
An Application of Bicriterion Shortest Paths to
Collaborative Filtering

Federico Malucelli
Politecnico di Milano - DEI

Piazza Leonardo da Vinci, 32
Milan, Italy

Email: malucell@elet.polimi.it

Paolo Cremonesi
Politecnico di Milano - DEI

Piazza Leonardo da Vinci, 32
Milan, Italy

Email: paolo.cremonesi@polimi.it

Borzou Rostami
Politecnico di Milano - DEI

Piazza Leonardo da Vinci, 32
Milan, Italy

Email: rostami@elet.polimi.it

Abstract—Item-based collaborative filtering is one of most
widely used and successful neighborhood-based collaborative
recommendation approaches. The main idea of item-based al-
gorithms is to compute predictions using the similarity between
items. In such approaches, two items are similar if several
users of the system have rated these items in a similar fashion.
Traditional item-based collaborative filtering algorithms suffer
from the lack of available ratings. When the rating data is sparse,
as it happens in practice, many items without any rating in
common are present. Thus similarity weights may be computed
using only a small number of ratings and consequently the item-
based approach will make predictions using incomplete data,
resulting in biased recommendations. In this paper we present
a two phase method to find the similarity between items. In the
first phase a similarity matrix is found by using a traditional
method. In the second phase we improve the similarity matrix
by using a bicreterion path approach. This approach introduces
additional similarity links by combining two or more existing
links. The two criteria take into account on the one hand the
distance between items on a suitable graph (min sum criterion),
on the other hand the estimate of the information reliability
(max min criterion). Experimental results on the Netflix and
Movielens datasets showed that our approach is able to burst
the accuracy of existing item-based algorithms and to outperform
other algorithms.

I. INTRODUCTION

A
RECOMMENDER System (RS) filters a large amount
of information to identify the items that are likely to be

more interesting and attractive to a user. Recommendations are
inferred on the basis of different user profile characteristics, in
most cases including explicit ratings on a sample of suggested
elements. Collaborative filtering (CF) recommends items on
the basis of the ratings provided by groups of users [11].
There are two major approaches to collaborative filtering:
(i) neighborhood models and (ii) dimensionality reduction
models.

Neighborhood models base their prediction on the similarity
relationships between either users or item. Algorithms based
on the similarity between users predict a user’s preference on
an item based on the ratings that item has received from similar
users. On the other hand, algorithms based on the similarity
between items compute the user’s preference for an item based
on his/her own ratings on similar items. The latter is usually
the preferred approach, as it usually performs better in terms
of accuracy, while also being more scalable [19].

Item-based systems suffer from the lack of available ratings.
When the rating data is sparse, it is possible to have items
with few ratings in common; therefore, similarity weights
may be computed using only a small number of ratings and
consequently the item-based approach will make predictions
using a very limited number of neighbors, resulting in a biased
recommendation.

Dimensionality reduction is one of the common approaches
used to overcome the problems of sparsity and scalability in
CF. Decomposition of a user-rating matrix [4], [8], [23] and
decomposition of a sparse similarity matrix [7] are essentially
two ways in which dimensionality reduction can be used to
improve recommender systems.

Graph-based approaches have been introduced to overcome
the problems arising in neighborhood collaborative filtering
due to sparsity. These approaches make use of a graph
where nodes correspond to users, items or both, and edges
represent the interactions or similarities between users and
items. Recommendations are then induced by “transitive as-
sociations”, that is suitable paths in the graph that have the
role to reduce graph sparsity. The transitive associations can
be used to recommend items in two different ways. In a
first approach, the proximity of a user u to an item i in
the graph is used directly to evaluate the rating of u for
i [13], [25]. Following this idea, the items recommended
to u by the system are those that are the closest to u in
the graph. The second approach considers the proximity of
two item nodes in the graph as a measure of similarity, and
uses this similarity as the weights of a neighborhood-based
recommendation method [6], [16].

Based on the above discussion and in order to overcome
sparsity in CF, we present an optimization approach in item-
based CF which is based on the item graph [24]. We define
a weighted graph where nodes correspond to items and arcs
are similarity link between items. For each arc a real numbers
is assigned representing the reliability of the arc. In order to
find a new similarity link between two items with unknown
similarity in the item graph, first we formulate the problem
as a bicriterion path optimization problem [21]. By applying
an efficient polynomial algorithm [10] for bicriterion path
optimization we find a subset of “efficient” paths in the graph
as a best candidate set of paths between these two nodes.

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 423–429

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 423

Eventually we use the best path in the candidate set to assign
the similarity weight to the new link.

The rest of the paper is organized as follows: In section 2
we review some related works which has been done so far to
improve the similarity in collaborative filtering. Section 3 de-
scribes some collaborative algorithms considered in our study,
to provide the needed technical background for the following
sections. In section 4, we first formulate our problem as an
optimization problem then we present an efficient algorithm
to find the bicriterion path problem in networks and apply
this algorithm to our problem. The experimental results will
be provided in section 5. In section 6 the conclusion and
discussion will be presented.

II. RELATED WORK

Computation of the similarity weights is one of the most
critical aspects of building a neighborhood-based recom-
mender system. The similarity weights play a double role
in the neighborhood-based recommendation methods: 1) they
allow for the selection of trusted neighbors whose ratings
are used in the prediction, and 2) they provide the means
to give more or less importance to these neighbors in the
prediction. Item based recommendation algorithm contains
two main phases, the model building phase and the prediction
phase. In the model building phase, the similarities between
each pair of items are computed and for each particular item
i, the algorithm will store its k most similar items and their
similarity values with i. According to this fact that similarity
weights can have a significant impact on both accuracy and
performance of collaborative filtering, a lot of research has
been devoted to improve the similarity in the literature.

The basic idea in similarity computation between two items
i and j is to first consider the users who have rated both
of the items and then apply a similarity technique to deter-
mine the similarity weight. There are a number of different
ways to computing the similarity between items [19]: Cosine-
based similarity, correlation-based similarity and adjusted-
cosine similarity are three important methods. In a sparse
dataset the possibility of existing items with just a few rating
in common is high. Therefore, the item-based approach will
make predictions using a very limited number of neighbors,
resulting in biased recommendation.

The decomposition of the similarity matrix is one of the
way to overcome the problem of sparsity which was used to
recommend jokes in the Eigentaste system [7]. Moreover in
the literature there are some attempts that create the similarity
paths in the graph-based model to improve the similarity
weights. In path-based similarity, the distance between two
nodes of the graph is evaluated as a function of the number
of paths connecting the two nodes, as well as the length of
these paths. A recommendation approach that computes the
similarity between two users based on their shortest distance
in a graph is the one described in [1]. In this method, the
data is modeled as a directed graph whose nodes are users,
and in which edges are determined based on the notions of
horting and predictability. The number of paths between a user

and an item in a bipartite graph can also be used to evaluate
their compatibility [13]. This method of computing distances
between nodes in a graph is known as the Katz measure [14].
Another direction in collaborative filtering research combines
user-based and item-based approaches. For example, [26] clus-
ters the user data and applies intra-cluster smoothing to reduce
sparsity. Also in [9] a procedure for computing similarities
between elements of a database has been presented which is
based on a Markov-chain model of random walk through a
graph representation of the database. The presented similarity
measures can be used in order to compare items belonging to
database tables that are not necessarily directly connected.

The general framework of our work, like other graph-based
models, is based on finding one or more paths between two
items. However, in our method the similarity between items is
found by considering not only the distance between two items
or the length of the path joining them but also by taking to
account the “reliability” of the path which connects them.

III. COLLABORATIVE FILTERING

Collaborative filtering recommends items on the basis of
the ratings provided by groups of users. The main input to
collaborative algorithms is the user rating matrix, where each
element rui is user u’s rating on item i (missing ratings are
set to zero). There are two major approaches to collaborative
filtering: (i) neighborhood models and (ii) latent factor models.

A. Neighborhood models

Neighborhood models base their prediction on the similarity
relationships between either users or items. Algorithms based
on the similarity between users predict a user’s preference on
an item based on the ratings that item has received from similar
users. On the other hand, algorithms based on the similarity
between items compute the user’s preference for an item based
on his/her own ratings on similar items. The latter is usually
the preferred approach (e.g., [19]), as it usually performs better
in terms of accuracy, while also being more scalable. Both
of these advantages are due to the fact that the number of
items is typically smaller than the number of users. Another
advantage of the latter algorithms is that the reason why a
specific recommendation was made to a user can be explained
in terms of the items previously rated by him/her. In addition,
basing the model on items (rather than on users) allows a
seamless handling of users and ratings that are new to the
model.

The similarity sij between item i and item j is measured
as the tendency of users to rate items i and j similarly. It is
typically based either on the cosine, the adjusted cosine, or

424 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

(more commonly) the Pearson correlation coefficient [19]

sij =

∑

u

ruiruj

√
∑

u

r2
ui

√
∑

u

r2
uj

Cosine

∑

u

(rui−r̄u)(ruj−r̄u)

√
∑

u

(rui−r̄u)
2

√
∑

u

(ruj−r̄u)
2

Adjusted cosine

∑

u

(rui−r̄i)(ruj−r̄j)

√
∑

u

(rui−r̄i)
2

√
∑

u

(ruj−r̄j)
2

Pearson correlation

where r̄u is the average rating of the u-th user and r̄i
(respectively, r̄j) is the average rating of the i-th (respectively,
j-th) item. Summations in the cosine similarity are computed
over all the users. On the contrary, summations in both the
adjusted cosine and the Pearson similarities are computed only
on users who have rated both items i and j – the common
raters – and the similarity is set to zero for pairs of items
with no common raters. In the typical case of a very sparse
dataset, it is likely that some pairs of items will have a poor
support (i.e., a small number of common raters), leading to
a non-reliable similarity measure. This is why, if nij denotes
the number of common raters and sij the similarity between
item i and item j, we can define the shrunk similarity dij as
the coefficient

dij =
nij

nij + λ
sij (1)

where λ is a shrinking factor. A good value for λ is 100 [15].
Neighborhood models are further enhanced by means of a

kNN (k-nearest-neighborhood) approach: when predicting a
rating r̂ui for user u on item i, only the k items rated by
u that are the most similar to i are considered. The kNN
approach discards the items that are poorly correlated to the
target item, thus decreasing noise for improving the quality
of recommendations. We denote the set of k items rated by
user u, and most similar to i, as Dk(u; i). We have focused
our attention on two item-based neighborhood algorithms, i.e.,
Non-Normalized Cosine Neighborhood and Direct Relations.

• Non-Normalized Cosine Neighborhood (NNCosNgbr)

predicts the rating r̂ui for user u on item i as the weighted
average of the ratings of similar items.
Before computing the weighted average, we normalize
the ratings by removing different biases which mask
the more fundamental relations between items. The bias
associated with the rating of user u to item i is denoted
by bui and it is subtracted from rating rui. Such biases
include item-effects, which represent the fact that certain
items tend to receive higher ratings than others, and user-
effects, which represent the tendency of certain users to
rate higher than others. For instance, a simple formulation
for the bias could be

bui = r̄ + (r̄u − r̄) + (r̄i − r̄) (2)

where r̄ is the average of all the ratings in the user rating
matrix, r̄u is the average rating of the u-th user and r̄i is

the average rating of the i-th item. By removing the bias
effects, the rating estimation is

r̂ui = bui +

∑

j∈Dk(u;i) dij (ruj − buj)
∑

j∈Dk(u;i) dij
(3)

where dij is computed as (1), and sij is measured as the
Pearson correlation coefficient.
Notice that the denominator in (3) forces the predicted
rating values to fall within a defined range, e.g., [1 . . . 5]
for a typical star-rating system. However, for a top-N
recommendation task, exact rating values are not neces-
sary. We simply want to rank items by their appeal to
the user. In such a case, we can simplify the formula by
removing the denominator. A consequential benefit of this
is that items with many similar neighbors, that is with a
high value of

∑

j∈Dk(u;i) dij , which means in turn that
we have a high confidence in the recommendation, have
higher rankings. Therefore, we propose to rank items with
the following rating estimation

r̂ui = bui +
∑

j∈Dk(u;i)

dij (ruj − buj) (4)

Here r̂ui does not represent a proper rating, but is rather
a value we can use to rank the items according to user
u’s taste. We should note that similar non-normalized
neighborhood rules have been mentioned by others [15],
[5].

• Direct Relations (DR). An alternative and simple way of
computing the similarity between pair of items i and j in
(4) is to count the number of users that rated both items,
without any normalization factor

dij = # users rating both items (5)

According to [2] this metric emphasizes the similarity
between popular items.

B. Dimensionality reduction models

Recently, several recommender algorithms based on dimen-
sionality reduction have been proposed. Some of the most
successful realizations of dimensionality reduction models
are based on matrix factorization. In its basic form, matrix
factorization characterizes items and users by vectors of factors
inferred from item rating patterns. High correspondence be-
tween item and user factors leads to a recommendation. These
methods have become popular since they combine predictive
accuracy with good scalability.

In dimensionality reduction models, each item i is associ-
ated with a vector qi ∈ Rf , and each user u is associated with
a vector pu ∈ Rf , where f is the number of latent factors.
For a given item i, the elements of qi measure the extent
to which the item possesses those factors, either positively or
negatively. For a given user u, the elements of pu measure the
extent to which the user is interested in items that have high
values for the corresponding factors, again, either positively
or negatively. The resulting dot product, qT

i pu, captures the

FEDERICO MALUCELLI, PAOLO CREMONESI, BORZOU ROSTAMI: AN APPLICATION OF BICRITERION SHORTEST PATHS 425

interaction between user u and item i, i.e., the user’s overall
interest in the item’s characteristics. This approximates user
u’s rating of item i, leading to the estimate rui = qT

i pu. The
major challenge is to compute the mapping of each item and
user to factor vectors qi, pu. After the recommender system
completes this mapping, it can easily estimate the rating a user
will give to any item.

Dimensionality reduction models based on matrix factor-

ization informally known as Singular Value Decomposition
(SVD) models. Since conventional SVD is undefined in the
presence of missing values, which translate to unknown user
ratings, several alternative solutions have been proposed. Ear-
lier works fill the missing ratings with baseline estimations
(e.g., average user/item rating [20]). This however leads to a
very large and dense user rating matrix, whose factorization
might be computationally infeasible. More recent works learn
the values from the known ratings through a suitable objective
function which minimizes the prediction error (e.g., RMSE).
The proposed objective functions are usually regularized in
order to avoid over-fitting [18]. Typically, gradient descent is
applied to minimize the objective function. In this work we
have considered PureSVD techniques treats missing ratings as
zeros and performs a traditional SVD.

• PureSVD. PureSVD is a recently proposed latent factor
algorithm [4]. Its rating estimation rule is based on
conventional SVD, where unknown ratings are treated as
zeros. In terms of predictive power, choosing zero is not
very important, and we have received similar results with
higher values. What is important is that the conventional
SVD decomposition of the user rating matrix becomes
feasible, since all matrix entries are now non-missing
and it can be performed using highly-optimized tools for
conventional SVD on sparse matrices. The user rating
matrix R is estimated by the factorization [2]

R̂ = U ·Σ ·QT (6)

where U ∈ ℜn×f and Q ∈ ℜm×f are two orthonormal
matrices representing, respectively, the left and right
singular vectors associated to the top-f singular values of
R with the highest magnitude. The top-f singular values
are stored in the diagonal matrix Σ ∈ ℜf×f . As detailed
in [4], once the user rating matrix has been decomposed,
the prediction rule for PureSVD can be written as

r̂ui = ru ·Q · qi
T (7)

where ru denotes user u’s vector of ratings (where
unknown ratings are filled with zeros), and qi represents
the i-th column of Q. Note that, similarly to (3), r̂ui is
not a proper normalized rating, but can be used to rank
items according to user u’s interests.

IV. BICRITERION PATH OPTIMIZATION

In this section we first describe the items and relationship
between them by means of a weighted graph, then we formu-
late the problem of finding the similarity between items with
unknown relationship as a bicriterion path problem. Suppose

that M = {1, 2, ...,m} is the set of users, V = {1, 2, ..., n}
is the set items and R ∈ ℜm×n is the user-rating matrix
where each entry ahk gives the rating that user h gave to
itemk, if any. Moreover, suppose that we are given the item
similarity matrix S ∈ ℜn×n. For instance, S can be obtained
by Cosine similarity method. Based on similarity matrix we
define a weighted graph G with vertex set V and arc set
E = {(i, j) ∈ V × V : sij > 0}. Each arc (i, j) ∈ E is
weighted by the similarity of two items.

Now consider two non adjacent nodes a and b in the graph
G that is two items with unknown similarity. Our objective is
to look for a similarity weight between items a and b so as to
improve the quality of the recommender system. This objective
can be translated as introducing one arc between nodes a and
b in the graph G. A natural way to find a new connection
between two nodes in a graph is to find a path which connects
these two nodes. Selecting the "best" path among all possible
paths between these two nodes is very important.

Let P = (a, i, j, ..., b) denote a path from node a to node
b, and

∏

ab be the set of all such paths in G. In order to find
the best path(s) between two items a and b with unknown
similarity weight in G, let us first define the concept of the
"reliability" of a path as follow:

Definition 4.1: the reliability of a path is defined by the
lowest reliability arc in the path. and

reliability(P) = min
(i,j)∈P

sij

This implies that finding a path with the maximum reliability
between two items a and b, corresponds to finding a path
whose arc of minimum weight sij is maximum among all
paths P ∈

∏

ab, giving rise to the following bottleneck path
problem:

max
P∈

∏

ab

reliability(P) (8)

One of the most critical issues with the previous problem is
that the maximum reliability path might be too long in terms of
arcs. Although in our formalization paths are only weighted by
the value of the arc of minimum reliability, in practice it also
makes sense to require that the paths should be short in terms
of the number of "hops" in the path. The realization of this
idea of this idea yields the following optimization problem:

min
P∈

∏

ab

|P | (9)

Where |P | denotes the cardinality of P .
Definition 4.2: A path would be selected as a "best" path

if it satisfies in the two following criteria:
Criterion 1: Selected path must have the maximum reliability
in

∏

ab.
Criterion 2: Selected path must include the minimum number
of "hops".

426 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Fig. 1. Item-graph

According to criterion 1 and criterion 2 we must find minimum
cardinality path with maximum reliability in G which is a kind
of bicriteria path optimization problem and called MinSum-
MaxMin bicriterion path optimization problem [10].

As it is highly unlikely to find a path from node a, to
node b which achieves both the minimum cardinality and
maximum reliability, we have to settle with something less,
namely finding the set of efficient paths from a to b.

Definition 4.3: A path P ∈
∏

ab is efficient if and only if
no other path P ′ ∈

∏

ab has a better value for one criterion
and not worse value for the other one.

A path which is not efficient is thus dominated by at least
one efficient path.

Definition 4.4: Two efficient paths are equivalent if and
only if their value agree for both criteria.

Definition 4.5: A set Cab ⊂
∏

ab of efficient paths is
complete, if any path P ′ /∈ Cab is either dominated or
equivalent to at least one efficient path P ∈ Cab.

Definition 4.6: A complete set Cab is minimal if and only
if no two of its efficient paths are equivalent.
According to these definitions, in the MinSum-MaxMin
optimization problem we will be interested to determine a
minimal complete set C∗

ab of efficient paths in G.

By solving a MinSum-MaxMin path optimization problem
for each two non-adjacent nodes a and b in G, we find a
complete set C∗

ab of efficient paths. Let C∗
ab = {P1, P2, ..., Pℓ}

be the complete set associated with nodes a and b. Also
let λ1, ..., λℓ and µ1, ..., µℓ be the reliability and cardinality
of the paths P1, P2, ..., Pℓ respectively. If Θab = max{θi :
θi = λi/µi for i = 1, 2, ..., ℓ}, then we define the similarity
between items a and b as follows:

ξab = λi : θi = Θab. (10)

As an example consider the item graph in Figure 1 and
suppose we are considering the introduction of a similarity link
between items 1 and 6. By solving the bicriteria optimization
problems (1) and (2) we find the minimal complete set
C∗

16 = {P1, P2}. Where P1 = (1, 2, 4, 6) with λ1 = 0.1,
µ1 = 3 and P2 = (1, 2, 4, 5, 6) with λ2 = 0.2, µ1 = 4.
Θ16 = max{ 0.1

3 , 0.2
4 }. By using (9) the similarity weight

between items 1 and 6 is found as:

ξ16 = 0.2

corresponding to path P2.

V. EXPERIMENTAL RESULTS

In this section we present the quality of our graph-based
optimization algorithm and the recommender algorithms pre-
sented in Section III on two standard datasets: MovieLens [17]
and a subset of the Netflix [3]. Both are publicly available
movie rating datasets. Collected ratings are in a 1-to-5 star
scale. Table I summarizes their statistical properties.

A. Testing methodology

The testing methodology adopted in this study is similar to
the one described in [4]. For each dataset, known ratings are
split into two subsets: training set M and test set T . The test
set T contains only 5-stars ratings. So we can reasonably state
that T contains items relevant to the respective users.

The original Netflix dataset was released partitioned into
two parts: training-set and probe-set. Ratings in the training
set M were a subset of the original Netflix training set. Some
items (and the corresponding ratings) were removed because
of the lack of complementary data, while other items were
merged because of the different editions of the same movie
existing. Ratings in the test set T were a subset of the Netflix
probe-set. Again, some items and their corresponding ratings
were removed or merged. Moreover, only 5-star ratings (or
1-star ratings) were retained from the Netflix probe-set, thus
leading to the creation of two test sets T . The first test set only
contained 5-stars and was used for the computation of recall,
while the second test set only contained 1-stars and was used
for the computation of fallout (see section V-B for a definition
of recall and fallout).

We adopted a similar procedure for the Movielens dataset
[17]. We randomly sub-sampled 1.4% of the ratings from the
dataset in order to create a probe set. The training set M
contains the remaining ratings. The test set T contains all the
5-star ratings from the probe set.

The same training set was used across all the algorithms,
and a standard hold-out technique was adopted for the testing
methodology. For each rating in the testing set, we predicted
the rating together with the ratings of an additional 1000
unrated random items. The corresponding list was sorted and
recommended to the user. Thus, the testing methodology used
the whole training set to build the model, and recommended
a list of 1000+1 items to the user.

In order to measure recall, we first trained the algorithm
using the ratings in M . Then, for each item i in T that was
rated 5 stars by user u, we followed these steps:

1) We randomly selected 1,000 additional items that were
not rated by user u. We assumed that the user u was not
interested in most of them.

2) We predicted the ratings for the test item i and for the
additional 1,000 items.

3) We formed a top-N recommendation list by picking the
N items with the largest predicted ratings.

Overall, we generated a number of recommendation lists equal
to the number of elements in T . For each list we had a hit (e.g.,
a successful recommendation) if the test item was in the list.

FEDERICO MALUCELLI, PAOLO CREMONESI, BORZOU ROSTAMI: AN APPLICATION OF BICRITERION SHORTEST PATHS 427

TABLE I
STATISTICAL PROPERTIES OF MOVIELENS AND NETFLIX.

Dataset Users Items Density

Movielens 6,040 3,883 4.26%

subset of Netflix 247,939 6,489 0.55%

Therefore, the overall recall r was computed by counting the
number of successful recommendations over the total number
of recommendations

r =
times the element is in the list

elements in T
(11)

A similar approach was used to measure fallout, with the only
difference being the composition of the test set T . In this case
it only contained part of the 1-star ratings. Therefore we can
reasonably state that this test set contained items that were not
relevant to the users. The fallout f was defined as

f =
times the element is in the list

elements in T
(12)

B. Evaluation Metric

To evaluate the algorithms we employed the receiver op-
erator characteristic (ROC) curve [22] advocated for recom-
mender system evaluation by Herlocker [12]. ROC curves
are suited for tracking performance in binary classification
tasks while varying a parameter of the classifier (usually,
the number of classified items). RS applications are cast
as binary classification when we classify a user/item pair
as like/does-not-like (rating prediction) or purchased/did-not-
purchase (implicit rating prediction). To create the ROC curve
we vary the number of recommended items in a ranked list
that we use as recommendations. ROC curves plot the miss
rate (fallout) on the x-axis against the hit rate (recall) on the
y-axis. Recall measures the percentage of items in the catalog
interesting for the user and that the recommender system is
able to suggest to the user. Fallout measures the percentage of
items in the catalog not interesting for the the user and that the
recommender system erroneously suggests to the user. Ideally,
a good algorithm should have high recall (i.e. it should be able
to recommend items of interest to the user) and low fallout
(i.e. it should avoid recommending items of no interest to the
user).

Figures 2 and 3 represent the results by using ROC curves.
For both datasets, the graph-based algorithm outperforms other
algorithms, as the best results are obtained when a curve is
close to the upper-left corner of the diagram (i.e., low fall-out
and large recall).

The improvement of quality is more evident on the Netflix
dataset. This is an expected result, as in our experiments
the Netflix dataset is sparser than the Movielens dataset and
traditional CF techniques suffer from the sparsity problem.
For instance, the number of similarity links between items in
traditional item-based algorithms – such as NNCosKnn and
DR – is low if the input user rating matrix is too sparse. On
the contrary, our graph-based approach is able to overcame
this problem by finding additional similarity links.

Fig. 2. ROC curves (Netflix data set)

Fig. 3. ROC curves (MovieLens data set)

VI. CONCLUSION

In order to overcome the problem of sparsity in item-based
CF, we introduced a new optimization approach which is based
on the graph representation of the item similarity matrix. To
find a new similarity link between two items with unknown
similarity, in the item graph, we proposed two optimization
criteria: (i) paths with maximum reliability and (ii) paths with
minimum cardinality in terms of number of "hops". By solving
a bicriterion path optimization problem we found all possible
efficient paths in the graph then we chose the best similarity
weight by using a simple optimization approach. Eventually
we use the best path in the candidate set to assign the similarity
weight to the new link. The experiments showed that our new

428 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

bicriteria optimization framework is effective in improving the
prediction accuracy of collaborative filtering and dealing with
the data sparsity problem.

REFERENCES

[1] C. C. Aggarwal, J. L. Wolf, K. Wu, P. S. Yu. Horting hatches an egg.
A new graph-theoretic approach to collaborative filtering. In: KDD ’99:
Proc. of the 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, pp. 201-212, ACM, New York, NY, USA, 1999.

[2] R.Bambinip, P. Cremonesi, R. Turrin. Recommender Systems Hand-
book. to appear, Springer, Chapter A Recommender System for an IPTV
Service Provider: a Real Large-Scale Production Environment,2010.

[3] J. Bennet, S. Lanning. The netflix prize.Proc. of the KDD Cup and
Workshop, 2007.

[4] P. Cremonesi, Y. Koren, R. Turrin. Performance of recommender algo-
rithms on top-n recommendation tasks. In RecSys, pp. 39-46, 2010.

[5] M. Deshpande and G. Karypis. Item-based top-N recommendation
algorithms. ACM Transactions on Information Systems (TOIS), 22(1),
pp. 143Ű177, 2004.

[6] F. Fouss, J.M. Renders, A. Pirotte, M. Saerens. Random-walk com-
putation of similarities between nodes of a graph with application to
collaborative recommendation. IEEE Transactions on Knowledge and
Data Engineering 19(3), pp. 355-369, 2007.

[7] K. Goldberg, T. Roeder, D. Gupta, C. Perkins. Eigentaste: A constant
time collaborative filtering algorithm. Information Retrieval 4(2), pp.
133-151, 2001.

[8] G.H. Golub, C.F. Van Loan. Matrix computations (3rd ed.). Johns
Hopkins University Press,1996.

[9] M. Gori, A. Pucci. Itemrank: A random-walk based scoring algorithm
for recommender engines. In Proc. of the 2007 IJCAI Conf., pp. 2766-
2771,2007.

[10] P. Hansen. Bicriterion path problems. In: Multiple criteria decision
making: theory and applications. Heidelberg: Springer, pp. 109-27, 1980.

[11] J.Herlocker, J. Konstan, L. Teveen, J. Riedl. Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Sys-
tems (TOIS) 22, 1, pp. 5Ű53,2004.

[12] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic
framework for performing collaborative filtering. In Proceedings of the
Conference on Research and Development in Information Retrieval,
1999.

[13] Z. Huang, H. Chen, D. Zeng. Applying associative retrieval techniques
to alleviate the sparsity problem in collaborative filtering. ACM Trans-
actions on Information Systems 22(1), pp. 116-142, 2004.

[14] L. Katz. A new status index derived from sociometric analysis. Psy-
chometrika 18(1), pp. 39-43, 1953.

[15] Y. Koren. Factorization meets the neighborhood: a multifaceted collab-
orative filtering model. In KDD Š08: In Proc. of the 4th ACM SIGKDD
int. Conf on Knowledge discovery and data mining. ACM, New York,
NY, USA, pp. 426Ű434,2008.

[16] H. Luo, C. Niu, R. Shen, C. Ullrich. A collaborative filtering framework
based on both local user similarity and global user similarity. Machine
Learning 72(3), pp. 231-245, 2008.

[17] B. Miller, I. Albert, S. Lam, J. Konstan, J. Riedl. MovieLens unplugged:
experiences with an occasionally connected recommender system. Proc.
of the 8th Int. Conf on Intelligent user interfaces, pp. 263-266, 2003.

[18] A. Paterek. Improving regularized singular value decomposition for
collaborative filtering. In Proc. of KDD Cup and Workshop, 2007.

[19] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative
filtering recommendation algorithms. In Proc. of the WWW Conf., 2001.

[20] B. Sarwar, G. Karypis, J. Konstan, J. Riedl. Application of Dimen-
sionality Reduction in Recommender System-A Case Study. Defense
Technical Information Center,2000.

[21] RE. Steuer. Multiple criteria optimization: theory, computation, and
application New York: Wiley, 1986.

[22] J. A. Swets. Measuring the accuracy of diagnostic systems. Science 240,
pp. 1285-1293, 1988.

[23] G. Takńacs, I. Pilńaszy, B. Nńemeth, D. Tikk. Investigation of various
matrix factorization methods for large recommender systems. In Proc.
of the 2nd KDD Workshop on Large Scale Recommender Systems and
the Netflix Prize Competition, 2008.

[24] F. Wang, S. Ma, L. Yang, and T. Li. Recommendation on item graphs,
In Proc. of the Sixth Int. Conf. on Data Mining, ser. ICDM ’06.
Washington,DC, USA: IEEE Computer Society, pp. 1119-1123, 2006.

[25] R. C. Wilson, E. R. Hancock, B. Luo. Pattern Vectors from Algebraic
Graph Theory. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 2005.

[26] G.R. Xue, C. Lin, Q. Yang, W. Xi, H.J. Zeng, Y. Yu, Z. Chen. Scalable
collaborative filtering using cluster-based smoothing. In Proc. of SIGIR,
2005.

FEDERICO MALUCELLI, PAOLO CREMONESI, BORZOU ROSTAMI: AN APPLICATION OF BICRITERION SHORTEST PATHS 429

