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Abstract—Proteins are important molecules that are widely
studied in biology. Their three-dimensional conformations can
give clues about their function, however an optimal methodology
for the identification of such conformations has not been found
yet. Experiments of Nuclear Magnetic Resonance (NMR) are able
to estimate distances between some pairs of atoms forming the
protein, and the problem of identifying the possible conforma-
tions satisfying the available distance constraints is known in the
scientific literature as the Molecular Distance Geometry Problem
(MDGP). Since some years, some of us have been working on a
suitable discretization for the MDGP and on an efficient Branch
& Prune (BP) algorithm which is based on a tree search. In
order to perform this discretization, however, some assumptions
need to be satisfied. We recently hand-crafted a special order for
protein backbone atoms which allows us to discretize all MDGPs
concerning backbones. In this paper, we do the same for the side
chains of some amino acids. Our computational experiments show
that the inclusion of the side chain information allows to improve
the performances of the BP algorithm.

I. INTRODUCTION

THE Molecular Distance Geometry Problem (MDGP)

consists in finding the suitable conformations for a certain

molecule which satisfy a set of constraints based on some

distances between pairs of its atoms [2]. When the distance

information is given through a list of lower and upper bounds

on the distances, i.e. by a list of suitable real intervals, the

problem is also referred to as interval MDGP (iMDGP) [10].

The iMDGP, by its nature, is a constraint satisfaction problem,

which is NP-hard [12]. Over the years, its solution has been

attempted by formulating global optimization problems in

continuous spaces [7], where a penalty objective function is

generally employed in order to measure the satisfaction of

the distance constraints for given molecular conformations.

More recently, some of the authors of this paper introduced a

new class of iMDGP instances for which the search domain

can be reduced to a discrete space having the structure of a

tree [4]. We refer to this class of problems as the interval

Discretizable MDGP (iDMDGP). Instances belonging to this

class can be solved by employing an efficient interval Branch

& Prune (iBP) algorithm [5], [6].

Experiments of Nuclear Magnetic Resonance (NMR) are

able to estimate the distances between some pairs of atoms

of a molecule. Nowadays, NMR is the second most used

technique for the identification of protein conformations,

which are very important molecules performing several fun-

damental functions in living beings. Due to this great in-

terest, three-dimensional conformations of proteins found

by the scientific community are generally stored in a web

database named the Protein Data Bank (PDB) [1]. To

date, however, and in most cases, iMDGPs corresponding

to NMR experiments for a given protein are formulated

as continuous global optimization problems, whose solu-

tion is attempted by the meta-heuristic Simulated Annealing

(SA) [9].

As it is well-known, a meta-heuristic search can give

no guarantees on the optimality of the obtained solutions.

However, since meta-heuristics such as SA can be easily

implemented, this kind of optimization methods is widely used

by the biological and chemical community. This observation

stimulated our research on the iDMDGP and on the iBP. The

latter, indeed, is an exact algorithm that is potentially able

to identify the complete set of solutions for a given instance.

This point is crucial in domains such as biology, where the

identification of one possible conformation for a protein which

satisfies all distance constraints does not directly imply that the

actual protein conformation was found. Our aim is to provide

the biologist with a complete set of mathematical solutions (we

can guarantee that all solutions were found and that there are

no other solutions that escaped to the search); biologist’s task

is then the one of successively filtering the set of mathematical
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solutions by selecting the conformations that have a more

evident biological sense.

The application of iBP is possible when the instance at

hand belongs to the iDMDGP class, i.e. when some partic-

ular assumptions are satisfied. The main requirement for the

discretization is the presence of a suitable atomic order (that

can be different from the natural ordering of the atoms in a

molecule) such that, for each atom v, there are at least three

preceding reference atoms u1, u2 and u3 with known distance

from v. This allows us to compute the possible positions for

the atom v by intersecting three Euclidean objects in the three-

dimensional space. When the distance between two atoms,

say u1 and v, is precise, the considered Euclidean object is

a sphere centered in u1 (this atom precedes in the order the

atom v, so we suppose its position is already known) and

having radius d(u1, v). If this distance is instead imprecise,

i.e. it is represented by an interval [d(u1, v), d̄(u1, v)], then

the Euclidean object is a spherical shell centered in u1 hav-

ing minimum radius d(u1, v) and maximum radius d̄(u1, v).
When, for a certain v, two reference distances are precise and

only one is represented by an interval, then a finite subset

of atomic positions for v can be computed by applying the

procedure detailed in [5]. More details about the discretization

process are given in Section II.

The satisfaction of the assumptions for the iDMDGP de-

pends upon the order given to the atoms of the instance. The

original order may not allow for the discretization, but other

possible orders might be identified. We also point out that no

discretization orders could be available, because of the lack of

distance information. NMR experiments, generally, are able to

give estimates of distances between pairs of hydrogen atoms

whose relative distance is shorter than a certain threshold

(approximately 4–5Å). When we consider molecules with

a known chemical composition, such as proteins, a priori

information on some interatomic distances can be obtained

and included in the instance. Such an information, moreover,

can be exploited for identifying an atomic order for which

the iDMDGP assumptions are satisfied, independently on the

additional information that NMR experiments can provide.

In [5], one of such orders for the discretization of instances

related to protein backbones (without side chains) has been

presented.

In this paper, we propose suitable discretization orders for

the side chains of some of the amino acids that can be involved

in the synthesis of the proteins. This work is motivated

by the fact that NMR instances mainly contain information

related to such side chains: NMR data usually regard distances

between pairs of hydrogen atoms, and some side chains are

composed by several hydrogens. Moreover, some side chains

are hydrophobic, which means that they do not react with the

protein solvent (water), but they are rather buried inside the

protein interior. As a consequence, the interatomic distances

between pairs of hydrogens belonging to different hydrophobic

side chains are likely to be close in space and, therefore, are

likely to be detected through NMR experiments.

The rest of the paper is organized as follows. In Section II,

Algorithm 1 The iBP algorithm.

1: iBP(j, r, d,D)
2: if (rj is a duplicated atom) then

3: copy coordinates of previous copy of rj in x1
rj

4: iBP(j + 1, r, d,D);
5: else

6: if (d(rj−3, rj) is exact) then

7: b = 2;

8: else

9: b = 2D;

10: end if

11: for k ∈ {1, . . . , b} do

12: compute the k-th position xk
rj

for the rj -th atom;

13: check the feasibility of position xk
rj

;

14: if (xk
rj

is feasible) then

15: if (j = |r|) then

16: a solution x is found, print it;

17: else

18: iBP(j + 1, r, d,D);
19: end if

20: end if

21: end for

22: end if

we briefly present the iDMDGP and give a sketch of the

iBP algorithm, which we employ for solving iDMDGPs with

interval data. In Section III, we discuss about the discretization

order for instances related to protein backbones, while, in Sec-

tion IV, we present some new hand-crafted orders related to 8

side chains. Computational experiments, detailed in Section V,

show that the inclusion of the information related to the side

chains allows to improve the pruning capabilities of the iBP

algorithm. Conclusions are drawn in Section VI.

II. THE iDMDGP AND THE iBP ALGORITHM

An instance of the iDMDGP can be represented by a

weighted undirected graph G = (V,E, d), where each vertex

v ∈ V represents an atom and each edge (u, v) ∈ E represents

the known distance between the vertices u and v. The weight

d(u, v) associated to an edge (u, v) can correspond either to

a precise distance or to a suitable interval where the actual

distance is supposed to be contained.

Let us suppose that there exists a total order relationship for

the vertices of V = {1, . . . , n}. Assumption 1 of the iDMDGP

requires that the first 3 atoms in V form a clique (all their

interatomic distances are known) and that, for each v > 3,

the distances between v and the 3 immediate predecessors are

known:

Ass.1 ∀v ∈ {4, . . . , n} ∀j, k ∈ {v − 3, . . . , v}

(j, k) ∈ E.

Moreover, for any triplet of consecutive vertices, the strict

triangular inequality must be satisfied (Assumption 2):

Ass.2 ∀v ∈ {2, . . . , n− 1}
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Fig. 1. The hand-crafted order rPB for the protein backbone.

d(v − 1, v + 1) < d(v − 1, v) + d(v, v + 1).

In all atomic orders discussed in this paper, all distances

related to edges (u, v), with v−u ≤ 2, are precise. Therefore,

only precise distances are concerned in Assumption 2.

Assumption 1 allows to compute the possible positions for

the generic atom v as the intersection among three Euclidean

objects, which are related to the three immediate preceding

atoms v − 3, v − 2 and v − 1. Each Euclidean object can be

either a sphere (when the distance is precise) or a spherical

shell (when the distance is represented by an interval). The

intersection among three spheres consists of, with probability

one, two points in the three-dimensional space [3]. The role

of Assumption 2 is to prevent the case in which the sphere

intersection gives infinitely many points.

If one of the distances is represented by an interval, one

of the spheres is replaced by a spherical shell, so that the

intersection consists of, with probability one, two disjoint

curves. In order to guarantee the discretization in this case, we

choose a certain number of sample distances from the available

interval, and we identify a predetermined number of possible

atomic positions on the two curves [5]. All orders discussed

in this paper are constructed so that, for each v, at least two

reference distances are exact. Therefore, our intersections can

at most produce two disjoint curves that can be successively

discretized.

More particularly, the iBP algorithm has been conceived in

order to manage the three following situations (see Alg. 1) [5].

Let r be a discretization order related to a certain iDMDGP

instance. We also refer to such an order as a re-order, because

distinct vertices rj of the ordering can represent the same

atom of the considered molecule. This is done for producing

precise distances: the distance between two copies of the same

atom rj1 and rj2 is evidently 0. In such a case, the algorithm

recognizes that the current vertex represents a duplicated atom,

and it associates to this atom the position of its previous

copy. Otherwise, there are other two possible situations to

manage: either the three reference distances are precise, or

only the distance d(rj−3, rj) is represented by an interval.

In the first case, the sphere intersection gives the only two

possible positions for rj . In the second case, the intersection

provides two curves: we choose D sample distances from

the interval distance, and we intersect the corresponding three

spheres D times. As a consequence, 2 × D possible atomic

positions are determined for rj .

iBP recursively calls itself until the search domain is

exhaustively explored. In the algorithm call, j is the rank

of the current vertex, r is the vertex order allowing for the

discretization, d represents the distance information (precise

distances and intervals), and D is the number of sample

distances taken from intervals. As it can be deduced from the

algorithm sketch, this search domain has the structure of a tree,

and it can be organized in |r| layers. Each layer contains all

possible positions for the vertex rj . The tree is constructed as

the search proceeds: for a given branch at layer j−1, a certain

number of branches are added at layer j, and this number can

be equal to 1, 2 or 2 ×D, depending on the three situations

mentioned above.

The possible combinatorial explosion makes the iBP algo-

rithm exponential in the worth case. However, the strong point

of this algorithm is given by its pruning phase, where the

feasibility of the computed atomic positions is verified, and, in

case of infeasibilities, the corresponding branch is immediately

pruned and not considered anymore. This allows us to focus

the searches on the parts on the tree where there are solutions.

Moreover, it was recently proved that instances regarding

protein conformations generally bring to the definition of trees

having a bounded width [8].

III. AN ORDER FOR THE PROTEIN BACKBONE

Let G = (V,E, d) be a weighted undirected graph repre-

senting an instance of the iDMDGP. Let us divide the edge

set E in two parts: Ed, which contains distances necessary

for the discretization (Assumption 1), and Ep, which contains

all the other available distances. In each step of the iBP

algorithm, a certain number of possible positions for the

current vertex rj are computed by using the distances in Ed,

and the feasibility of these positions is immediately verified
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Fig. 2. The hand-crafted orders for 8 side chains.

by exploiting information on additional distances contained in

Ep. In this work, we suppose that Ed only contains distances

obtained by analyzing the chemical composition of proteins. In

practice, all the distances in Ed are derived from known bond

lengths and bond angles that are present in protein structures.

The distances in Ep, instead, represent the pruning distances,

which can be obtained by NMR experiments. One important

consequence of the fact that Ed do not contain NMR data is

that our search tree (and hence our atomic coordinates) are

not computed by exploiting NMR information, which could

be affected by errors.

As mentioned in the Introduction, there exist special order-

ings for V so that Assumptions 1 and 2 of the iDMDGP are

always satisfied. In [5], we found one of such orders for the

protein backbones. Fig. 1 shows the hand-crafted order for a

small protein backbone containing 3 amino acids. For a protein

containing p amino acids, the following order can be used for

discretizing the backbone of proteins:

rPB = (N1, H1, H0, C1
α, N

1, H1
α, C

1
α, C

1,

N2, C2
α, H

2, N2, C2
α, H

2
α, C

2, C2
α, . . . ,

N i, Ci−1, Ci
α, H

i, N i, Ci
α, H

i
α, C

i, Ci
α, . . . ,

Np, Cp−1, Cp
α, H

p, Np, Cp
α, H

p
α, C

p, Cp
α,

Op, Cp, Op+1).

Superscripts indicate the amino acid to which each atom

belongs: in our notation, H0 is the second hydrogen bonded

to N in the first amino acid, whereas Op+1 is the second

oxygen of the last amino acid. A particular order has been

identified for the first, the second, the generic (labeled with

i) and the last amino acid for protein backbones. This order

can be used in conjunction with the iBP algorithm described

in the previous section: for each vertex rj of the order, the

necessary distances for the discretization are all available and

only the distance between rj−3 and rj may be represented by

an interval. Up to 3 copies of the same atom can be present

in this ordering. We point out that this does not increase the

complexity of the problem, because there is no branching on

the tree in correspondence with duplicated atoms.

IV. NEW ORDERS FOR THE SIDE CHAINS

We present in this section new hand-crafted discretization

orders for the side chains of 8 of the smallest amino acids that

can be involved in the protein synthesis. Such orders can be

combined with the backbone order in Figure 1 for discretizing

instances concerning entire protein conformations (backbone

and side chains). In Section V, our computational experiments

will show that the addition of the distance information regard-

ing the side chains improves the pruning capabilities of the iBP

algorithm, by allowing a stricter selection of the tree branches

where feasible solutions to the iDMDGP can be searched.

Figure 2 contains the discretization orders for 8 side chains.

The glycine (GLY) is the smallest amino acid that can be found

in proteins, whose side chain is composed by a hydrogen atom
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only. A possible discretization order for GLY is the following:

rGLY = {Ci
α, N

i, Hi
α, C

i
α, H

i
β , C

i, Ci
α},

where, in our notation, Hi
β represents the only hydrogen atom

which forms the side chain. It can be noted that the inclusion of

only one atom needs the duplication of some backbone atoms

in order to have the discretization assumptions satisfied.

The other amino acids that we consider in this paper are:

the alanine (ALA), the aspargine (ASN), the aspartic acid

(ASP), the cysteine (CYS), the glutamic acid (GLU), the lysine

(LYS) and the serine (SER). ALA is the second amino acid

in order of size. Its side chain is composed by 4 atoms:

one carbon atom bonded to three hydrogens. However, in

order to have the discretization, the ordering associated to

ALA is composed by much more vertices, connected by 11

edges, labeled from 4 to 15. The same observation can be

made for all other side chains that we consider. LYS is the

longest in Figure 2. The proposed order is represented by

36 edges, labeled from 4 to 39. Since Figure 2 is rather

self-explicative, we omit the explicit definition of the orders

rSC, with SC ∈ {ALA,ASN,ASP,CYS,GLU,LYS, SER},

which can be easily derived from the pictures.

V. COMPUTATIONAL EXPERIMENTS

We present in this section some computational experiments

where we use the side chain orders proposed in Section IV.

All codes were written in C programming language and all the

experiments were carried out on an Intel Core i7 2.30GHz with

8GB RAM, running Linux. The codes have been compiled by

the GNU C compiler v.4.6.1 with the -O3 flag.

The experiments here presented prove that the information

regarding the protein side chains plays an important role in the

identification of solutions to iDMDGPs. At this stage of our

work, we did not try yet to use real data from NMR (as it was

done in [11] for protein backbones), but rather we did study

the influence of side chain information on the iBP algorithm,

and, in particular, on its pruning phase.

To this aim, we artificially generated a set of instances of

the iDMDGP by combining the backbone order in Figure 1

and the 8 side chains orders in Figure 2. The first considered

set contains instances formed by 4 amino acids. Given a

certain sequence of amino acids, say ALA-GLY-ASN-CYS,

we construct two graphs G and G′, which represent two

instances of the iDMDGP. The graph G represents an instance

where the side chains of its amino acids are considered,

the graph G′ represents the same instance without the side

chain information. We will refer to the first class of instances

with the symbol Csidechains, and to the second class with

Cbackbone.

Graphs G ∈ Csidechains are generated as follows. Recall

that the edge set E can be divided in two subsets Ed and

Ep (see Section III). Since G contains the information related

to the side chains of the amino acids, the vertex set V

and the subset of edges Ed are obtained from the orderings

(backbone and side chains) presented in Sections III and IV.

The subset Ep contains some randomly generated interval

TABLE I
THESE EXPERIMENTS SHOW THE INFLUENCE OF THE SIDE CHAIN

INFORMATION ON THE NUMBER OF SOLUTIONS OF iDMDGPS.

sequence min(D) #Sol for G′ #Sol for G

GLY GLY GLY GLY 4 11424 48
GLY ALA GLY ALA 5 9792 256
ALA ALA ALA ALA 5 11518848 1536
CYS CYS CYS CYS 5 35840 512
CYS GLY GLY CYS 5 3216256 768
GLY ASN GLY GLY 5 320 64
SER SER SER SER 5 35840 512

ALA GLY ASN CYS 6 10240 3200
CYS ASN ALA SER 8 3785264 784
ASN ASN ASN ASN 6 264720 6800
GLY ASP SER GLY 5 165120 128
GLY ASP GLY ALA 4 244128 864
GLY ALA GLU GLY 6 10175840 800
GLY GLY GLY LYS 14 130282650 37856

distances concerning only pairs of hydrogens in V . In order

to simulate NMR data, only distances shorter than 5Å are

considered. All distances are represented by an interval of

length 1.4Å.

Graphs G′ ∈ Cbackbone are derived from the corresponding

graph G ∈ Csidechains. This is done in order to compare pairs

of similar instances, one containing the side chain information,

the other without. The vertex set V ′ ⊂ V and the subset

of edges E′

d are obtained from the special ordering for the

backbone atoms in Figure 1. Then, we set E′

p = {(u, v) ∈ Ep :
u, v ∈ V ′}, so that the pruning distances in G′ are exactly the

same in G, exception made for the pruning distances related

to side chain atoms.

Table I shows some experiments where our instances G and

G′ are related to sequences that are formed by 4 amino acids.

In the table, min(D) is the smallest D value that guarantees

the generation of enough tree branches for obtaining at least

one solution to the problem. In general, if D̄ = min(D)
for an instance G ∈ Csidechains, then D̄ is also a suitable

number of sample distances for the corresponding instance

G′ ∈ Cbackbone, because it contains, by definition, fewer

pruning distances. #Sol represents the number of solutions

that we obtain for each instance G (containing the side

chain information) or G′ (containing the backbone information

only). All experiments lasted no more than 20 seconds.

The experiments show the importance of side chain in-

formation. In all experiments, the number #Sol of solutions

is smaller in correspondence with instances that contain

side chains. Instances without side chains are hence much

more flexible, many more possible conformations are allowed,

whereas instances with side chains have a reduced number of

possible conformations. The use of side chain information,

therefore, improves the pruning capabilities of the iBP algo-

rithm, allowing to focus the search on a smaller number of

branches of the tree.

In Table II, we consider another set of instances containing

longer sequences of amino acids. In this table, we only

consider the instances represented by graphs G ∈ Csidechains,
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TABLE II
SOME EXPERIMENTS ON INSTANCES CORRESPONDING TO LONGER

SEQUENCES OF AMINO ACIDS.

naa |V | min(D) #Sol for G CPU time
10 145 7 1 0.36
20 325 8 1 5.42
30 447 8 1 77.37
40 623 10 1 80.63
50 750 8 1 114.22

and, for the minimum D̄ = min(D), we compute only one

solution for the instance (#Sol is always 1). For each instance,

naa is the number of amino acids forming the simulated

molecule (the sequences of amino acids have been randomly

generated, and they only contain the amino acids considered

in Section IV), and |V | is the total number of vertices in G

(duplicated atoms are counted). We also report the CPU time

in seconds.
The experiments in Table II show that side chain informa-

tion can also be added to discretized iMDGPs related to longer

sequences of amino acids. For a sequence containing 50 amino

acids, there are 750 vertices in the graph G representing the

artificial instance, and the iBP algorithm is still able to find

a solution in less than 2 minutes. At this stage of our work,

we do not compute yet all solutions for instances in the set,

because suitable strategies need to be developed in order to

control the combinatorial explosion in iBP trees in the case

of long sequences.

VI. CONCLUSIONS

We presented new discretization orders for 8 of the smallest

amino acids that can be found in proteins. Together with

a discretization order for the protein backbone, these orders

allow for discretizing all instances concerning proteins com-

posed by these amino acids. This way, the employment of the

iBP algorithm is possible, and all distances estimated through

NMR experiments can be exploited for efficiently pruning

parts of the iBP search tree. The computational experiments

show that the side chain information is able to improve the

pruning phase of the iBP algorithm.
Future research will be devoted to the identification of

special orders for the other side chains in proteins. Longer

side chains, however, imply the following issue: duplicated

atoms (i.e. atoms appearing more than once in the order) may

be very far from each other in the sequence (in the proposed

order for LYS, for example, copies of the Cα atom are quite

far but not too much). As a consequence, because of some

small error propagation, the coordinates of two copies of the

same atom may be different. This phenomenon could bring

to incompatibilities between partial coordinates and available

distances. For this reason, we are currently studying possible

ways to overcome this issue.

Moreover, as it can be noted in the experiments in Sec-

tion V, the total number of solutions for an instance (even

containing side chains) can be large. However, we noticed

that some found solutions are very similar to others, so that
clusters of solutions may be identified in order to reduce the

number of representative solutions that are obtained. Work is

currently in progress for improving the iBP algorithm so that

it can only output representative solutions.
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