
 

 

 

 

Abstract— Intuitionistic fuzzy logic has been implemented in 

this investigation aiming to derive intuitionistic fuzzy 

estimations of S. cerevisiae fed-batch cultivation model 

parameters obtained using multi-population genetic algorithm 

(MpGA). Performances of the examined algorithm have been 

tested before and after the application of the procedure for 

purposeful model parameters genesis for three different values 

of generation gap which is the most sensitive genetic algorithms 

parameter toward convergence time. Results obtained after the 

implementation of intuitionistic fuzzy logic for the algorithm 

performance assessment have been compared and MpGA with 

GGAP = 0.1 after the purposeful model parameters genesis 

procedure application has been distinguished as the fastest and 

the most reliable one.  

INTRODUCTION 

 ENETIC algorithms (GA), based on biological 

evolution, are preferred and widely used technique for 

global optimization in various areas of science. Some 

properties such as hard problems solving, noise tolerance, 

easiness to interface and hybridize, make GA a suitable and 

quite workable tool especially for tasks which are not 

completely determined. Such an intractable problem and a 

real challenge for researchers is parameter identification of 

fermentation models [1-5]. Modeling of fermentation 

processes (FP), known as complex, dynamic systems with 

interdependent and time-varying process variables, is a 

specific task, rather difficult to be solved. Inability of 

conventional optimization methods to reach to a satisfactory 

solution for model parameters identification of FP [1, 4] 

provokes idea genetic algorithms to be tested as an 

alternative technique.  

A standard single-population genetic algorithm (SGA) 

initially presented in Goldberg [6] and inspired by natural 

genetics searches a global optimal solution using three main 

genetic operators in a sequence selection, crossover and 

mutation. Multi-population genetic algorithm (MpGA) is 

more similar to nature than SGA since in it many 

populations, called subpopulations, evolve independently 

from each other. After a certain number of generations a part 

of individuals are distributed between the subpopulations 

(migration). 
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According to [6] structure of standard MpGA could be 

shortly presented below in eight steps: 

Step 1:   [Start] Generate k random subpopulations each of 

them with n chromosomes 

Step 2:  [Object function] Evaluate the object function of 

each chromosome n in the subpopulations 

Step 3:  [Fitness function] Evaluate the fitness function of 

each chromosome n in the subpopulations 

Step 4:  [New population] Create a new population by 

repeating following steps: 

4.1 [Selection] Select parent chromosomes from the 

subpopulation according to their fitness function 

4.2 [Crossover] Cross over the parents to form new 

offspring with a crossover probability  

4.3 [Mutation] Mutate new offspring at each locus 

with a mutation probability   

Step 5:  [Replace] Use new generated loop in a old 

subpopulation for a further run of the algorithm 

Step 6:  [Migration] Migration of individuals between the 

subpopulations after following isolation time 

Step 7:  [Test] If the end condition is satisfied, stop and 

return the best solution in current population  

Step 8:  [Loop] go to Step 2. 

There are many operators, functions, parameters and 

settings in GA that might be improved and implemented 

differently in various problems [6, 7]. In [7] generation gap 

(GGAP) (the portion of the population that is replaced each 

generation) has been investigated for four different values 

and has been distinguished as the most sensitive genetic 

algorithm parameter towards convergence time. Up to almost 

40% of the algorithm calculation time can be saved in the 

case of MpGA application using GGAP = 0.5 instead of 0.9 

without loss of model accuracy. Obtained promissing results 

in [7] provoke the idea of subsequent reduction of the 

generation gap value. Thus the topic of the pesent work is to 

be investigated the MpGA quality of performance for three 

different values of generation gap – GGAP = 0.9,          

GGAP = 0.5 and GGAP = 0.1.  

The quality of MpGA performance could be appraised by 

some representative criteria such as the objective function 

value and the algorithm convergence time. Intuitionistic 

fuzzy logic (IFL) is an alternative for assessing the quality of 

different algorithms for various purposes. The main goal is 

the degrees of uncertainty and discrepancy to be lower than 
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measurement error thus inducing to be obtained parameters 

values of a high degree of accuracy. However, for 

constructing the degree of uncertainty and discrepancy it is 

required the algorithms to be performed in two different 

intervals of model parameters variation. One interval could 

be determined as so-called “broad range” known from the 

literature [8]. The other interval could be defined based on 

some criterion for shrinking the range – e.g. based on the 

average values or when the procedure for purposeful model 

parameters genesis presented in [8] has been implemented. 

The aim of the study is intuitionistic fuzzy estimations to 

be applied for assessing the multi-population genetic 

algorithm implemented in parameter identification of           

S. cerevisie fed-batch cultivation with three different values 

of generation gap. Aiming to save decreased convergence 

time while keeping or even improving model accuracy, 

intuitionistic fuzzy estimations overbuild the results obtained 

after procedure of purposeful model parameters genesis. 

INTUITIONISTIC FUZZY ESTIMATIONS 

In intuitionistic fuzzy logic [9] if p is a variable then its 

truth-value is represented by the ordered couple 

 

 V(p) = M(p), N(p),  (1) 

 

so that M(p), N(p), M(p) + N(p)  [0, 1], where M(p) and 

N(p) are degrees of validity and of non-validity of p. These 

values can be obtained using different formula depending on 

the problem considered. 

In this investigation the degrees of validity/non-validity 

can be obtained, e.g., by the following formula: 

 

M(p) = 
m

u
,  N(p) =1 – 

n

u
,  (2) 

 

where m is the lower boundary advisable after the procedure 

application; u – the upper boundary of the “broad range”; n – 

the upper boundary advisable after the procedure application 

[8]. 

If there is a database collected having elements with the 

form <p, M(p), N(p)>, different new estimations for the 

variables can be obtained. In case of three records the 

following estimations might be defined: 

 strong optimistic 

Vstrong_opt = <M1(p) + M2(p) + M3(p) –  

– M1(p)M2(p) – M1(p)M3(p) – M2(p)M3(p) + 

 + M1(p)M2(p)M3(p), N1(p)N2(p)N3(p))> (3) 

 optimistic 

Vopt = <max(M1(p), M2(p), M3(p)),  

 min(N1(p), N2(p), N3(p))>,  (4) 

 average 

Vaver = <(M1(p) + M2(p) + M3(p))/3,  

 (N1(p) + N2(p) + N3(p))/3)>,  (5) 

 pessimistic 

Vpes = <min(M1(p), M2(p), M3(p)),  

 max(N1(p), N2(p), N3(p))>, (6) 

 strong pessimistic 

Vstrong_pes = < M1(p)M2(p)M3(p), N1(p) + N2(p) + N3(p) – 

– N1(p)N2(p) – N1(p)N3(p) – N2(p)N3(p) +  

 + N1(p)N2(p)N3(p)>  (7) 

PROCEDURE FOR PURPOSEFUL MODEL PARAMETER GENESIS 

Due to the stochastic nature of GA, a great number of 

algorithm runs have to be executed in order to obtain reliable 

results in parameter identification of a fermentation process 

model. When results were analyzed, they showed that the 

values of model parameters can be assembled and predefined 

boundaries could be restricted. Thus the idea for purposeful 

model parameter genesis (PMPG) has been created. 

The procedure for purposeful model parameter genesis 

has been originally developed for single-population genetic 

algorithms [8] consisting of six steps, which are shortly 

outlined below for completeness:  

Step 1: Performance of N runs of genetic algorithms. 

Step 2: Determination of the minimum and maximum values 

of the objective function. 

Step 3: Determination of the top level (TL), middle level 

(ML) and low level (LL) of performance with 

corresponding low boundary (LB) and up boundary 

(UB) following the scheme: 

3.1 Determination of discrimination number  by  

3

maxJ - minJ   

3.2 Determination of level boundaries 

Top level low boundary (TL_LB)  min J 

Top level up boundary (TL_UB)   min J+∆–ε 
Middle level low boundary (ML_LB) min J+∆ 

Middle level up boundary (ML_UB) min J+2∆–ε 
Low level low boundary (LL_LB)  min J+2∆ 

Low level up boundary (LL_UB)  max J 

where ε is a small number, ensuring the difference 

between levels. 

Step 4: Determination of minimum, maximum and average 

value for each parameter at each level. 

Step 5: Determination of new intervals of model parameters 

variations, basing on averaged values. 

Step 6: Run of the genetic algorithm with intervals, 

determined in Step 5. 

This is a stepwise procedure that passes through all the six 

steps described above, not omitting any of them and without 

cycles.  

MPGA QUALITY ASSESSMENT FOR PARAMETER 

IDENTIFICATION OF S. CEREVISIAE FED-BATCH CULTIVATION 

Experimental data of S. cerevisiae fed-batch cultivation is 

obtained in the Institute of Technical Chemistry – University 

of Hannover, Germany [1]. The cultivation of the yeast                          

S. cerevisiae is performed in a 2 l reactor, using a 
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Schatzmann medium. Glucose in feeding solution is 35 g/l. 

The temperature was controlled at 30°C, the pH at 5.5. The 
stirrer speed was set to 1200 rpm. Biomass and ethanol were 

measured off-line, while substrate (glucose) and dissolved 

oxygen were measured on-line.  

Mathematical model of S. cerevisiae fed-batch cultivation 

is commonly described as follows, according to the mass 

balance [1]:  

 
dX F

= μX - X
dt V

 (8) 

  S in

dS F
= -q X+ S - S

dt V
 (9) 

 
E

dE F
= q X - E

dt V
 (10) 

  O *2 2
O L 2 22

dO
= -q X+ k a O -O

dt
 (11) 

 
dV

= F
dt

 (12) 

where X is the concentration of biomass, [g/l]; S – 

concentration of substrate (glucose), [g/l]; E – concentration 

of ethanol, [g/l]; O2 – concentration of oxygen, [%]; 
2

*O  – 

dissolved oxygen saturation concentration, [%]; F – feeding 

rate, [l/h]; V – volume of bioreactor, [l]; 2O

Lk a  – volumetric 

oxygen transfer coefficient, [1/h]; Sin – initial glucose 

concentration in the feeding solution, [g/l]; μ , qS, qE, 
2O

q  – 

specific growth/utilization rates of biomass, substrate, 

ethanol and dissolved oxygen, [1/h]. All functions are 

continuous and differentiable. 

The fed-batch cultivation of S. cerevisiae considered here 

is characterized by keeping glucose concentration equal to or 

below its critical level (Scrit = 0.05 g/l), sufficient dissolved 

oxygen O2 ≥ O2crit (O2crit = 18%) and availability of ethanol 

in the broth. This state corresponds to the so called mixed 

oxidative state (FS II) according to functional state modeling 

approach [1]. Hence, specific rates in Eqs. (8)-(12) are: 

2 2 ,S E

S E

S Eμ= μ +μ
S+ k E+ k

2 ,S

S

SX S

q =
μ S

Y S+ k
 

 2

2
,E

E E OE S OS

EX E

O = 
μ E

q = - q q  Y + q Y
Y E+ k

 (13) 

where 
2 2S E
μ , μ  are the maximum growth rates of substrate 

and ethanol, [1/h]; kS, kE – saturation constants of substrate 

and ethanol, [g/l]; Yij – yield coefficients, [g/g]; and all 

model parameters fulfill the non-zero division requirement. 

As an optimization criterion, mean square deviation 

between the model output and the experimental data 

obtained during cultivation has been used: 

   4
2

*

1

,


 i i

i

J = Y -Y min   (14) 

where Y is the experimental data, Y* – model predicted data, 

Y = [X, S, E, O2]. 

The procedure for purposeful model genesis has been 

applied to parameter identification of S. cerevisiae fed-batch 

cultivation using MpGA. Following model (8)-(13) of         

S. cerevisiae fed-batch cultivation, nine model parameters 

have been estimated altogether, applying MpGA with three 

different GGAP values. GGAP is the most sensitive genetic 

algorithms parameter towards the algorithms convergence 

time [7]. The values of other GA parameters and type of 

genetic operators in MpGA considered here are tuned 

according to [7]. GA is terminated when a certain number of 

generations is fulfilled, in this case 100. Scalar relative error 

tolerance RelTol is set to 1e
-4

, while the vector of absolute 

error tolerances (all components) AbsTol – to 1e
-5

. Parameter 

identification of the model (8)-(12) has been performed 

using Genetic Algorithm Toolbox [10] in Matlab 7 

environment. All the computations are performed using a PC 

Intel Pentium 4 (2.4 GHz) platform running Windows XP. 

The quality of MpGA performance is assessed before and 

after application of procedure for purposeful model 

parameter genesis. For each value of GGAP, thirty runs of 

MpGA have been executed. Table I presents obtained results 

before applying procedure for purposeful model parameter 

genesis. 

TABLE I. 

LEVELS OF PERFORMANCE OF MPGA BEFORE PMPG APPLICATION 

MpGA 
Objective  

function 

Levels  

of performance 

Average  

convergenc

e time 

GGAP = 0.9 

min J 0.0220 
TL_LB 0.0220 

159.67 
TL_UB 0.0221 

max J 0.0222 
LL_LB 0.0221 

LL_UB 0.0222 

GGAP = 0.5 

min J 0.0221 
TL_LB 0.0221 

98.96 
TL_UB 0.0221 

max J 0.0222 
LL_LB 0.0222 

LL_UB 0.0222 

GGAP = 0.1 

min J 0.0221 
TL_LB 0.0221 

34.15 
TL_UB 0.0222 

max J 0.0223 
LL_LB 0.0223 

LL_UB 0.0223 

 

The obtained results are analyzed according to achieved 

objective function values. For each GGAP value the 

minimum and the maximum of the objective function are 

determined, and the levels of performance according to the 

procedure [8] have been constructed. According to the 

values of obtained objective function there are only two 

levels of performance in MpGA. The best results hit the                                      

interval [min J; min J + ∆ – ε] and they the top level of 
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MpGA performance has been formed. The worst solutions 

for the objective function fall in the interval                      

[min J + ∆;   max J] and thus the low level of performance 

has been created.  

For each of the levels, constructed in such a way, the 

minimum, maximum and average values of each model 

parameter have been determined. Table II presents these 

values only for the top levels, according to Table I. 

TABLE II. 

MODEL PARAMETERS VALUES FOR THE TOP LEVELS 

MpGA  μ2S μ2E kS kE YSX YEX 2O

Lk a  YOS YOE 

GGAP = 0.9 min 0.9000 0.1104 0.1465 0.7999 0.4002 1.4678 62.727 498.511 11.1317 

 max 0.9235 0.1461 0.1500 0.8000 0.4177 1.9747 116.435 919.304 903.614 

 avrg 0.9060 0.1262 0.1492 0.7999 0.4088 1.6867 83.021 659.883 308.790 

GGAP = 0.5 min 0.9002 0.1161 0.1313 0.7979 0.3987 1.5408 61.129 473.491 228.867 

 max 0.9378 0.1438 0.1500 0.8000 0.4182 1.9290 118.423 921.284 809.902 

 avrg 0.9155 0.1283 0.1453 0.7998 0.4097 1.7212 92.780 656.597 508.501 

GGAP = 0.1 min 0.9131 0.1068 0.1257 0.7540 0.3988 1.4308 64.118 514.4939 229.0956 

 max 0.9667 0.1348 0.1496 0.8000 0.4236 1.8399 117.223 900.8675 630.1261 

 avrg 0.9382 0.1191 0.1388 0.7927 0.4093 1.5843 97.800 757.586 493.1139 

TABLE III. 
MODEL PARAMETERS BOUNDARIES FOR MPGA 

MpGA μ2S μ2E kS kE YSX YEX 2O

Lk a  YOS  YOE 

G
G

A
P

 =
 0

.9
 previously used 

LB 0.9 0.05 0.08 0.5 0.3 1 0.001 0.001 0.001 

UB 1 0.15 0.15 0.8 10 10 300 1000 1000 

advisable after  

procedure application 

LB 0.90 0.11 0.14 0.79 0.40 1.4 60 490 10 

UB 0.93 0.15 0.15 0.80 0.42 2 120 920 910 

degrees of validity of p M1(p) 0.90 0.73 0.93 0.99 0.13 0.14 0.20 0.49 0.01 

degree of non-validity of p N1(p) 0.07 0.00 0.00 0.00 0.86 0.80 0.60 0.08 0.09 

G
G

A
P

 =
 0

.5
 previously used 

LB 0.9 0.05 0.08 0.5 0.3 1 0.001 0.001 0.001 

UB 1 0.15 0.15 0.8 10 10 300 1000 1000 

advisable after  

procedure application 

LB 0.90 0.11 0.13 0.79 0.39 1.5 60 470 220 

UB 0.94 0.15 0.15 0.80 0.42 2 120 930 810 

degrees of validity of p M2(p) 0.90 0.73 0.87 0.99 0.13 0.15 0.20 0.47 0.22 

degree of non-validity of p N2(p) 0.06 0.13 0.00 0.00 0.86 0.80 0.60 0.07 0.19 

G
G

A
P

 =
 0

.1
 previously used 

LB 0.9 0.05 0.08 0.5 0.3 1 0.001 0.001 0.001 

UB 1 0.15 0.15 0.8 10 10 300 1000 1000 

advisable after  

procedure application 

LB 0.91 0.10 0.12 0.75 0.39 1.4 60 510 220 

UB 0.97 0.14 0.15 0.80 0.43 1.9 120 910 640 

degrees of validity of p M3(p) 0.91 0.67 0.80 0.94 0.13 0.13 0.20 0.50 0.21 

degree of non-validity of p N3(p) 0.03 0.00 0.00 0.00 0.86 0.80 0.60 0.09 0.36 

TABLE IV.  
PROGNOSES FOR MPGA PERFORMANCE 

 
μ2S μ2E kS kE YSX YEX 2O

Lk a  YOS  YOE 

LB UB LB UB LB UB LB UB LB UB LB UB LB UB LB UB LB UB 

Vstrong_opt 1.00 1.00 0.15 0.15 0.15 0.15 0.80 0.80 1.03 1.10 3.64 4.88 146.40 235.20 864.85 999.50 397.68 993.84 

Vopt 0.91 0.97 0.11 0.15 0.14 0.15 0.79 0.80 0.40 0.43 1.50 2.00 60.00 120.00 500.00 930.00 220 910.00 

Vaver 0.90 0.95 0.11 0.14 0.13 0.15 0.78 0.80 0.39 0.42 1.40 2.00 60.00 120.00 486.67 920.00 150 786.67 

Vpes 0.90 0.93 0.10 0.13 0.12 0.15 0.75 0.80 0.39 0.42 1.30 2.00 60.00 120.00 470.00 910.00 10 640.00 

Vstrong_pes 0.74 0.85 0.05 0.13 0.10 0.15 0.73 0.80 0.01 0.01 0.03 0.08 2.40 19.20 115.15 778.60 0.48 471.74 

 

 

 

 

368 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012



 

 

 

The new boundaries of the model parameters are 

constructed in a way that the new minimum is lower but 

close to the minimum of the top level, and the new maximum 

is higher but close to the maximum of the top level. Table III 

presents previously used “wide” boundaries for each model 
parameter according to [8] as well as new boundaries 

proposed based on the procedure for purposeful model 

parameter genesis when applying MpGA. Additionally  

Table III consists of intuitionistic fuzzy estimations, obtained 

based on (2) as described in Section II. 

Table IV presents the boundaries (low LB and up UB) 
for the strong optimistic, optimistic, average, pessimistic and 
strong pessimistic prognoses for the  performances of MpGA 
algorithm, obtained based on intuitionistic fuzzy estimations 
(2) and formula (3)-(7). 

Investigated MpGA has been again applied for parameter 

identification of S. cerevisiae fed-batch cultivation involving 

newly proposed according to Table III boundaries at           

GGAP = 0.9, GGAP = 0.5 and GGAP = 0.1. Several runs 

have been performed in order reliable results to be obtained. 

Table V presents the average values of the objective function 

and computation time of MpGA after application of 

purposeful model parameter genesis. The applied procedure 

for model parameter genesis reduces the computation time of 

MpGA with 6 to almost 10% but saving the model accuracy. 

In addition the results hit the top level of presentation and 

have one and same reduced objective function, thus showing 

good effectiveness of proposed procedure for purposeful 

model parameter genesis when MpGA is applied. 

TABLE V. 
LEVELS OF PERFORMANCE OF MPGA AFTER APPLICATION  

OF PURPOSEFUL MODEL PARAMETER GENESIS 

MpGA 
Objective  

function 

Levels  

of performance 

Average  

convergence 

time 

GGAP = 0.9 min J =  max J 0.0221 TL_LB 0.0221 148.91 

GGAP = 0.5 min J =  max J 0.0221 TL_LB 0.0221 90.51 

GGAP = 0.1 min J =  max J 0.0221 TL_LB 0.0221 32.13 

 

Table VI presents the average values of the objective 

function, computation time and model parameters when 

MpGA has been executed at three investigated here values of 

GGAP before and after the application of the purposeful 

model parameter genesis. Table VII lists the estimations 

assigned to the each of the parameters concerning Table IV 

for the three values of GGAP and before and after the PMPG 

application. 

As seen form Table VII, there are no any strong 

pessimistic and pessimistic prognoses. In four of the cases 

there are 4 strong optimistic prognoses, and in three of them 

the next 5 prognoses are optimistic – these are the cases of        

GGAP = 0.5 before and after PMPG and GGAP = 0.1 after 

PMPG. In these three distinguished the most reliable cases, 

the value of the objective function is equal to the lowest one 

that means they are with the highest achieved degree of 

accuracy. But if one compares the time, the MpGA with 

GGAP = 0.1 after PMPG is about three times faster than 

MpGA with GGAP = 0.5 before and after PMPG and about 

5 times faster than the slowest case of GGAP = 0.9 before 

PMPG. 

TABLE VI. 

RESULTS FROM MODEL PARAMETER IDENTIFICATION  

BEFORE AND AFTER PMPG 

Parameter 

 

GGAP = 0.9 GGAP = 0.5 GGAP = 0.1 

Before  

PMP

G 

After 

PMPG 

Before  

PMP

G 

After 

PMP

G 

Before  

PMP

G 

After 

PMP

G 

J 0.0221 0.221 0.0221 0.0221 0.0222 0.0221 

CPU time, s 159.67 148.91 98.96 90.51 34.16 32.13 

μ2S, 1/h 0.91 0.90 0.91 0.91 0.94 0.91 

μ2E, 1/h 0.12 0.13 0.13 0.13 0.11 0.13 

kS, g/l 0.15 0.15 0.15 0.15 0.14 0.15 

kE, g/l 0.80 0.80 0.80 0.80 0.79 0.80 

YSX, g/g 0.41 0.41 0.41 0.41 0.42 0.41 

YEX, g/g 1.64 1.77 1.69 1.76 1.45 1.70 

2O

Lk a , 1/h 84.24 93.74 94.40 89.37 95.57 88.86 

YOS, g/g 669.65 742.89 742.47 708.43 743.15 708.15 

YOE, g/g 334.89 404.11 516.92 468.28 458.77 475.75 

TABLE VII. 

MODEL PARAMETER ESTIMATION BEFORE AND AFTER PMPG 

 

GGAP = 0.9 GGAP = 0.5 GGAP = 0.1 

Before  

PMP

G 

After 

PMPG 

Before  

PMPG 

After 

PMPG 

Before  

PMPG 

After 

PMP

G 

str_opt 3 4 4 4 2 4 

opt 6 4 5 5 6 5 

aver 0 1 0 0 1 0 

pes 0 0 0 0 0 0 

str_pes 0 0 0 0 0 0 

 

 Thus, based on the intuitionistic fuzzy estimations of the 

model parameters and further constructed prognoses, MpGA 

with GGAP = 0.1 and after the procedure for the purposeful 

model parameter genesis has been distinguished as more 

reliable algorithm if one would like to obtained results with a 

high level of relevance and for less computational time. 

 Fig. 1 shows results from experimental data and model 

prediction, respectively, for biomass, ethanol, substrate and 

dissolved oxygen when the procedure for the purposeful 

model parameter genesis has been applied for MpGA with 

GGAP = 0.1.  

  The obtained results show that the highest achieved 

model accuracy can be reached using MpGA with        

GGAP = 0.1 for much less computational time additionally 

reduced after the application of purposeful model parameter 

genesis procedure.  
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a) biomass concentration 
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b) ethanol concentration 
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c) substrate concentration 
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d) dissolved oxygen concentration 

Fig. 1 Model prediction compared to experimental data 

CONCLUSION 

In this investigation intuitionistic fuzzy logic has been 

implemented in order to obtain intuitionistic fuzzy 

estimations of model parameters of fed-batch cultivation. 

Aiming to save obtained promising results, namely less 

convergence time at kept model accuracy, intuitionistic fuzzy 

logic overbuilds the results obtained after the application of 

recently developed procedure for purposeful model 

parameter genesis. This procedure has been applied to 

MpGA at three different values of GGAP as the most 

sensitive genetic algorithm parameter, for the purposes of 

parameter identification of S. cerevisiae fed-batch 

cultivation. After the implementation of intuitionistic fuzzy 

logic for obtaining of intuitionistic fuzzy estimations of 

model parameters and further for construction of strong 

optimistic, optimistic, average, pessimistic and strong 

pessimistic prognoses for the algorithm performances, results 

have been compared and MpGA with GGAP = 0.1 after the 

procedure for purposeful model parameter genesis 

application has been distinguished as more reliable. Among 

the distinguished three “leaders”, MpGA with GGAP = 0.1 

after PMPG is more than three times faster than MpGA with 

GGAP = 0.5 before and after PMPG saving the highest 

achieved values of model accuracy. 

Presented here “cross-evaluation” of three different values 
of GGAP demonstrates the workability of intuitionistic fuzzy 

estimations to assist in assessment of quality of MpGA 

performance. Thus, the estimations based on intuitionistic 

fuzzy logic might be considered as an appropriate tool for 

reliable assessment for other genetic algorithm parameters, 

for different optimization algorithms as well as to be applied 

to various objects of parameter identification. 
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