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Abstract—In the paper two approaches of parallelization for
solving optimal control problems of ODE and index-1 DAE sys-
tems were presented and discussed. DAE Optimization Problem
can be treated by Direct Nonlinear Programming Approach in
two manners, known as Sequential Approach and Simultaneous
Approach. Simultaneous Approach seems to be more reliable,
because provides initial states in periods and discretized control
variables. Therefore there is a possibility of efficient use of Opti-
mization with multiple shooting, which was developed to handle
unstable DAE systems. In the article some parallelization methods
of the Sequential Quadratic Programming were discussed and
compared both in the Jacobian calculation and the numerical in-
tegration of DAE models. Augmented objective function, based on
Mathematical Programming with Complementarity Constraints,
was proposed. The illustrative simulations of Catalyst Mixing
Problem were performed in MATLAB, which is a commonly
known programming environment.

Index Terms—optimal control, DAE systems, Simultaneous
Approach

I. INTRODUCTION

F
OR last 30 years differential-algebraic systems have been
attracted the attention of many scientists around the

world. One of the first monographs justifies the use of such
equations. "In the last decade the use of differential-algebraic
equations (DAE’s) has become standard modeling practice
in many applications, such as constrained mechanics and
chemical process simulation. The advantages of using implicit,
often computer-generated models for dynamical processes are
encouraging the use of DAE’s in new areas" [6]. Then the
study was conducted to highlight the basic types of systems
and their properties [6], [9], [14], [16].

Today, practical use of the optimal control methods in real
systems in the chemical and aerospace industry have been
widely documented in [4], [5], [10].

One of the most popular approach for DAE Optimization
Problems is Direct NLP Approach. At this moment one should
decide, how many variables are there. It means, what is the
scale of the problem. The second important aspect is, what
is their origin and what the variables do actually mean. If
the variables denote only discretized control function, it is
reasonable to use Sequential Approach. If in addition there
are variables connected with initial conditions of state trajec-
tory, Simultaneous Approach can be used. In both mentioned
situations, Multiple Shooting method is appropriate, especially

when unstable DAE system is considered. So, "Optimization
with multiple shooting serves as a brige between sequential
and direct transcription approaches (...)" [5].

Advanced optimal control methods combine generalized
mathematical models, elastic mode optimization algorithms,
numerical analysis for solving DAE systems and high perfor-
mance programming environments.

Some ideas from smooth optimization were adjusted to non-
smooth problems and successfully used there. This applies, for
example, Mathemmatical Programming with Complementarity
Constraints, where the formulation of the objective function
may mirror various specifc features of the system [1], [2], [17].
This dependence can also act in the opposite direction. So, the
use of of the scalar product with the penalty coeffcient was
proposed to take into account the equality constraints resulting
from the multiple shooting method in the objective function.

This paper was organized as follows. First, the optimal con-
trol problem of DAE systems was stated. Then the elements
of Simultaneous Approach were described. Our attention was
focused on reliable using of both NLP and DAE solvers.
Before numerical examples the discussion about parallelization
methods was conducted and some comments about using
Multi-Step Approach were made. Catalyst Mixing Problem
is one of tasks, which can be arbitrarily large. Simulations
were executed in many ways with different number of parallel
processes.

II. OPTIMAL CONTROL OF DAE SYSTEMS

In the paper the following DAE optimization problem was
considered

ϕ(p) =

NT∑

l=1

Φl(yl(tl), z
l(tl), p

l)→ min, (1)

subject to
dyl

dt
= f l(yl(t), zl(t), pl) (2)

with initial conditions

yl(tl−1) = yl0 (3)

and algebraic equations

gl(yl(t), zl(t), pl) = 0, t ∈ (tl−1, tl], l = 1, ..., NT (4)
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with bounds
plL ≤ pl ≤ plU , (5)

ylL ≤ yl ≤ ylU , (6)

zlL ≤ zl ≤ zlU (7)

and constraints

h(p1, ..., pNT , y10 , y
1(t1), y

2
0 , y

2(t2), ..., y
NT

0 , yNT (tNT
)) = 0.

(8)
There are differential variables y(t) and algebraic variables
z(t) in the DAE system in semiexplicit form. The assumption
of invertibility of g(−, z(t),−) permits an implicit elimination
of the algebraic variables z(t) = z[y(t), p]. While there are
NT periods in DAE equations, time-dependent bounds or other
path constraints on the state variables are no longer considered
[5]. The control profiles are represented as parameterized
functions with coefficients that determine the optimal profiles
[20], [21]. The decision variables in DAE equations appear
only in the time independent vector pl. Algebraic constraints
and terms in the objective function are applied only at the end
of each period.

The problem (1)-(8) can be represented as the following
nonlinear program

φ(p)→ min (9)

subject to
ci(p) = 0, i ∈ E, (10)

ci(p) ≤ 0, i ∈ I. (11)

In the literature one can find a lot of methods solving the
above problem (see [4], [5], [12], [15]).

III. SIMULTANEOUS APPROACH

The method described in this article is a part of the trend
"Discretize then Optimize". This approach has the advantage
of directly finding good approximate solutions, which are
feasible to the state equations. From literature [5] it is known,
that this formulation requires an accurate level of discretization
of the control and state profiles.

In the considered approach, the time domain is partitioned
into smaller time elements and the DAE models are integerated
separately in each element [4], [5], [12], [13], [18].

Control variables are represented as piecewise polynomials
[20], [21]. Optimization is performed with respect to poly-
nomials coefficients. Sensitivities are obtained for both the
control variables and the initial conditions of the states in
each element. Equality constraints are added to the nonlinear
program in order to link the elements and ensure that the states
remain continous over time. Inequality constraints for states
and control can be imposed directly at the grid points, although
constraints on the state profiles may be violated between grid
points [5].

There is a sketch of simultaneous dynamic optimization
strategy on the fig. 1. This approach consists of three main
elements. There are NLP solver, DAE solver and sensitivity
calculations. All of this parts, especially from parallel calcu-
lations point of view, were described and commented below.

Figure 1. Sketch of simultaneous dynamic optimization strategy.

A. NLP solver

"Discretize then Optimize" approach enables us to use the
full machinery of large-scale NLP solvers. Now SQP codes
are considered. For large-scale problems the appropriate SQP
codes are filterSQP [7], MUSCOD − II [12], [13] and
SOCS [4]. For nonlinear programming problems with less
than a few hundreds of variables fmincon solver can be
treated as quite suitable [5].

fmincon is coupled to the MATLAB environment and
applies l1 merit function line search and BFGS updates of
the Hessian [5], [8].

Algorithm 1 presents steps executed by fmincon [8],
[15]. This algorithm has to be completed by two comments.
The general nonlinear programming problem is modeled by
linearization both the inequality and equality constraints to
obtain

φ̃(d) = φk +∇φT
k d+

1

2
dT∇2

ppLkd→ min (12)

subject to
∇ci(pk)

T d+ ci(pk) = 0, i ∈ E, (13)

∇ci(pk)
T d+ ci(pk) ≤ 0, i ∈ I. (14)

The second note is, that strategy for choosing µ in the
Algorithm 1 considers the effect of the step on a model of
the merit function, so µ has to satisfy the inequality

µ ≥
∇φT

k dk + σ
2 d

T
k∇

2
ppLkdk

(1− ρ) ‖ ck ‖1
. (15)

If the value of µ from previous iteration of the SQP method
satisfies eq. (15), it is left unchanged. Otherwise, µ is increased
so that satisfies this inequality with some margin. The constant
σ is used to handle the case in which Hessian ∇2

xxLk is not
positive definite. We define σ = 1, if dTk∇

2
xxLkdk > 0, and

σ = 0 otherwise.
The l1 merit function for the problem (9)-(10) takes the

form

Φ1(p;µ) = φ(p) + µ‖c(p)‖1. (16)

The directional derivative of Φ1 in the direction dk satisfies

D(Φ1(pk;µ); dk) = ∇φ
T
k dk − µ‖ck‖1. (17)

2
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Algorithm 1 Line Search SQP Algorithm

Choose parameters η ∈ (0, 0.5), τ ∈ (0, 1), and an initial
pair (p0, λ0);

2: Evaluate φ(p0),∇φ(p0), ci(p0),
A0 = [∇c1(p0),∇c2(p0), . . . ,∇cm(p0)]

T ;
4: If a quasi-Newton approximation is used, chose an initial

n× n symmetric positive definite Hessian approximation
B0, otherwise compute ∇2

ppL0;
while convergence test is not satisfied do

6: Compute dk by solving eq. (12)-(14); let λ be the
corresponding multiplier;
Set dλ ← λ̂− λk;

8: Choose µk to satisfy eq. (15) with σ = 1;
Set αk ← 1;

10: while Φ1(pk + αkdk;µk) > Φ1(pk;µk) +
ηαkD1(φ(pk;µk)dk) do

Reset αk ← τααk for some τα ∈ (0, τ ];
12: end while

Set pk+1 ← pk + αkdk and λk+1 ← λk + αkdλ;
14: Evaluate φk+1,∇φk+1, ck+1, Ak+1 (and possibly

∇2
xxL);

if a quasi Newton approximation is used, set then

16: Set sk ← αkdk and ŷk ← ∇pL(pk+1, λk+1 −
∇pL(pk, λk+1)), and obtain Bk+1 by updating Bk

using a quasi-Newton formula;
Bk+1 = Bk + (ŷk−Bksk)(ŷk−Bkss)

T

(ŷk−Bkss)T ss
;

18: end if

end while

1) Sensitivity Calculations: The first place, where appropri-
ate using of parallel computing can improve time performance
is connected with calculations of sensitivites. The important
question is always what and why should be calculated. Firstly,
SQP algorithm needs the gradients of both objective and
constraints functions.

Estimation of the objective function and constraint functions
can be obtained by using finite difference derivative approxi-
mation.

Consider a subroutine, that estimates the gradient of the
objective function and constraint functions. This calculation
involves computing function values at points near the current
location of p. As a result there was obtained the vector

∇g(p) =




g(p+∆1e1)−g(p)
∆1

g(p)+∆2e2−g(p)
∆2

...

g(p)+∆nen−g(p)
∆n




, (18)

where

g is objective or constraint function,
ei are the unit direction vectors,

∆i is the size of a step in the ei direction.

Gradient estimated by central differences can be obtained
in the similar way

∇g(p) =




g(x+∆1e1)−g(x−∆1e1)
2∆1

g(x+∆2e2)−g(x−∆2e2)
2∆2

...

g(x+∆nen)−g(x−∆nen)
2∆n




, (19)

In this situation there is a possibility to compute successive
elements of the gradient vector parallel. It is worthy to note,
that these elements are independent and computing of every
elements needs objective or constraint function evaluation.

Let us say, that the considered model is very complicated
and calculation of every objective function is time-consuming.
So, the question is, if it is better to use parallel computing
for gradient estimation or parallel evaluation of objective
function? The last question is, how to avoid complex inequality
constraints. The answer is sought in the next section and in
simulations of Catalyst Mixing Problem.

2) Multiple Shooting and Penalty function: In this section
the Multiple shooting method (fig. 2) and its applications
for solving both ordinary differential and differential-algebraic
systems is considered.

The idea is to break the time domain [tI , tF ] into smaller
intervals of the form

tI = t1 < t2 < · · · < tNT
= tF . (20)

Let us denote yl0 for l = 1, . . . , NT as the initial value for
the dynamic variables at the beginning of every of the segment
l. For segment l the DAE system can be solved from tl to the
end of the segment at tl+1. The results of this integration can
be denoted by ŷl. Collecting all segments, let us define a set
of NLP variables

pT = (y20 , y
3
0 , . . . , y

NT

0 ). (21)

The segments have to be joined at the boundaries, so the
constraints are imposed

c(p) =




y20 − ŷ1

y30 − ŷ2

...

yNT

0 − ŷNT−1




, (22)

One of the results of the multiple shooting approach is an
increase in the size of the NLP problem. There are additional
variables and constraints, which were introduced for each
segment. The number of NLP variables and constraints for a

3
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multiple shooting application is n = ny(NT −1), where ny is
the number of dynamic variables y and (NT−1) is the number
of segments. It is importanat to note, that the Jacobian matrix,
which is needed to compute the Newton search direction, is
sparse. Only (NT − 1)n2

y elements in this matrix are nonzero
of a possible [(NT −1)ny]

2. Thus, the percentage of nonzeros
is proportional to 1

NT−1 indicating that the matrix get sparser
as the number of intervals grows [4].

The immediate benefit of the multiple shooting algorithm is
the ability to exploit a parallel processor. The method is some-
times called parallel shooting because the simulation of each
element can be implemented on an individual processor [4].

The method presented in [4] was often used in other appli-
cations like in [12], [13]. Now we propose another approach
to handle contraints, which are caused by multiple shooting
method. The idea was previously introduced as one of the
approaches for Mathematical Programming with Complemen-
tarity Constraints and results in augmented objective function.

In this approach the objective function was augmented by
scalar product with penalty parameter.

PF (ρ)

φ̂(p) = φ(p) + ρaT b→ min, (23)

ci(p) = 0, i ∈ E, (24)

ci(p) ≤ 0, i ∈ I. (25)

a, b ≥ 0, (26)

where parameter ρ depends on the considered problem and
aT b reflects the complementarity conditions.

In this manner the augmented objective function was con-
structed

φ̂(p) = φ(p) + ρ

NT−1∑

l=1

(yl+1
0 − ŷl)

2 → min, (27)

ci(p) = 0, i ∈ E, (28)

ci(p) ≤ 0, i ∈ I. (29)

In both approaches complex constraints were introduced to
objective functionand enhanced by penalty parameter ρ, which
is constant in all iterations.

B. DAE solver

The range of applications of this method depends on the
applied DAE solver. The multiple shooting method allows
to use parallel solving systems, hence the calculation of the
objective function can be faster, especially when the function is
complicated. Such approach may result in labor-intensive task
due to the need of splitting the tasks in parallel and send to
different processors and receive results. These activities occur
during each time calculating the objective function.

Figure 2. Multiple shooting method.

IV. CATALYST MIXING PROBLEM

This problem determines the optimal mixing policy of two
catalysts along the length of a tubular reactor. The mixing ratio
of the catalysts is the control variable [11].

This example used here does not contain any path constraint
for state variables. The numerical algorithm of solving this
problem reduces to the control parameterization method. Since
there are no state variables involved in path constraint in the
formulation, the discretization of the control variable and start
points for multiple shooting methods leads to an NLP with
upper and lower bounds on both types of decision variables
[11].

The optimal mixing policy involves two switches. In the
control parameterization approach, the controls can be re-
stricted to piecewise constant, converting it to a three-variables
problem [3]. In our approach, we allow more flexibility in
the determination of the control trajectory and hence the
simulations were performed for different numbers of control
variables and shooting intervals.

The solution is sought for a fixed value of the reactor
length. As the length increases, the structure of the solution can
change drastically. For the greater length, the optimal control
profile includes not only the portions at bounds but also a sin-
gular arc section in the middle . In an optimal control context,
the singular arc exists whenever the Hamiltonian of the system
does not depend on the control explicitly. Equivalently, the
problem can also be regarded as having a high index portion
because higher order derivatives of the state variables have
to be evaluated to determine the decision variables . For this
particular instance, the DAE solution contains two index one
sections and one index three section between them [19].

The dynamic optimization formulation is described as fol-
lows:

φ(p) = y3(1.0)→ max, (30)

subject to

4
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dy1

dt
= u(10y2 − y1),

dy2

dt
= u(y1 − 10y2)− (1− u)y2,

y3 = 1− y1 − y2,

y(0) = [1.0, 0.0, 0.0],

u(t) ∈ [0.0, 1.0].

(31)

System (30)-(31) can be prescribed as ODE system

φ(p) = 1− y1(1.0)− y2(1.0)→ max, (32)

subject to

dy1

dt
= u(10y2 − y1),

dy2

dt
= u(y1 − 10y2)− (1− u)y2,

y(0) = [1.0, 0.0],

u(t) ∈ [0.0, 1.0].

(33)

What does the parameter p mean here? It is a vector
of all variables. For Simultaneous Approach with 5 control
functions, the vector p was steated as follows

p = [y101, y
1
02, . . . , y

5
01, y

5
02, u1, . . . , u5]

T . (34)

Simulations were performed on a processor Intel(R)
Core(TM) i5 CPU 2.67 GHz in Matlab 7.11.0 with the
following parameters

NLP ’TolFun’,1e-7, ’TolX’, 1e-7, ’Algorithm’, ’sqp’,
’Hessian’, ’bfgs’,

DAE ’RelTol’,1e-7, ’AbsTol’, 1e-7, ’BDF’, ’on’, ’Max-
Order’, 1,

ρ 104.

The same task was solved with different numbers of con-
tinuous sections of the control function. Use of the multiple
shooting method resulted in a significant number of variables
to be considered. It is therefore proposed approach using
parallel computing.

As can be seen, for small problems parallel computing of
gradient of the objective function causes a significant increase
in computation time. This is due to effort, which runs parallel
processes. For the tasks with a large number of variables using
parallel computing of the gradient with four parallel processes
resulted in saving of computation time by half.

Details on the duration of the calculations are presented in
the table I. The table II provides details about the course of the
simulation, such as the number of iterations iter, the number
of calculation of augmented objective function feval and final
value of differential state trajectories y1 and y2.

There are differential state trajectory for 100 piecewise
constant control functions on the fig. 3

Figure 3. State trajectories. Case with 100 control functions.

Table I
PERFORMANCE TIME FOR PARALLEL COMPUTED GRADIENT

Number of without parallel 2 parallel 4 parallel
control variables processing [s] processors [s] processors [s]

1 5.1583 15.6728 15.7202

5 1.1254× 10
3

717.9797 598.8218

25 6.2670× 10
3

3.7672× 10
3

2.9486× 10
3

50 1.7984× 10
4 1.0213 ×10

4
8.1255× 10

3

100 7.6393× 10
4

4.4441× 10
4

3.4422× 10
4

Table II
DETAILS OF COMPUTATIONS

Number of Number of iter feval y1 y2

control variables variables
1 1 8 18 0.8883 0.0725
5 13 229 3484 0.8997 0.0524
25 73 274 21412 0.8984 0.0517
50 148 323 50410 0.8966 0.0514

100 298 472 145566 0.8934 0.0505

Trajectories of the control functions, which are constant in
each time interval and discontinuous in a finite number of
points, can be seen on the fig. 4-IV.

The studies have shown that starting and ending parallel
processes in Matlab requires about 7.5 s for 2 processors and
9.5 s for 4 processors. For this reason, avoid frequent started
parallel processes.

If for the gradient of the objective function parallel process
is ran only once, while each time the calculation of the objec-
tive function in parallel requires initialization and termination
of parallel computing. In the second case one can not be
determined in advance how many times the objective function
will be calculated.

The time, in which dynamic optimizatation problem can
be solved, highly depends on used DAE and ODE solvers.
In presented examples, with 100 control functions, the time
not connected with solving DAE system, after solving DAE
system to obtain objective function, is about 0.0003s and
can be seen as relatively small. But this time depends lin-

5
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Figure 4. Control trajectory. Case with 1 control function.

Figure 5. Control trajectory. Case with 5 control functions.

early on number of objective function evaluations and can
not be minimized by parallel calculation of only the DAE
system.

V. CONCLUSION

In the article considerations about parallel processing in
solving optimal cotrol problems were made. There were dis-
cussed two options for parallelization of computing. The first
is the ability to calculate the components of the gradient of
the objective function parallel, the second was sought only
in the parallel calculation of the DAE system. Simulations
performed on an object derived from the chemical engineering
have shown that the parallel calculation of the gradient of
the objective function yields better results. It is caused by
the amount of tasks sent to processors and received results.
Equality constraints, arising from the use of the multiple
shooting method, were introduced to the objective function.

Figure 6. Control trajectory. Case with 25 control functions.

Figure 7. Control trajectory. Case with 50 control functions.
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