

Abstract—Using of mobile devices has grown over the past

years. Under the term “mobile devices”, we can see cell

phones, personal digital assistants (PDA), smart phones,

netbooks, tablets etc. Mobile devices provide many function

e.g. accessing internet and e-mail, playing music and movies,

accessing files from remote storage. Disadvantage of mobile

devices is that connection to the internet can vary. It can be

very fast while using 3G mobile network or very slow while

using an old GPRS connection. The newest mobile

communication technologies are not available everywhere. But

the users usually wants to access their files as quickly as they

can access them on wire-connection.

If data are demanded repeatedly, they can be stored in

mobile device in an intermediate component called a cache.

The cache capacity is limited, so we should store in the cache

only data that will be probably required in the future. In this

paper, we present innovated caching algorithm. The algorithm

is based on local and server statistics that are used to predict

user behavior.

I. INTRODUCTION

EED of storing a huge amount of data has grown over
the past years. Whether data are of multimedia types

(e.g. images, audio, or video) or are produced by scientific
computation, they should be stored for future reuse or for
sharing among users. Data files can be stored on a local file
system or on a distributed file system.

N

Local file system (LFS) provides the data quickly but
does not have enough capacity for storing a huge amount of
the data in general. LFS is also prone to failure. Failure of
LFS usually cause more or less temporary loss of data ac-
cessibility, or even loss of data. On the other hand, a distrib-
uted file system provides many advantages such as reliabil-
ity, scalability, capacity, etc.

Most of distributed file systems (DFS) are developed for
wired clients and do not support mobile devices. Accessing
files from mobile devices requires algorithms which take
into account changing communication channels caused by
user’s movement. DFS that are widely used were made be-
fore mobile clients have been spread, and it is difficult to
develop mobile client applications now. None of current

This work is supported by the Ministry of Education, Youth, and Sport of the
Czech Republic – University spec. research – 1311.

DFS e.g. Andrew File System (AFS), Network File System
(NFS), Coda, InterMezzo, BlueFS, CloudStore, GlusterFS,
XtreemFS, dCache, MooseFS, Ceph and Google File Sys-
tem does not have suitable clients for mobile devices [1],
[2], [3].

Accessing files from mobile devices brings some prob-
lems that must be solved. Mobile devices have limited capa-
city for storing user content. They can store up to GB of the
data. DFS can store TB of the data. Also the speed of wire-
less connection is low in comparison to wired connection.
In addition, speed of wireless connection can vary. This can
be caused by user’s movement. The size of transferred data
can be restricted by mobile connection provider. But the
mobile users wish access their data as fast as possible and
without restrictions. If we suppose that the users download
the same data repeatedly, we can use cache to increase sys-
tem performance. In this paper, we will focus on using the
cache in mobile clients in distributed file system

A cache is an intermediate component which stores data
that can be potentially used in the future. While using
cache, the whole system performance is improved. The
cache is commonly used in database servers, web servers,
file servers, storage servers etc. [4]. The cached content is
usually stored in high speed memory (e.g. RAM). However,
cache capacity is not sufficient to store all requested con-
tent. The cache functionality is depicted in Figure 1.

Figure 1. Cache

Pavel Bžoch1, Luboš Matějka2, Ladislav Pešička3, Jiří Šafařík4

 University of West Bohemia, Faculty of Applied Sciences, Department of Computer Science and Engineering
Univerzitní 8, 306 14 Plzeň, Czech Republic

Emails: pbzoch@kiv.zcu.cz1, lmatejka@kiv.zcu.cz2, pesicka@kiv.zcu.cz3, safarikj@kiv.zcu.cz4

Towards Caching Algorithm Applicable to Mobile Clients

U
s
e
r re

q
u

e
s
ts

 d
a
ta

Are the data

in the cache?

Download the data and store

them in the cache.

No, cache miss

P
ro

v
id

e
 d

a
ta

 to
 th

e
 u

s
e

r

Yes, cache hit

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 607–614

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 607

When the cache is full, a system designer must adopt al-
gorithm which marks an old content in the cache to be re-
placed. This algorithm implements replacement policy.
This policy tries to predict user’s future behaviour. In sub-
sequent text, we discuss cache policies used in distributed
file systems.

The cache in the DFS can be on client side as well as on
server side. The cache on the client side stores content that
has been downloaded by a user who is running a client ap-
plication. In this case, replacement policy is usually based
on statistical information gathered from user's behaviour.
The cache on the server side contains data which has been
requested by the most users. Replacement policy in this
case uses statistics gathered from users' requests.

Using cache on server and client side at the same time
does not increase system performance. Increasing cache hit
ratio on the client side causes increasing miss ratio on the
server side and vice versa [5].

In section II, we provide state of the art in caching al-
gorithms. We introduce simple, sophisticated and hybrid al-
gorithms which are used in DFS.

In our approach (section III), we present a new caching
replacement policy. In this policy, we use only client side
caching. While designing replacement policy, we have em-
ployed both server and local statistics for increasing cache
hit ratio, and for decreasing network traffic.

In section IV, we present performance analysis results for
the new algorithm. These results were generated via simula-
tion of user's behavior. As a remote storage for user files,
we have used KIV-DFS. KIV-DFS is a distributed file sys-
tem which is being developed at the Department of Com-
puter Science and Engineering, University of West Bo-
hemia. KIV is an acronym for Czech name of our depart -
ment (Katedra Informatiky a Výpočetní techniky). This
DFS is designed to support mobile devices.

II. SHORTCOMINGS OF EXISTING CACHING ALGORITHMS

The goal of this paper is an introduction of new caching
algorithm that is suitable for use in mobile devices. As
mentioned in the section “Introduction”, a cache is an inter-
mediate component which stores data that can be potentially
used in the future. The cache employs caching policy that
makes space for an incoming data when the cache is full.
Clearly, optimal replacement policy replaces data that will
be used farthest in the future. However, this policy is not
implementable. We cannot look into the future to get re-
quired information. None of the presented caching policy
will be better this optimal policy.

In this section, we introduce some of replacement policies
which are commonly used in distributed file systems or in
operating systems. Caching policies can be divided into
three categories: simple, sophisticated and hybrid al-
gorithms.

A. Simple caching algorithms

Simple caching algorithms do not use any statistics or ad-
ditional information for data replacement. For replacement
decision, they usually employ other mechanisms. Examples
of simple caching algorithms are RAND and FIFO.

RAND. RAND or Random is a simple replacement
policy which chooses data to be replaced based on random
selection [6]. It is very easy to implement this replacement
policy. Disadvantage of RAND replacement policy is that
RAND policy does not take of user’s behaviour into ac-
count.

FIFO. First-In First-Out is another simple replacement
policy. The data that are chosen to be replaced are the oldest
in the cache [7]. Data in the cache are ordered in a queue.
The new data are placed on the tail of the queue. When the
cache is full, and new data come to the cache, the data from
the head of the queue are thrown out. Disadvantage of FIFO
is the same as of RAND policy – FIFO policy does not take
user’s behaviour into account.

B. Sophisticated caching algorithms

Sophisticated algorithms employ some statistical inform-
ation about data in the cache: frequency of the accesses, and
recency of last use of data. Frequency is used by LFU al-
gorithm, and recency by LRU algorithm.

LRU. Least Recently Used is a sophisticated replacement
policy which uses temporal locality of the data [6]. Tempor-
al locality means that the data that have not been accessed
for the longest time will not be used in the near future and
can be replaced when the cache is full [8]. According to the
tests [9], LRU seems to be the best solution for caching
large files. LRU is frequently implemented with a priority
queue. Priority is the timestamp of last access. The disad-
vantage of LRU policy is that the data block can be replaced
even if the block was accessed for many times. In this case,
the file will be probably requested in the near future again.

LFU. Least Frequently Used is another sophisticated re-
placement policy which uses statistical information. LFU
replaces the data that have been used at least [6]. For each
data block exists a counter which is increased every time the
data block is accessed. Disadvantage of this approach is that
the data blocks in the cache that have been accessed for
many times in a short period of time remain in the cache,
and cannot be replaced.

We will use RAND, FIFO, LRU and LFU policy for eval-
uation of our caching algorithm.

C. Hybrid caching algorithms

The disadvantages of LRU and LFU replacement policies
result in hybrid algorithms. These algorithms use parts of
LFU and LRU to get better results in cache hit ratio.

LRU-K replacement policy keeps the timestamps of the
last K accesses to the data block [10]. When the cache is
full, LRU-K counts so-called Backward K-Distance which

608 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

leads to mark data block to replace. LRU-K algorithm is
used in DB systems [10]. Example of LRU-K is LRU-2

which remembers last two access timestamps for each data
block. It replaces then the data block with the least recent
penultimate reference [11].

2Q replacement policy uses two queues. The first queue
uses FIFO replacement policy for the data block and is used
for data block that have been referenced only once. The
second queue uses LRU as a replacement policy, and serves
for so-called hot data blocks. Hot data blocks are blocks that
have been accessed more than once. If new data block
comes to the cache, it is stored in FIFO-queue. When the
same data block is accessed for the second time, it is moved
to the LRU-queue. [12]. 2Q algorithm gives approximately
5% improvement in hit ratio over LRU [12].

MQ replacement policy uses multiple LRU-queues.
Every queue has its own priority. The data blocks with
lower hit’s count are stored in lower priority queue. If the
number of hit’s count reaches the threshold value, the data
block is moved to the tail of queue with higher priority.
When the replacement is needed, the data blocks from the
queue with the lowest priority are replaced [13].

LRFU replacement policy employs both LRU and LFU
replacement policies at the same time. LRFU calculates so-
called CRF (Combined recency and Frequency) value for
each data block. This value quantifies the likelihood that
the block will be referenced in the near future [14]. LFRU is
suitable for use and was tested in database systems [14].

LIRS replacement policy uses two sets of referenced
blocks: High Inter-reference Recency (HIR) block set and
Low Inter-reference Recency (LIR) block set. LIRS calcu-
lates the distance between the last two accesses to the data
block and also stores a timestamp of last access to the data
block. Based on this statistical information, the data are di-
vided into either LIR or HIR blocks. When the cache is full,
the data blocks from the LIR set are replaced. LIRS is suit -
able for use in virtual memory management [15].

FBR replacement policy uses the benefits of both LFU
and LRU policies. FBR divides the cache into three seg-
ments: a new segment, a middle segment, and the old seg-
ment [16]. Data blocks are placed into sections based on
their recency of usage. When a hit occurs, the hit counter is
increased only for data blocks in the middle and old seg-
ment. When a replacement is needed, the policy chooses
data block from the old segment with the least hit counts.
[16]

ARC is similar to 2Q replacement policy. The ARC al-
gorithm dynamically balances recency and frequency. It
uses two LRU-queues. These queues maintain the entries of
recently evicted data blocks [17]. ARC is simple to imple-
ment and has low computational overhead while performing
well across varied workloads [11], [18].

CRASH is a low miss penalty replacement policy. It is
developed for caching data block during reading data block
from hard disk. CRASH puts data blocks with contiguous
disk address into the same set. When replacement is
needed, CRASH chooses the largest set and replaces the
block with the minimum disk address from it [17]. The data
blocks are stored in a priority queue based on the modifica-
tions [17].

III. THE LFU-SS AND LRFU-SS ARCHITECTURE

All mentioned caching algorithms were made mainly for
low-level I/O operations. These algorithms usually work
with the data blocks that have the same size. When replace-
ment occurs, all mentioned caching policies choose the
block to be removed from the cache based on statistics made
during user’s requests. Moreover, all the caching policies
have to store statistical information for all data blocks in the
cache.

In our approach, we will make and test new caching
policy for use in mobile devices. Our first goal is to minim-
ize costs of counting the priority of the data block in the
cache. We must also take into account that the capacity of
the mobile devices is limited. The speed of connection from
the mobile device to the remote server can vary. Thus, our
second goal is to increase cache hit ratio, and thereby de-
crease the network traffic.

We present an innovated LFU algorithm called Least
Frequently Used with Server Statistics (LFU-SS), and a hy-
brid algorithm called Least Recently and Frequently Used
with Server Statistics (LRFU-SS).

A. LFU-SS

In LFU-SS, we use server and local statistics for replace-
ment decision. We will focus on the server statistics at first.
The database module of the server maintains metadata for
the files stored in the DFS. The metadata records contain
items for storing statistics. These statistics are read and
write hits per file, and global read hits for all files in the
DFS. When a user reads a file from the DFS, the
READ_HITS counter is increased, and sent to the user.
When a user wants to write the file content, the
WRITE_HITS counter is increased. Both of these counters
are provided for each requested file. The GLOBAL_HITS
counter is provided on demand.

Calculation of GLOBAL_HITS counter is time-consum-
ing operation because of summation of the READ_HITS of
all files. If we presume that the DFS stores thousands of
files which are accessed by users, the value of variable
GLOBAL_HITS is then much greater than value of variable
READ_HITS, and we do not need to get value of
GLOBAL_HITS for each file access. We can obtain this
value periodically which will save server workload.

Basic caching unit in our approach is the whole file. By
caching whole files, we do not need to store read or write

PAVEL BŽOCH, LUBOŠ MATĚJKA ET AL.: TOWARDS CACHING ALGORITHM APPLICABLE TO MOBILE CLIENTS 609

hits for each block of the file, we store these statistics for
whole file. Storing whole files also bring another advantage
– calculation of priorities for replacement is not computa-
tionally demanding because of relatively low number of
units in the cache.

When LFU-SS replacement policy must mark file to be
thrown out from the cache, LFU-SS works similarly as reg-
ular LFU. LFU-SS maintains metadata of files in a heap
structure. In LFU-SS, we use binary min-heap. The file for
replacement is stored in the root node. When a user reads a
cached file, the local read hits counter is increased and the
heap is reordered if necessary. The server statistics are only
used for newly incoming files to the cache.

In a regular LFU policy, the read hits counter for a new
file is initialized to one (the file has been read once). The
idea of LFU-SS is that we firstly calculate the read hits
counter from the statistics from the server. If the new file in
the cache is frequently downloaded from the server, the file
is then prioritized in comparison to a file which is not fre-
quently read form the server. For computing initial read hits
value, we use following formula:

We firstly calculate difference between read and write
hits from the server. We prefer the files that have been read
many times, and have not been written so often. Moreover,
we penalize the files that are often written and no so often
read. We do this because of maintaining data consistency of
the cached files. The variable GLOBAL_HITS

client
 repres-

ents the sum of all read hits to the files in the cache. Finally
we add 1 because the user wants to read this file. We must
also store the read hits value as a decimal number for accur-
acy in comparison for sorting files in the heap. The pseudo-
code for LFU-SS is depicted in Figure 2.

The disadvantage of using LFU-SS and general LFU is in
ageing files in the cache. If the file was accessed for many
times in the past, it still remains in the cache even if the file
will not be accessed in the future again. We prevent this
situation by division the READ_HITS

client
 by 2. When the

value of variable READ_HITS
client

reaches the threshold

value, READ_HITS
client

 variables of all cached files are di-

vided by 2. The threshold value was set to 15 read hits ex-
perimentally.

We will discuss time complexity of using LFU-FF now.
As mentioned before, we use binary min-heap for storing
metadata records. This heap is ordered by read hits count.
For cached files in LFU-SS, we use three operations: insert -
ing new file into cache, removing file from the cache, and
updating file read hits. Let N be number of the cached files:

Input: request for file F
Initialization: heap of cached files records /*sorted by
cache hit’s counts*/

if F is not in cache
{
while cache is full {

Remove file with the least read hits
Reorder heap to be min-heap

}
Compute read_hits for file F
Download file F into cache
Insert metadata record to the heap
Reorder heap to be min-heap

}
else

{
Increase read_hits value of file F by 1
if read_hits > threshold
{

for each file in cache do
read_hits /= 2

}
Reorder heap if necessary

}

Figure 2. Pseudo-code for LFU-SS

• Operation inserting new file into cache has two steps:
Insert file record into the heap with time complexity O(1),
and reordering the heap structure with time complexity of
O(logN). These time complexities are common for binary
heap structures [19].

• Operation removing file record has time complexity of
O(logN). We need to remove the record from the heap with
the time complexity of O(1) and reorder the heap structure
with complexity of O(logN).

• Operation updating file read hits has the time com-
plexity of O(logN) in the worst case. The worst case occurs
when the file is moved down from root to the leaf of the
heap.

B. LRFU-SS

Next in our approach, we will use the LFU-SS in combin-
ation with standard LRU. As was introduced in other hybrid
caching replacement policies, the combination of LRU and
LFU brings increasing cache hit ratio. For combination of
these caching policies, we will compute priority of LRU and
LFU-SS for each file in the cache. The priority of LRU and
LFU-SS is from interval 0 to 65535. Higher number means
that the file is more suitable for storing in the cache. For-
mula for counting final priority of the file is following:

In computing final priority, we can favour one of the
caching policies by setting higher value for K

1
 or K

2
 con-

stants. Impact of setting these constants is shown in section
experimental results. We will focus on computing priority
values for LFU-SS and LRU caching policies now.

READ HITSclient=
READ HITS server−WRITE HITS server

GLOBAL HITS server

⋅

⋅ GLOBAL HITS
client

+1

P
final

=K1⋅P
LFU −SS

K2⋅P
LRU

610 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

1) PLFU-SS

The priority value for the LFU-SS algorithm is calculated
by using linear interpolation between the greatest and the
lowest read hits values. Formula for counting this priority is
following:

In this formula, the values of variables GLOBAL_MIN-

IMUM_HITS
client

 and GLOBAL_MAXIMUm_HITS
client

 cor-

respond to the greatest and lowest read hits value. In the
case that the file is new in the cache, we calculate read hits
by using formula from section LFU-SS. We suppose that a
new file in the cache is fresh and will be also used in the fu-
ture. Despite computing read hits for a new file in the cache
by using server statistics, new files in the cache have still
low read hits count. Therefore we calculate the PLFU-SS for

the new file in the cache in a different way. We use server
statistics again. We calculate the first PLFU-SS as follows:

2) PLRU

Least recently used policy usually stores timestamp for
last access to the file. If replacement is needed, the file that
has not been accessed for the longest time period is dis-
carded. In our approach, we need to calculate the priority
from the timestamp. We do this as follows:

As shown in the formula, we use again linear interpola-
tion for calculating PLRU. We interpolate between the Tleast_re-

cently_file and Tmost_recently_file . Tleast_recently_file is the timestamp of the
file that have not been accessed for the longest time period.
Tmost_recently_file is the timestamp of the file that has been ac-
cessed last time.

Disadvantage of using LRFU-SS is in computation prior-
ities. We need to recalculate priorities for all cached units
every time one cached unit is requested. We also need to re-
order the heap of the cached files because of changes of
these priorities. We have got over this disadvantage by us-
ing whole files as caching units. By caching whole files, we
do not have so many units in the cache in comparison to
storing data blocks with the same size in the cache. This ap-
proach needs to store statistics of each of these blocks. The
pseudo-code for the LRFU-SS is shown in Figure 3.

Similar to the LFU-FF, we will discus time complexity of
using LRFU-SS. We use binary min-heap for storing
metadata records of cached files. We also employ three op-
erations to the cached files: inserting new file into cache,
removing file from the cache, and accessing the file. Let N
be number of the cached files:

• Operation inserting new file to the cache seems to have
the time complexity of O(NlogN) in the worst case. Insert-
ing new file invokes recalculating time priorities of all
cached files with time complexity of O(N) and reordering
the heap with the time complexity of O(logN). But we do
not need to reorder the heap because we change PLRU for
each cached file. After recalculating new priorities, we in-
sert new file into heap with complexity of O(logN). The fi-
nal time complexity is O(N).

• Operation removing file record has time complexity of
O(logN). We need to remove the record from the root of the
heap with time complexity of O(1) and reorder the heap
structure with time complexity of O(logN).

• Operation accessing the file seems to have the time
complexity of O(NlogN) in the worst case. The worst case
assumes that we calculate new PLRU for each file, and than
we need to reorder the whole heap. Changing of PLRU does
not affect the heap. The time complexity for recalculating
PLRU priorities is O(N). For accessed file, we need to recal-
culate PLFU-SS priority, and reorder the heap. In the worst
case, the reordering the heap has time complexity of
O(logN). The final complexity is O(N) .

IV. EXPERIMENTAL RESULTS

In this section, we evaluate proposed algorithms. Recall-
ing the introduction, we use KIV-DFS for storing and ac-
cessing files.

Input: Request for file F
Initialization:
Min-Heap of cached files /*ordered by priority*/,
K1, K2 /*constants for computing Pfinal*/

if F is not in cache
{
while cache is full
{

Remove file with the least priority
Reorder heap to be min-heap

}
Compute read hits for file F
Compute initial PLFU-SS for file F

Compute PLRU for file F

Compute Pfinal := K1 * PLFU-SS + K2 * PLRU
Download and Insert file F into cache
Recalculate priorities of all files in the cache

and simultaneously reorder the heap
}
else

{
Increase read_hits value of file F by 1
if read_hits > threshold
{

for each file in cache do
read_hits /= 2

}
Store new timestamp for file F
Recalculate priorities of all files in the cache

and simultaneously reorder the heap

}

Figure 3. Pseudo-code for LRFU-SS

PLFU −SS=(READ HITS file , client−GLOBAL HITSminimum , client)⋅

⋅
65535

GLOBAL HITS
maximum,client

−GLOBAL HITS
minimum ,client

P
LFU −SS

=
READ HITS

server

GLOBAL HITS server

⋅65535

PLRU =T actual file−T least recently file⋅
65535

T mostrecently file−T leastrecently file

PAVEL BŽOCH, LUBOŠ MATĚJKA ET AL.: TOWARDS CACHING ALGORITHM APPLICABLE TO MOBILE CLIENTS 611

A. KIV-DFS environment

KID-DFS is a distributed file system which is being de-
veloped at the Department of Computer Science and Engin -
eering, University of West Bohemia. Whole distributed file
system consists of two main parts: server and client applica-
tions. System architecture is depicted in Figure 4.

1) KIV-DFS Client

The client module allows client to communicate with
KIV-DFS servers, and to transfer data. The client applica-
tions exist in three main versions: standalone application,
core module of operating system and Filesystem in User-
space (FUSE).

2) KIV-DFS Server

KIV-DFS Server consists of five modules: Authorization,
Synchronization, VFS, Database, and File System. These
modules can be run on different machines cooperating in
DFS or on single machine. This increases the whole system
scalability substantially. We briefly describe these five
modules. KIV-DFS is deeply described in [20].

Authorization Module. This module is an entry point to
the system. It ensures authorization and secure communica-
tion with clients [20]. The communication channel is en-
crypted by using OpenSSL.

Synchronization Module. The synchronization module is
a crucial part of the whole system. Several clients can ac-
cess the system via several nodes. Generally, different
delays occur in delivering the messages. The KIV-DFS sys-
tem uses Lamport’s logical clocks for synchronization. Re-
ceived messages are stored in a queue and get unique ID
corresponding to the logical clock. The message is then sent
to all nodes in the DFS. Every node maintains its own list
with other nodes addresses. If the node receives a message
with higher timestamp than local timestamp, the node pro-
cesses the message and sends ACK back to the sender. On
the other hand, if the local timestamp is higher than re-

Figure 4. Model of KIV-DFS

ceived, the local timestamp is sent back. The sender must in
this case obtain the highest timestamp from all other nodes.
This timestamp is increased by 1 and the message with new
timestamp can be sent. The requests to the system are stored
in a database.

Virtual File System Module (VFS). The VFS module
hides the technology used for data and metadata storing.
Based on the request, the module determines whether it is
aimed at the metadata, e.g. to list the directory, create a new
directory, or is aimed at the file access. Then, the request is
send to the DB module or to the File System module.

File System Module. The File system module serves for
storing file content on physical device like hard disks. It is
utilized to work with the content of the files that the user
works with. If the module obtains a request to store the
data, it replies to the client with its IP address and a ran-
domly selected port. On this port, the transfer will be real -
ized. The client connects to this port and sends the file con-
tent. A randomly chosen port decreases the possibility of
misuse.

The FS module also manages the data active replication.
The FS module starts the replication of the file in the back-
ground. When the file operations are performed, the rep-
licas are locked at the metadata level (Synchronization lay-
er). This prevents a situation of simultaneous file access.
The metadata record is unlocked after the file is stored.
Similarly, when the replication is finished, the metadata re-
cord of replicas is unlocked. By using this approach, the
KIV-DFS supports multi-RW replication.

Database Module. The Database module serves for com-
munication with the database. The database stores
metadata, the list of authorized users, and the client request
queue. Metadata contain all information about files, such as
names, the location in the directory structure, ACL inform-
ation, size, and the physical location of the file.

The synchronization of the databases is solved at the syn-
chronization level of KIV-DFS. It ensures the independence
of the replication and synchronization mechanisms of dif-
ferent databases. The database is designed in a minimalistic
way.

B. Experiments

To evaluate proposed policies, we performed simulation
of remote file accesses. For the simulation, we have created
500 files with random size between 500KB and 5MB on the
server side. The size of files respects the fact that mobile
clients usually accesses smaller files from the remote stor-
age.

The simulation was run on the wired client. We did not
use mobile client because of acceleration of simulation. We
have implemented RND, FIFO, LFU and LRU policies for
comparison with our LFU-SS and LRFU-SS policies. For
simulation of LRFU-SS, we have chosen coefficients K1=1,
K2=1; K1=1, K2=2; K1=2, K2=1. While using K1=1 and

KIV-DFS Server

KIV-DFS Client

Authorization

Synchronization

VFS

Database File system

612 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

K2=1, we do not favour any of the caching algorithms.
While using K1=1 and K2=2, we favour LRFU-SS over
LRU, and while using K1=2 and K2=1, we favour LRFU-
SS over LRU. We have chosen these coefficients experi-
mentally.

In a simulation scenario, we have made 10,000 random
requests on files where some of the files are prioritized and
some other files are accessed less often. The prioritisation
was made by a random number generator and a modulo
function.

In the first experiment, we have observed the read hits
count, and then we have computed read hit ratio. Read hits
count represents the number of requests which have been
served by the cache. The experiment used cache sizes from
8MB to 256MB. These cache sizes were chosen because of
limited capacity of mobile clients. Table I summarizes
cache read hit ratio, and Figure 3 depicts the cache read
hits count for each of the implemented algorithms. For each
simulated caching policy, we have had the same scenario of
accessed files.

The best algorithm in this scenario is LFU-SS. While us-
ing LFU-SS with cache capacities of 16MB and 32MB, we
can achieve up to 11% improvement over commonly used

Table I. Cache Read Hit Ratio vs. Cache size

Read Hit Ratio [%]/

Caching Policy
Cache Size [MB]

Caching policy 8 16 32 64 128 256

RND 2,98 5,68 10,36 16,03 25,46 40,39

FIFO 2,66 5,49 10,18 15,34 25,44 39,69

LFU 2,79 6,18 11,21 19,09 30,19 41,23

LRU 2,79 6,36 10,84 19,3 28,94 40,67

LFU-SS 6,55 13,05 21,68 23,64 31,47 42,47

LRFU-SS K1=1;K2=2 4,15 9,03 14 23,16 29,8 41,5

LRFU-SS K1=1;K2=1 2,83 7,28 12,2 22,07 30,58 41,91

LRFU-SS K1=2;K2=1 3,16 7,34 14,02 22,89 30,44 40,71

Figure 3. Cache Read Hits vs. Cache Size

LRU or LFU caching policies. When we use cache with lar -
ger capacity (64, 128, and 256MB), the improvement is up
to 4% in cache hit ratio.

On the other side, the cache read hits count deals only
with the count of the files in the cache that were found in
the cache. We use whole file as a basic caching unit. Hence,
the policy with the best read hits count does not have to be
the best caching policy in saving data traffic because of
variable file size.

In the second experiment, we have observed the data
traffic while using various cache algorithms. The total size
of transferred files was 22,5GB. We have done the experi-
ment with cache sizes from 8MB to 256MB again. Figure 4
shows, and Table II summarizes the bytes saved for differ-
ent caching policies.

The best caching algorithm for cache sizes 8MB, 16MB,
and 32MB is LFU-SS again. For larger cache capacity, the
best caching policy LRFU-SS with K1=1, and K2=1.
While using LRFU-SS with cache size of 265MB, we have
saved up to half of the network traffic. LFU-SS achieves up
to 8% of improvement over LRU in small cache sizes.
LRFU-SS achieves up to 10% of improvement over LRU
and LFU in larger cache capacities.

Table II. Saved bytes vs. Cache size

Saved Bytes[MB] /

Caching Policy
Cache Size [MB]

Caching policy 8 16 32 64 128 256

RND 601 1204 2136 3383 5110 8671

FIFO 537 1155 2199 3307 4991 8161

LFU 458 1070 1995 4448 5741 8274

LRU 614 1440 2495 4252 5537 8205

LFU-SS 1605 3315 4040 4520 7574 10245

LRFU-SS K1=1;K2=2 708 1528 2577 5955 6432 10280

LRFU-SS K1=1;K2=1 822 2342 3745 5761 7798 10362

LRFU-SS K1=2;K2=1 639 2626 4648 5966 7718 8932

Figure 4. Cache Size vs. Saved Bytes

8 16 32 64 128 256

0

2000

4000

6000

8000

10000

12000

Cache Size vs. Saved Bytes

RND

FIFO

LFU

LRU

LFU-SS

LRFU-SS K1=1;K2=2

LRFU-SS K1=1;K2=1

LRFU-SS K1=2;K2=1

Cache size [MB]

Sa
ve

d
 m

e
ga

b
y
te

s
[M

B
]

8 16 32 64 128 256

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Cache Size vs. Read Hits Counts

RND

FIFO

LFU

LRU

LFU-SS

LRFU-SS K1=1;K2=2

LRFU-SS K1=1;K2=1

LRFU-SS K1=2;K2=1

Cache size [MB]

R
e

ad
 h

it
s

co
u

n
t

PAVEL BŽOCH, LUBOŠ MATĚJKA ET AL.: TOWARDS CACHING ALGORITHM APPLICABLE TO MOBILE CLIENTS 613

V. FURTHER WORK

In our future work, we will implement cache and caching
policy for iPhone, Android and Windows Mobile client ap-
plications.

Storing files in the user’s cache may cause data inconsist-
ency. The data on server can be modified while the user
constantly works with the old files in the cache. In our fu-
ture work, we will develop algorithms for maintaining data
consistency for cached files.

In mobile devices, the connection to the server is not per-
manent. Not all of cellular networks providers have the cov-
erage on the whole area where the user uses the device. For
disconnected users, we will implement so-called offline op-
erations. In this case, the user can still access cached files
even after disconnection.

VI. CONCLUSION

This paper presented caching algorithms for caching files
in mobile devices. Our goals in developing new caching al-
gorithms were to decrease network traffic, and minimize
costs of counting the priority of the data block in the cache.
These two goals were set because of variable network con-
nection of the mobile devices caused by moving of the user,
and because of poor performance of the mobile devices.

The comparison of caching policies made in the section
Experimental results shows that the introduced algorithms
act better in comparison to commonly used caching policies
like LRU and LFU. For smaller cache size, LFU-FF is suit-
able caching policy; for larger cache size, LRFU-SS is bet-
ter choice.

For using in mobile devices, we have count the time com-
plexity for both of the developed algorithms. In this case,
the LFU-SS seems to be better algorithm. If we assume that
the basic caching unit is the whole file, than both of the al-
gorithms can be used in the mobile devices.

ACKNOWLEDGMENT

We thank Radek Strejc, Václav Steiner, and Jindřich
Skupa, bachelor and master degree students, Department of
Computer Science and Engineering, University of West Bo-
hemia, for implementing and testing our concepts and
ideas.

REFERENCES

[1] Azzedine Boukerche and Raed Al-Shaikh, "Servers Reintegration in
Disconnection-Resilient File Systems for Mobile Clients," in Parallel

Processing Workshops, 2006. ICPP 2006 Workshops. 2006

International Conference on, Columbus, 2006, pp. 114-120.

[2] N. Michalakis and D.N. Kalofonos, "Designing an NFS-based mobile
distributed file system for ephemeral sharing in proximity networks," in
Applications and Services in Wireless Networks, 2004. ASWN 2004.

2004 4th Workshop on, 2005, pp. 225-231.

[3] A. Boukerche, R. Al-Shaikh, and B. Marleau, "Disconnection-resilient
file system for mobile clients," in Local Computer Networks, 2005.

30th Anniversary. The IEEE Conference on, Sydney, 2005, pp. 614-
621.

[4] Nong Xiao, YingJie Zhao, Fang Liu, and ZhiGuang Chen, "Dual
queues cache replacement algorithm based on sequentiality
detection," in SCIENCE CHINA INFORMATION SCIENCES, 2012,
pp. 191-199.

[5] K.W. Froese and R.B. Bunt, "The effect of client caching on file server
workloads," in System Sciences, 1996., Proceedings of the Twenty-

Ninth Hawaii International Conference on, Wailea, HI , USA, 1996,
pp. 150-159.

[6] Benjamin Reed and Darrell D. E. Long, "Analysis of caching algorithms
for distributed file systems," in ACM SIGOPS Operating Systems

Review, Volume 30 Issue 3, New York, NY, USA, 1996, pp. 12-17.

[7] L. A. Belady, R. A. Nelson, and G. S. Shedler, "An anomaly in space-
time characteristics of certain programs running in a paging machine,"
Commun. ACM, vol. 12, no. 6, pp. 349-353, June 1969.

[8] R.L Mattson, J. Gecsei, D.R. Slutz, and I.L. Traiger, "Evaluation
techniques for storage hierarchies," IBM Systems Journal, vol. 9, no. 2,
pp. 78-117, 1970.

[9] B. Whitehead, Chung-Horng Lung, A. Tapela, and G. Sivarajah,
"Experiments of Large File Caching and Comparisons of Caching
Algorithms," in Network Computing and Applications, 2008. NCA

'08. Seventh IEEE International Symposium on, Cambridge, MA,
2008, pp. 244-248.

[10] Elizabeth J. O'Neil, Patrick E. O'Neil, and Gerhard Weikum, "The
LRU-K page replacement algorithm for database disk buffering," in
SIGMOD '93 Proceedings of the 1993 ACM SIGMOD international

conference on Management of data, New York, 1993, pp. 297-306.

[11] Nimrod Megiddo and Dharmendra S. Modha, "ARC: A Self-Tuning,
Low Overhead Replacement Cache," in FAST '03 Proceedings of the

2nd USENIX Conference on File and Storage Technologies, 2003,
pp. 115-130.

[12] Theodore Johnson and Dennis Shasha, "2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm," in In

VLDB '94: Proceedings of the 20th International Conference on Very

Large Data Bases, 1994, pp. 439-450.

[13] Yuanyuan Zhou, James F. Philbin, and Kai Li, "The Multi-Queue
Replacement Algorithm for Second Level Buffer Caches," in In

Proceedings of the 2001 USENIX Annual Technical Conference,
Boston, 2001, pp. 91-104.

[14] Donghee Lee et al., "LRFU: a spectrum of policies that subsumes the
least recently used and least frequently used policies," in Computers,

IEEE Transactions on, 2001, pp. 1352 -1361.

[15] Song Jiang and Xiaodong Zhang, "LIRS: An Efficient Low
Interreference Recency Set Replacement Policy to Improve Buffer
Cache Performance," in Proceedings of the 2002 ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems,

(SIIMETRICS'02), Marina Del Rey, 2002, pp. 31-42.

[16] A. Boukerche and R. Al-Shaikh, "Towards building a fault tolerant and
conflict-free distributed file system for mobile clients," in Proceedings

of the 20th International Conference on Advanced Information

Networking and Applications - Volume 02, AINA 2006., Washington,
DC, USA, 2006, pp. 405-412.

[17] Nong Xiao, YingJie Zhao, Fang Liu, and ZhiGuang Chen, "Dual
queues cache replacement algorithm based on sequentiality detection,"
in SCIENCE CHINA INFORMATION SCIENCES, Volume 55,

Number 1, Research paper, 2011, pp. 191-199.

[18] Woojoong Lee, Sejin Park, Baegjae Sung, and Chanik Park,
"Improving Adaptive Replacement Cache (ARC) by Reuse Distance,"
in 9th USENIX Conference on File and Storage Technologies

(FAST'11), San Jose, 2011, pp. 1-2.

[19] Thomas H Cormen, Charles E Leiserson, Ronald L. Rivest, and
Clifford Stein, Introduction To Algorithms, 3rd ed.: MIT Press and
McGraw-Hill, 2009.

[20] L. Matějka, L. Pešička, and J. Šafařík, "Distributed file system with
online multi-master replicas," in 2nd Eastern european regional

conference on the Engineering of computer based systems, Los
Alamitos, 2011, pp. 13-17.

614 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

