
Abstract—The following document describes building well-
balanced CDN evolution process. We start with very intuitive,
but unfortunately wrong solution and change it to the one
which works almost ideally. We realized our experiments on
Planetlab environment, which is a good internet simulation.
Every experiment description is in common format for easy
comparison. Document include for each experiment methodol-
ogy: environment description, system architecture, short de-
scription of experiments, result analyzing and conclusions.

I. INTRODUCTION

n 2012 Poland and Ukraine hold the UEFA European Cup

in soccer. Using historical data, we know that in 1998 of-

ficial Soccer World Cup Website had 1,35 billion request

over 3 months, with peaks 73 million request per day and 12

million request per hour [1] These numbers were exceeded

during Summer Olympic Games in 2004 and 2008. One can

expect that in 2012 these numbers will be exceeded several

times.

I

Nowadays Content Delivery Network (CDN) is a solution

for the above problem. But many servers give us only one

thing: possibility of user distribution. The Wikipedia entry

for CDN states: “A content delivery network or content dis-

tribution network (CDN) is a system of computers net-

worked together across the Internet that cooperate transpar-

ently to deliver content to end users, most often for the pur-

pose of improving performance, scalabil-

ity, and cost efficiency.” But an important

question is how to improve those? We will try to find a

proper answer.

II. CDN ARCHITECTURE

A. Notation

First of all we need to define a notation. We decided to

use the same as in [2], depicted below:

• Web Server (WS) - is a container of content;

• Service Registry (SR) - discovers and stores
resources and policy information in a local domain.

B. Architecture (CDN definition)

Using the above notation we can define: „CDN is built with
one or more Web Servers (WS'S) and one Service Registry
(SR)”. In the simplest CDN definition SR works as „first
line” for user requests. It can also be responsible for
resource discovery and policy in local domains. WS works

as a container for content available for user. Architecture of
CDN is presented in figure 1 below:

Fig 1. CDN architecture

The main idea is as follows (presented on figure 2

bellow):

• End user sends a request for some content to the
Service Registry SR;

• SR finds "the best" Web Server WS for this user;

• SR redirects the user to the “best” WS;

• The WS receives the request;

• The user downloads the requested content from
WS.

Fig 2. CDN sequence diagram

Building well-balanced CDN1

Piotr Stapp, Piotr Zgadzaj
Warsaw University of Technology

Pl. Politechniki 1, 00-661 Warszawa, Poland
Email: p.stapp@mini.pw.edu.pl, p.zgadzaj@mini.pw.edu.pl

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 679–683

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 679

It is important to notice that WS is described as "the best"

depends on the policy in the SR. For example it may depend

on GEO-IP combined with WS’s load and speed. There is a

large number of metrics, but only those based on Quality of

Service -related parameters have matured to a level that al-

lows the delivery of comparable results.

C. PlanetLab

The Wikipedia entry for PlanetLab states: “PlanetLab is a

group of computers available as a testbed for computer net-

working and distributed systems research. It was established

in 2002 by Prof. Larry L. Peterson, and as of June 2010 was

composed of 1090 nodes at 507 sites worldwide. Each re-

search project has a "slice", or virtual machine access to a

subset of the nodes.”

We can define PlanetLab as an Internet simulation. Un-

fortunately it has the biggest disadvantage of Internet – it is

neither repeatable nor isolated. In other words: every experi-

ment is unique and other experiments performed at the same

time have influence on our experiment. To obtain depend-

able results one must conduct several experiments and ob-

serve the average.

III. ENVIRONMENT SET-UP

As we have described earlier we created our CDN on

PlanetLab network, which uses Linux base OS's. Our envi-

ronment consists of two main parts, i.e. Service Registry SR

and Web Server WS.

 1. On Service Registry we have installed some
additional software:

 1.1.For handling user http requests and
redirections we have used Apache based
WWW server (Lighttpd [4]), with enabled

FAST-CGI and PHP support (to enable

database access) – we installed following
packages:

 a) lighttpd;

 b) lighttpd-fastcgi;

 c) php-cli.

 1.2.As a storage for information about network
metrics and topology we used SQL database:
PostgreSQL 8.2.11 [5]. To facilitate
operations on storage we created a special api
consisting of several SQL-based stored
procedures. Database api is described in details
in §IV (Internal Architecture)

 1.3.Database was periodically updated by shell
scripts configured in CronTab [6] which
gathers data from Web Servers (WS) about
current workload.

 2. On Web Server (WS) we have installed the
following software:

 2.1.For handling user http requests we have used
Apache base WWW server (Lighttpd [4])

with enabled FAST-CGI support - hence the
following packages were installed:

 a) lighttpd;

 b) lighttpd-fastcgi.

 3. We also used some general-purpose tools to
facilitate performing tests:

 3.1.For running shell scripts we used PSSH [2].
This tool is similar to standard SSH client, the
main difference is that it allows to run shell
scripts in parallel (on multiple nodes
simultaneously)

 3.2.For transferring binary resources (files) we use
PSCP [2]. This tool is an extend of SCP and
similar to PSSH, as it allows to transfer one
file to multiple nodes simultaneously.

 3.3.For simulating user requests (requests for
content) we use WGET [3].

IV. INTERNAL ARCHITECTURE

In §III (Environment set-up) we have described that CDN

workload data is stored in SQL database installed on Service

Registry (SR). The database is periodically updated with the

data gathered from Web Servers (WS) by a shell script. The

shell script loads data into database through special stored

procedure. Shell script is scheduled as cron task.

User requests on Service Registry (SR) invoke stored

procedure, which extracts from database location of the best

Web Server (WS).

The main components of database api are as follows:

• FUNCTION add_new_weight_value(character
varying, character varying, character varying) –
SQL function (used by shell script) which adds new
rate value for specified Web Server;

• FUNCTION recount_agregate_weight(character
varying) – SQL function (used by shell script)
which recounts weight of specified Web Server
after adding new rate value;

• FUNCTION get_nearest_cdn(character varying)
RETURNS character varying – SQL function (used
by PHP script) which finds “the best” Web Server
for the specific users.

V. EXPERIMENT 1

A. Environment Modifications

Service Registry
We did not change the architecture on root server. The

only modification was shell script which collects data from

CoMon service [1]: “CoMon provides a monitoring statistics

for PlanetLab at both a node level and a slice level. It can be

used to see what is affecting the performance of nodes, and

to examine the resource profiles of individual experiments.”

In our case CoMon service was the natural way of

collecting data.

680 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Database
In this experiment we used database only for storing

information about nodes in experiments and results from

CoMon. No calculations were performed.

Web Server
Since sending files was done with Lighttpd using PHP

and collecting data was done by build-in CoMon service, we

did not need any modifications to web servers.

Clients
The client architecture is in accordance with the definition

from §VI

Procedure Modification
In this experiment we created a procedure of conducting

experiments. It can be described by the following algorithm:

1. Deliver content to every server node

2. Deliver bash script for downloading files to client
nodes.

3. Prepare cron task on every client node to start
downloading files at the same time

B. Experiment Results

We ran the experiment several times. Unfortunately it al-

ways finished with exceeding the network quota on one

server nodes. We discovered that it was because CoMon ser-

vice did not collect network data which is run as root. As

Lighttpd is a server application it is running on special ac-

count.

This caused that in our database all server nodes have

same weight. So our redirection application always chooses

the first of the best ones. Owing to the fact that all have

same weight (zero), it always chooses the first one.

C. Conclusions

CoMon service cannot be used in PlanetLab environment

for load-balancing network traffic, because it collects a

wrong type of data.

The main advantage of this experiment is that we created

and tested tools and techniques which we used in following

parts. We have built environment for future work.

VI. EXPERIMENT 2

A. Environment Modifications

Service Registry
We did not change the architecture on root server. The

only modification was shell script which collects data from

Web Servers. We collected TX rates extracted from Web

Servers network interfaces instead of data returned from

CoMon service.

Web Server
We created shell script which retrieves TX rate from

ETH0 interface of Web Server. Data generated from this

script serves as simple HTML page by PHP script. This PHP

script is used by Service Registry to extract TX rate from

Web Server

Database
Our database has to grow, because we needed to store all

information about TX rates. We decided to create a stored

procedure for updating weight for server.

B. Experiment Results

We need to find metric to compare results. Our first idea

was to use throughput. But the question was which one: the

whole server throughput or just generated by our clients.

Calculating metric using the whole server TX rate does not

work, because it is not comparable on virtual environment.

Especially that we do not know infrastructure behind it.

Unfortunately calculating throughput generated only by our

clients is also incorrect, because lot of throughput is

generated on other virtual machines.

We decided to check how requests were distributed to

servers. Having recalculated every weight, we ordered

servers by weight and calculated how many requests went to

the servers from the one with the least weight up to this with

the most weight. The following table (table 1) presents result

series by average where Weighti+1 > Weight i in the mo-

ment of redirection:

C. Conclusion

In this experiment, weights of each Web Server were up-

dated every minute. One minute looks a good factor for re-

direction approach, especially that updating Web Servers

more frequently could start be an important part of through-

put. Such approach caused that all requests which were han-

dled by CDN network between recalculations were redi-

rected to one Web Server.

These problems are especially visible in the experiment

results. On the next iteration we are trying to improve http

request forwarding (i.e. weight recalculation algorithm) to

eliminate such side effects.

VII. EXPERIMENT 3

A. Environment modifications

Database
As we have described above in §VI.C, our forwarding al-

gorithm needed some changes to be more effective. We tried

TABLE I.

RESULTS OF THE EXPERIMENT 2

Server weight No. of
requests

Percentage of total

Weight1 299 17,798%

Weight2 286 17,024%

Weight3 274 16,310%

Weight4 217 12,917%

Weight5 263 15,655%

Weight6 187 11,131%

Weight7 154 9,167%

PIOTR STAPP, PIOTR ZGADZAJ: BUILDING WELL-BALANCED CDN 681

to introduce a simple approximation of Web Server's weight

between recalculations. Basing on previous weights and

number of clients which were handled by Web Server be-

tween recalculations, after each user request handled by the

Web Server we increase the weight by following factor:

last increate betweenrecalculations

number of clients betweenrecalculations
(1)

B. Experiment Results

Using the same metric as in previous experiment, the ta-

ble with results presents as follows. Again this is results set

by average:

We decided to include one more metric: request per

server:

C. Conclusion

Our summary results look very well. 4 out of 5 servers

handled a similar number of requests. Moreover two servers

with smaller load took most of new incoming requests. Un-

fortunately we have observed one problem, which is not vis-

ible in the summary results. After each recalculation our al-

gorithm completely reorders servers, so the most loaded

server starts to be least one. In our opinion it can perturb

balance of servers .

VIII. EXPERIMENT 4

A. Environment Modifications

Database
Our previous methodology gave us stable results, but the

algorithm reorders the server list after each calculation. That

is why we decided to introduce random factor in our algo-

rithm. New redirect implementation should ensure that prob-

ability that n'th Web Server will handle user request is

higher for those Web Servers which have lower weight

(have lower workload). Moreover, dependency between

probability that n'th Web Server is chosen for client and

weight should not be linear, it should be rather similar to

1/x.

To implement such logic we used the following solution.

1. For each Web Server we calculate following value:

xi=

∑
k=1

n

wk

wi

(2)

2. We ordered ascent values computed in previous

step:

x j : j=1..n ∀ k , l :  k ≤l∧l≤n∧1≤k  xk≤xl  (3)

3. Based on previously calculated values we evalu-

ated:

z j=

∑
m=1

j

xm

∑
k =1

n

xk

(4)

Definition of these values shows that following

statement is true:

max  z j : j=1...n =1 (5)

To calculated values, we add additional one:

z0=0
(6)

4. Having performed the above operations, we have

n+1 weights which all are in range [0, 1]. Moreover

it can be proof that:

∀ k , l :  0k , l≤n∧xkxi  zk−zk−1≥zl −z l−1 (7)

5. In the last step, we randomized a number from

range [0,1) and looked for minimal value of zj

which is greater than randomized number. Random

number is needed to make better distribution be-

tween recalculations.

B. Experiment Results

Using the same metric as in previous experiments, the ta-

ble with average results from series of experiments presents

as follows (table 4)

Moreover table of requests per server is almost ideal:

TABLE II.

RESULTS OF THE EXPERIMENT 3

Server weight No. of
requests

Percentage of total

Weight1 922 34,17%

Weight2 582 21,57%

Weight3 447 16,57%

Weight4 385 14,27%

Weight5 362 14,27%

TABLE III.

REQUESTS PER SERVER - EXPERIMENT 3

Server weight No. of
requests

Percentage of total

A 435 16,12%

B 760 28,17%

C 534 19,79%

D 483 17,90%

E 486 18,01%

TABLE IV.

RESULTS OF THE EXPERIMENT 4

Server weight No. of
requests

Percentage of total

Weight1 8881 35,17%

Weight2 6432 25,47%

Weight3 4992 19,77%

Weight4 4944 19,58%

682 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

C. Conclusion

Out last experiment gave us really good results. Servers

are well-balnced. The difference between the most loaded

and the least loaded is around 6%. Moreover the order list is

stable between recalculations and still less-loaded servers

take more than 60% of requests.

IX. FINAL CONCLUSIONS

Building a well-balanced CDN one does not need difficult

algorithms. Some of them of course are better than others.

The most important thing is assumption: every node must be

same or very similar to others. If not, balancing function

must include differences between nodes.

Our set of experiments presents evolution of an balancing

algorithm: from very simple to complex. Moreover we have

created a technique which is working on such unpredictable

environment as Planetlab. As we have described above Plan-

etlab is a very good Internet simulation.

The presented technique can deal with following prob-

lems:

• Infrastructure – every Planetlab node should be
connected to the internet with the same 100Mb/s
cable. We cannot check every node we use in
experiment, but during our internal test at Warsaw
University of Technology, we discovered network
problems. As in real life we cannot be sure of the
Internet speed.

• Virtualization – this is the problem with sharing
resources. For example on one physical computer
we have several virtual machines. They share CPU,
disk speed, physical RAM and the most important
in this experiments network card.

Nowadays when we start to use virtual computers more

than the real ones, we have to deal with different problems

than 10 years ago. The above methodology can be used in

every virtual environment. Taking into account that imple-

mentation details probably have to be adapted in technical

implementation .

REFERENCES

[1] Arlitt, M., Jin, T., Workload characterization of the 1998 world Cup
Web. IEEE Network 14; pp 30 -37, 2000.

[2] Pathan, M., Buyya, R., Broberg, J, Internetworking of CDNs, in
Content Delivery Networks, Springer-Verlag Berlin Heidelberg, pp
389-413, 2008.

[3] Princeton web page http://comon.cs.princeton.edu/
[4] PSSH project web page http://www.theether.org/pssh/
[5] WGET documentation http://www.gnu.org/software/wget/
[6] Lighttpd documentation http://www.lighttpd.net/
[7] PostgreSQL documentation http://www.postgresql.org/
[8] CRON documentation http://en.wikipedia.org/wiki/Cron

TABLE V.

REQUESTS PER SERVER - EXPERIMENT 4

Server weight No. of
requests

Percentage of total

A 7064 27,98%

B 5524 21,88%

C 6427 25,45%

D 6234 24,69%

PIOTR STAPP, PIOTR ZGADZAJ: BUILDING WELL-BALANCED CDN 683

