied to many fields of decision making [22],

[21], [11]. When applying the OWA aggregation to multicrite-

ria optimization, the weighting of the ordered outcome values

causes that the OWA optimization problem is nonlinear even

for linear programming formulation of the original constraints

and criteria. Yager has shown that the nature of the nonlinearity

introduced by the ordering operation allows one to convert

the OWA optimization into a mixed integer programming

problem. We have shown [13] that the OWA optimization

with monotonic weights can be formed as a standard linear

program of higher dimension. Its significant extension
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introduced by Torra [18] incorporates importance weighting

into the OWA operator forming the weighted OWA (WOWA)

aggregation as a particular case of Choquet integral using a

distorted probability as the measure. The WOWA averaging is

defined by two weighting vectors: the preferential weights and

the importance weights. It covers both the weighted means

and the OWA averages as special cases. Some of the example

applications of importance weights include definition of the

size or importance of processes in a multi-agent environment,

setting scenario probability (if uniform objectives represent

various possible values of the same uncertain outcome under

several scenarios), or job priorities in scheduling problems. In

[14] we have shown that in the case of monotonic preferential

weights also WOWA aggregation can also be modeled by a

mere linear extension of the original problem.

The paper is organized as follows.

II. FLOW OPTIMIZATION IN WMN

The WMN networking technology has been drawing an

increased attention over the last years (see literature overview

in [15] and references therein). Due to complexity of the

problem usually some sort of simplifications are assumed.

The problem considered in this paper can be stated as fol-

lows. There is given a WMN network with a number of

nodes – routers and gateways. The nodes are interconnected

wirelessly in compliance with all the physical constraints and

requirements including signal loss with increasing distance and

interference occurring during simultaneous operation. Each

node can be either sending or receiving data, but not both

at the same time. There is a number of modulation and

coding schemes (MCS) used for communication between the

nodes with different properties with regard to speed, maximum

allowable interference and the distance. Each MCS has its

signal to interference plus noise ratio (SINR) requirement

that must be fulfilled in order to successfully transmit data.

Only one fixed transmitting power and single channel are

assumed, but MCS can be dynamically allocated. The network

model consists only of links for which at least one MCS

can be applied, and this requirement reduces to the maximum

allowable distance between the nodes.

Only downstream communication direction from gateways

to routers is considered. For each router there is a single

predefined path leading to a chosen gateway. The routers have

elastic traffic demand, which means they can consume all the

possible network capacity. The demands compete for network

resources to get as much throughput as possible.

The objective is to maximize total throughput preserving

fairness among competing demands.

The solution approach is based on the concept of compatible

sets introduced in [4]. Compatible set consists of links that

can operate at the same time within given interference model.

The basic solution concept consists in linear approximation

of the model and consecutive generation of the compatible

sets improving current solution within the column generation

schema. The approximation is needed if the time horizon

is divided into fixed-length time slots, if not the solution is

optimal.

Although we consider only specific problem, the solution

concepts involving application of WOWA operators can be

utilized for many other variants of WMN problems including

different capacity reservation models (see [15]).

A. Notation

Wireless mesh network topology is represented by a directed

graph N = (V, E), where V = G ∪R is the set of nodes from

which we distinguish the set of gateways and set of mesh

routers denoted respectively by G and R, and E is the set of

(radio) links.

The (potential) link between two nodes v, w ∈ V is modeled

by a directed arc e = (v, w) ∈ E , where a(e) = v is the

originating node that can transmit a signal of a given power

Pvw to its terminating node b(e) = w. Additionally, we assume

that if arc e = (v, w) ∈ E exists then an opposite arc e′ =
(w, v) ∈ E also exists. Furthermore, the sets of outgoing and

incoming arcs from/to node v ∈ V are denoted, respectively,

by δ+(v) and δ−(v), while δ(v) = δ+(v) ∪ δ−(v) is the set

of all arcs incident to node v.

Nodes are transmitting using one of the available modula-

tion and coding schemes (MCSs) denoted by m ∈ M, where

M is the set of all MCSs (to simplify the considerations, we

assume that the set of available MCSs M(e) = M, e ∈ E).

The (raw) data rate of transmission using MCS m is denoted

by Bm.

The (radio) link e = (v, w) can successfully transmit if the

signal to noise ratio (SNR) for the arc e is greater than a

certain threshold value denoted by γm for at least one MCS

m ∈ M:

Γ′
e =

Pvw

N
≥ γm, (1)

where N = 10−10.1 mW is the ambient noise power.

At any arbitrary time instance the transmission of other

nodes can interfere with transmission on e. The corresponding

signal to interference plus noise ratio (SINR) condition for

successful transmission on e using MCS m reads as follows:

Γe =
Pvw

N +
∑

a∈A\{v} Paw
≥ γm, (2)

where A ⊆ V is the set of active nodes which are transmitting

at the same time.

Moreover, we assume that a node can either transmit or

receive, or be inactive, that is,

A ∩ {b(δ+(v))} 6= ∅ ⇒ A ∩ {a(δ−(v))} = ∅ v ∈ V (3)

A ∩ {a(δ−(v))} 6= ∅ ⇒ A ∩ {b(δ+(v))} = ∅ v ∈ V (4)

Each router r ∈ R is connected with a selected gateway g ∈
G by a directed path pd (i.e. a subset of links, pd ⊆ E) that is

supposed to carry the entire downstream flow fd from gateway

g to router r (to simplify the formulations we do not consider

the upstream direction). The set of routers is considered as

demands and denoted by d ∈ D, where D = V \ G. Let
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P = {p1, . . . , pD} be the given set of paths between routers

and gateways, where D = |D|. For each link e ∈ E , the set of

all indices of paths in P that contain this link will be denoted

by Qe = {d : e ∈ pd, 1 ≤ d ≤ D}.

B. Compatible sets

A compatible set (CS) is defined as a subset Ei of links

Ei ⊆ E together with a particular MCS me, e ∈ Ei that each

link is using so that each link can be active simultaneously (i.e.

transmit without generating too much interfering with other

links). In other words, a compatible set is defined by Ei =
{(e,m) ∈ E × M : yme = 1}, where variables yme form a

feasible solution that satisfy (2) and (3)–(4).

1) Master problem: Using the family of compatible sets

denoted by I, the formulation of max-min fair (MMF) flow

optimization problem reads as follows:

max f (5)

f ≤ fd d ∈ D (6)
∑

d∈Qe

fd ≤ ce e ∈ E (7)

ce =
∑

i∈I

Beizi e ∈ E (8)

∑

i∈I

zi = T (9)

z ≥ 0 (10)

In the presented formulation, T is the time of network

operation, Bei is the (raw) data rate of a transmission using

MCS m ∈ M allocated to link e ∈ E in compatible set i ∈ I,

i.e. either Bm or 0, depending on whether link e is active or

not in the compatible set i, and ce is total amount of data that

can be transmitted over link e ∈ E in a time interval T. This

formulation is a non-compact (|I| grows exponentially in the

network size), continuous approximations of the MIP problem

involving time slots (see [15]) - continuous variables zi define

the number of time slots assigned to a compatible set within

the time T.

2) Pricing problem: The pricing problem we consider

corresponds to a WMN system in which there are multiple

MCSs available and each node can use different MCS in

different compatible set. The following formulation is referred

to as dynamic allocation of MCSs to nodes:

max
∑

e∈E

π∗
eBe (11)

Xv =
∑

m∈M

xm
v v ∈ V (12)

Ye =
∑

m∈M

yme e ∈ E (13)

∑

e∈δ(v)

Ye ≤ 1 v ∈ V (14)

∑

e∈δ+(v)

yme = xm
v v ∈ V,m ∈ M (15)

zmev ≥ yme +Xv − 1 v ∈ V, e ∈ E ,m ∈ M (16)

zmev ≤ yme , zmev ≤ Xv v ∈ V, e ∈ E ,m ∈ M (17)

Nyme +
∑

v∈V\{a(e)}

Pvb(e)z
m
ev ≤

1

γm
Pa(e)b(e)y

m
e

e ∈ E ,m ∈ M

(18)

Be =
∑

m∈M

Bmyme e ∈ E (19)

Each node v ∈ V and each link e ∈ E can use at most

one MCS m ∈ M in the compatible set (12)–(13). At most

one link e ∈ δ(v) incident to node v can be active (14) and

exactly one link e ∈ δ+(v) outgoing from node v is active and

uses MCS m (15), provided the node is active and uses this

MCS in the compatible set. The constraints (16)–(18) assure

admissible SINR for link e using MCS m in the compatible

set. The (raw) data rate Be of link e in the compatible set is

found by (19).

III. FAIR AGGREGATION OPERATORS

As stated before the basic operator used to preserve fairness

among outcomes is max-min, regularized by lexicographic

maximization of the second worst outcomes (provided that the

worst one remains as large as possible) , third worst outcomes

(provided that the two largest remain as large as possible),

and so on (MMF). In the case of linear problem it is possible

to carry out the MMF procedure based on simple algorithm

that in each step uses the dual information to determine the

outcomes that are blocked at their highest values possible. In

the following steps, only the outcomes are optimized that have

not been blocked before (for details see [15]).
The WOWA aggregation is based on the ordered weighted

averaging operator introduced first by Yager [20]. In the

OWA aggregation of outcomes y = (y1, . . . , ym) weights

w = (w1, w2, . . . , wm) are assigned to the ordered values

rather than to the specific criteria:

Aw =

m
∑

i=1

wiθi(y) (20)

where (θ1(y), θ2(y), . . . , θm(y) = Θ(y) is the ordering map

Rm → Rm with θ1(y) ≤ θ2(y) ≤ . . . ≤ θm(y) and there
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exists a permutation τ of set I such that θi(y) = yτ(i) for

i = 1, 2, . . . ,m.

If the weights are monotonic w1 > w2 > . . . > wm−1 >
wm, the OWA aggregation has the property of equitability [13],

that guarantees that an equitable transfer of an arbitrarily

small amount from the larger outcome to a smaller outcome

results in more preferred achievement vector. Every solution

maximizing the OWA function is then an equitably efficient

solution to the original multiple criteria problem. Moreover,

for linear multiple criteria problems every equitably efficient

solution can be found as an optimal solution to the OWA

aggregation with appropriate weights.

For the maximization problem the OWA objective aggre-

gation can be formulated as linear extension of the original

problem, as follows. Let us apply linear cumulative map to

the ordered achievement vectors Θ(y)

θ̄k(y) =
k

∑

i=1

θi(y) k = 1, 2, . . .m (21)

As stated in [13], for any given vector y ∈ Rm, the cumulated

ordered coefficient θ̄k(y) can be found as the optimal value

of the following LP problem:

θ̄k(y) = max ktk −
m
∑

i=1

dki (22)

subject to

tk − yi ≤ dki, dki ≥ 0 i = 1, 2, . . . ,m (23)

The ordered outcomes can be expressed as differences θi(y) =
θ̄i(y)− θ̄i−1(y) for i = 2, . . . ,m and θ1(y) = θ̄1(y). Hence,

the maximization of the OWA operator (20) with weights wi

can be expressed in the form:

max{
m
∑

i=1

w′
iθ̄i(y) : y ∈ Y } (24)

where coefficients w′
i are defined as w′

m = wm and w′
i =

wi − wi+1 for i = 1, 2, . . . ,m − 1 and Y is the feasible set

of outcome vectors y. If the original weights wi are strictly

decreasing, then w′
i > 0 for i = 1, 2, . . . ,m.

For the WMN flow optimization problem (5)–(10) the final

OWA aggregation of the outcomes fd for all demands/routers

can be stated as the following LP model:

max

|D|
∑

k=1

kw′
ktk −

|D|
∑

k=1

∑

d∈D

w′
kddk (25)

subject to

ddk ≥ tk − fd, ddk ≥ 0 k = 1, 2, . . . , |D|, d ∈ D (26)

f ∈ F (27)

where f = [fd]d∈D and F is a feasible set of flows/throughputs

defined by (7)–(10).

The WOWA aggregation is a generalization of the OWA,

that allows assigning importance weights to specific crite-

ria [12]. Those weights could express, for example, relative

importance of the routers. The weights assigned to ordered

values will be further called preferential weights.

Let p = (p1, . . . , pm) be an m-dimensional vector of

importance weights such that pi ≥ 0 for i = 1, . . . ,m and
∑m

i=1 pi = 1. The corresponding Weighted OWA aggregation

of vector y is defined [18] as follows

Aw,p =
m
∑

i=1

ωiθi(y) (28)

with

ωi = w∗(
∑

k≤i

pτ(k))− w∗(
∑

k<i

pτ(k)), (29)

where w∗ is an increasing function interpolating points

(i/m,
∑

k≤i wk) together with the point (0, 0) and τ repre-

senting the ordering permutation for y (i.e. yτ(i) = θ(y)).
Moreover, function w∗ is required to be a straight line when

the points can be interpolated in this way. We assume the

piecewise linear interpolation function w∗ which is the sim-

plest form of the required interpolation.

Note, that the piecewise linear functions may be built with

various number of breakpoints, not necessarily m [12]. Thus,

any nonlinear function can be well approximated by a piece-

wise linear function with appropriate number of breakpoints.

Therefore, we will consider weights vectors w of dimension

n not necessarily equal to m. It is even possible to de-

fine a generalized WOWA aggregation where the preferential

weights wk are allocated to an arbitrarily defined grid of

ordered outcomes defined by quantile breakpoints (see [12]

and references therein).

As shown in [12], maximization of an equitable WOWA

aggregation with decreasing preferential weights w1 ≥ w2 ≥
. . . ≥ wn may be implemented as the LP expansion of the

original problem. In the case of the WMN flow optimization

problem (7)–(10), this can be stated as follows:

max
n
∑

k=1

w′
k

[

k

n
tk −

∑

d∈D

pdddk

]

(30)

subject to

ddk ≥ tk − fd, ddk ≥ 0 k = 1, 2, . . . , n, d ∈ D (31)

f ∈ F (32)

If the importance weights are equal pd = 1/|D|, the model

reduces to the OWA aggregation.

A special case of the generalized WOWA aggregation is

defined for single breakpoint and corresponds to optimization

of the predefined quantile of worst outcomes and in finance

is known as the CVaR (Conditional Value at Risk). It can

be computed as a standard linear extension of the original

problem [12]:

max t− 1/β
∑

d∈D

pddd (33)
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subject to

dd ≥ t− fd, dd ≥ 0 d ∈ D (34)

f ∈ F (35)

IV. NUMERICAL EXPERIMENTS

We analyzed the performance of the CVaR and WOWA

aggregation operators together with the performance of the

classic max-min and lexicographic max-min (MMF) operators.

The aggregation operators were applied to the problem defined

by the constraints (7)–(10) with the network flows fd as the

optimization criteria.

For the pricing problem (11)–(19) we applied the Simulated

Annealing (SA) algorithm. SA was first introduced by Kirk-

patrick [7], while Černý [5] pointed out the analogy between

the annealing process of solids and solving combinatorial

problems. Researchers have been studying the application

of the SA algorithm in various fields of optimization prob-

lems [9], [17], [6] and to the WMN problem, as well [10].

The process of Simulated Annealing adapted to the pricing

problem, i.e. the dynamic allocation of MCSs to nodes, can be

described as follows. First, an initial solution - a compatible set

with no active nodes (A = ∅) is specified as a starting point.

Then, repeatedly, a candidate solution is randomly chosen

from the neighborhood of the current one. The procedure for

creating a neighboring solution (i.e. a compatible set in this

case), known as the perturbation scheme, consists in activat-

ing/deactivating nodes and changing the MCS of randomly

selected link, see Algorithm 1. If the newly generated solution

is better than the current one, it is accepted and becomes

the new current solution. Otherwise, the candidate solution

still has a chance to be accepted with, so called, acceptance

probability. This probability is determined by the difference

between the energy denoted by E of the current and the

candidate solution, and depends on the temperature denoted

by τ , a control parameter taken from the thermodynamics. The

energy of the compatible set is found by:

E(CS) =
∑

e∈E

∑

m∈M

π∗
eB

myme (36)

The acceptance probability for the compatible set is calculated

as follows:

p (δ, τ) = e−δ/kτ (37)

where δ is the difference between the current (CS) and the

candidate (CS′) solution:

δ = E(CS)− E(CS′), (38)

and k is the Boltzmann constant found by:

k =
δ0

log p0

τ0

. (39)

where δ0 is an estimated minimal difference between the two

solutions, p0 is the initial value of the acceptance probability,

and τ0 is the initial temperature.

TABLE I
INITIAL VALUES OF SIMULATED ANNEALING PARAMETERS

Param. Description Value

α Reduce factor 1− 5
N

τ0 Initial temperature 0.999

δ0 Minimal diff. between solutions 0.001

p0 Initial acceptance probability 1

T Iterations number at each temp. 10

N Number of SA iterations 300000

TABLE II
IEEE 802.11A MCS, FER 61%, 1500 BYTE PAYLOAD.

MCS m Raw rate SINR threshold Max. link

Bm (Mbps) γ̂m (dB) length dm (m)

BPSK 1/2 6 3.5 273.5

BPSK 3/4 9 6.5 230.0

QPSK 1/2 12 6.6 228.0

QPSK 3/4 18 9.5 193.7

16-QAM 1/2 24 12.8 160.2

16-QAM 3/4 36 16.2 131.7

64-QAM 2/3 48 20.3 103.8

64-QAM 3/4 54 22.1 93.5

After a number of iterations in a constant temperature, the

colling takes place, i.e. the temperature is decreased by a factor

denoted by α, known as the reduce factor, and the process is

continued as described above. The annealing scheme can be

represented as the following recursive function:

τ i+1 = α τ i, (40)

where i is the number of current iteration in which the

cooling schedule takes place. The algorithm is stopped when

a maximum number of iterations is reached. The best solution

found during the whole process is considered a final. Initial

values of SA parameters are collected in Table I.

The numerical experiments were performed on a number

of randomly generated problem instances of different sizes.

The algorithm of generating network topology instances can

be described as follows. A grid of length 25m of 30 × 30
points is created. Each of the grid points can be chosen to

be a mesh router or a mesh gateway. First, the location of

each gateway g ∈ G is chosen at random. Then, for each

router r ∈ R a location is chosen at random that satisfies

condition (1) for at least one link e = (g, r), g ∈ G and MCS

m ∈ M. This condition is equivalent to that dgr ≤ dm, where

dgr is the distance between gateway g and router r and dm

is the maximum distance for selected MCS m. Finally, paths

rooted in the gateways are established by iteratively connecting

the neighboring routers that are reachable with the highest link

rate and, if possible, with the lowest hop count. The specific

data for different MCSs are presented in Table II.

Although weights determination is an important issue in the

theory of Ordered Weighted Averaging [19], [1], [2], for the

performance check simple generation methodology has been
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Algorithm 1 Compatible set perturbation scheme

Require: Current solution compatible set CS
Ensure: CS′ = neighbor(CS)

1: Choose at random v ∈ V and e ∈ δ+(v) that satisfy (12)–(15).
2: if v ∈ A then
3: if random(0, 1) < 1/ |M(e)| then
4: A ← A \ {v} [deactivate node]
5: else
6: m← random(M(e) \ {m}) [switch MCS]
7: end if
8: else
9: A ← A∪ {v} [activate node]

10: m← random(M(e)) [select MCS]
11: end if

TABLE III
COMPUTING TIMES [S]

Problem size Aggregation operator

|D|, |E| |G| Max-Min MMF CVaR WOWA

10 2 15.1 16.8 12.9 9.3
10 4 15.2 17.4 13.1 7.9
10 8 14.1 18.8 12.4 7.0
20 2 53.1 63.0 44.0 36.6
20 4 50.4 63.0 39.2 32.3
20 8 46.9 63.3 44.1 27.3
50 2 313.2 335.3 254.3 226.5
50 4 258.0 325.7 191.3 185.8
50 8 253.0 329.2 199.5 180.7

chosen. All the weights, except two, are strictly decreasing

numbers with the step 0.1, while the two selected weights

(k = ⌊n/3⌋ and k = ⌊2n/3⌋) differ from the previous ones

by 0.5.

All the experiments were performed on the Intel Core

i7 2.9GHz microprocessor using CPLEX 12.1 optimization

library for the linear master problem. The results are the

average of 10 randomly generated problems of a given size.

Computing times are presented in Table III and the total

number of the columns (compatible sets) generated with SA

in Table IV.

One can notice the advanced aggregation operators gener-

ally perform not only better than the MMF but also better than

the max-min operator. Additionally, problems with increased

number of gateways can also be computed more efficiently.

V. CONCLUSION

The problem of fair resource allocation is of considerable

importance in network optimization. Advanced aggregation

operators based on the Ordered Weighted Averaging allow

to model diverse preferences with regard to fairness and

efficiency. We have shown that application of the advanced

aggregation operators for the flow optimization in Wireless

Mesh Networks can be effectively modeled and its computa-

tion times can be shorter than of the traditional lexicographic

max-min approach.

TABLE IV
NUMBER OF COMPATIBLE SETS GENERATED

Problem size Aggregation operator

|D|, |E| |G| Max-Min MMF CVaR WOWA

10 2 15.2 17.3 13.7 10.9
10 4 16.6 19.1 15.1 10.4
10 8 16.3 21.7 15.1 9.3
20 2 38.7 48.9 35.4 32.4
20 4 40.9 53.7 34.9 32.5
20 8 42.8 60.1 41.0 29.5
50 2 145.5 158.8 132.8 124.6
50 4 134.2 178.7 109.8 112.2
50 8 141.8 193.3 118.6 117.3
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